簡易檢索 / 詳目顯示

研究生: 廖禹翔
Yu-Xiang Liao
論文名稱: 製備具鎳奈米粒/石墨烯複合電極之紫外光發光二極體
Preparation of Ni Nanodots/Graphene Hybrid Electrode for Ultraviolet Light-emitting Diodes
指導教授: 柯文政
Wen-Cheng Ke
口試委員: 蕭育生
陸亭樺
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2023
畢業學年度: 112
語文別: 中文
論文頁數: 78
中文關鍵詞: 紫外光發光二極體電流擴散層石墨烯
外文關鍵詞: Ultraviolet light-emitting diodes, Current diffusion layer, Graphene
相關次數: 點閱:313下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 石墨烯是一種由碳原子組成的二維材料,為六角形的蜂巢結構。其具備低片電阻、高導熱率、機械性和高電子遷移率等特性,其中在紫外光波段下,單層石墨烯具有良好的穿透率,比起氧化銦錫(ITO),更適合作為紫外光發光二極體(UVC-LED)的透明導電層。本研究利用低壓化學氣相沉積系統在銅箔上生長石墨烯,並利用轉貼法將石墨烯轉移至UVC-LED基板,透過拉曼光譜圖分析,其ID/IG為0.12、I2D/IG為2.33、FWHM2D為29.7 cm-1,是為高品質的單層石墨烯。
    為了進一步提高UVC-LED的發光強度,在石墨烯上鍍上一層極薄鎳層,利用高溫製程的除潤現象使表面形成鎳奈米粒,於UVC-LED上製備出鎳奈米粒/石墨烯複合電極。本研究首先通過調整鎳層厚度、高溫退火製程的溫度及時間,來控制鎳奈米粒的大小並降低鎳奈米粒/石墨烯的電阻率,其最低可達650 Ω-cm。 接著以高真空熱蒸鍍系統製備金屬電極,進行光電特性分析以及熱特性量測。而利用除潤現象製備出的鎳奈米粒/石墨烯,其穿透率在紫外光波段為72 %,相比ITO的低穿透率提升許多。透過電致發光量測,可以發現鎳奈米粒/石墨烯複合電極樣品比起傳統鎳金電極樣品,其發光強度在100 mA下增加20倍。在真空腔體下進行注入電流與晶粒溫度量測,於室溫下注入電流100 mA後,傳統鎳金電極溫度上升35 ℃,而鎳奈米粒/石墨烯複合電極樣品僅上升11 ℃。本研究製備出鎳奈米粒/石墨烯複合電極可作為UVC-LED的電流擴散層,有助於改善大電流下產生的電流擁擠效應,使UVC-LED的發光強度增加,並且實質改善元件散熱的問題。


    Graphene is a two-dimensional material composed of carbon atoms in a hexagonal structure. It has the characteristics of low sheet resistance, high thermal conductivity, mechanical properties, and high electron mobility. Among them, monolayer graphene has good properties in the ultraviolet light band. Compared with Indium Tin Oxide (ITO), it is more suitable as a transparent conductive layer for ultraviolet light-emitting diodes. In this study, graphene is grown on copper foil using a low-pressure chemical vapor deposition method. A PMMA-mediated transfer method is used to transfer the graphene to the UVC-LED substrate. Through Raman spectrum analysis, the ID/IG is 0.12, I2D/IG is 2.33, and FWHM2D is 29.7 cm-1. It is a monolayer of very high-quality graphene.
    In order to further improve the luminous intensity of UVC-LED, an extremely thin layer of Ni is then plated on the graphene, and the dewetting phenomenon caused by the high-temperature process is used to form Ni nanodots/graphene hybrid electrode on UVC-LED. This study first controls the size of Ni nanodots and reduces the resistivity of Ni nanodots/graphene by optimizing the thickness of the Ni layer, the temperature, and time of the high-temperature annealing process, which can reach a minimum resistivity of 650 Ω-cm. Then, a high vacuum thermal evaporation system is used to prepare metal electrodes, and optoelectrical characteristics analysis and thermal measurement are performed. The Ni nanodots/graphene prepared by utilizing the dewetting phenomenon have a transmittance of 72 % in the ultraviolet light band, which is much higher than the low transmittance of ITO. Electroluminescence investigation shows that the UVC-LED of the Ni nanodots/graphene hybrid electrode sample manufactured using nickel has a luminous intensity that is 20 times greater than that of the standard nickel-gold electrode sample at 100 mA. A vacuum chamber was used to measure the chip temperature. The temperature of the conventional nickel-gold electrode was raised by 35 °C after a 100 mA current injection at room temperature, but the temperature of the Ni nanodots/graphene hybrid electrode sample only increased by 11 °C. In this study, Ni nanodots/graphene hybrid electrode was manufactured as the current diffusion layer of UVC-LED. This helps to reduce the issue of component heat dissipation and improves the current crowding effect caused by high currents.

    摘要 III Abstract IV 致謝 VI 目錄 VII 圖目錄 IX 表目錄 XV 第一章 緒論 1 1.1 前言 1 1.2 研究動機 4 第二章 文獻回顧 5 2.1 紫外光發光二極體(UVC-LED)介紹 5 2.1.1 UVC-LED之瓶頸與挑戰 5 2.1.2 提升UVC-LED發光效率之技術 7 2.1.3 UVC-LED熱性能之影響 14 2.2 石墨烯製備方法與品質分析 17 2.2.1 化學氣相沉積法 19 2.2.2 石墨烯轉移 21 2.2.3 石墨烯之拉曼光譜分析 23 2.3 UVC-LED透明導電層材料 25 第三章 實驗方法 33 3.1 實驗設計與流程 33 3.2 實驗製程設備簡介 37 3.3 實驗分析設備簡介 39 第四章 結果與討論 47 4.1 優化鎳奈米粒/石墨烯複合電極製程參數之研究 47 4.1.1 不同層數石墨烯之光電特性 47 4.1.2 不同鎳厚度對鎳奈米粒/石墨烯複合電極之光電特性研究 50 4.1.3 不同熱處理溫度對鎳奈米粒/石墨烯複合電極之光電特性研究 52 4.1.4 不同熱處理時間對鎳奈米粒/石墨烯複合電極之光電特性研究 53 4.2 鎳奈米粒/石墨烯複合電極之物理特性研究 57 4.2.1 拉曼光譜量測及SEM分析 58 4.2.2 XPS光譜量測 59 4.2.3 UV-vis穿透率量測 61 4.3 鎳奈米粒/石墨烯複合電極於UVC-LED之光電及熱特性研究 62 4.3.1 鎳奈米粒/石墨烯於UVC-LED之光電特性分析 62 4.3.2 鎳奈米粒/石墨烯於UVC-LED之溫度量測 68 第五章 結論 72 參考文獻 74

    1. Peng, Y., R. Liang, Y. Mou, J. Dai, M. Chen and X. Luo, Progress and perspective of near-ultraviolet and deep-ultraviolet light-emitting diode packaging technologies, J Electron Packaging.(2019). 141,
    2. Weisbuch, C., M. Piccardo, L. Martinelli, J. Iveland, J. Peretti and J. S. Speck, The efficiency challenge of nitride light‐emitting diodes for lighting, Phys. Status Solidi. (a).(2015). 212, p.899-913.
    3. https://green.pidc.org.tw/detail.php?lang=tw&type=1&id=2175.
    4. Lo, C.-W., R. Matsuura, K. Iimura, S. Wada, A. Shinjo, Y. Benno, M. Nakagawa, M. Takei and Y. Aida, UVC disinfects SARS-CoV-2 by induction of viral genome damage without apparent effects on viral morphology and proteins, Scientific reports.(2021). 11, p.13804.
    5. https://www.gminsights.com/industry-analysis/uv-led-market
    6. https://www.mordorintelligence.com/industry-reports/uv-led-market.
    7. Amano, H., R. Collazo, C. De Santi, S. Einfeldt, M. Funato, J. Glaab, S. Hagedorn, A. Hirano, H. Hirayama and R. Ishii, The 2020 UV emitter roadmap, J.Phys. D: Appl. Phys.(2020). 53, p.503001.
    8. https://w3.sipa.gov.tw/SPANEWS/newsletter/download.jsp?FileName=1567492185945.pdf.
    9. Li, J., N. Gao, D. Cai, W. Lin, K. Huang, S. Li and J. Kang, Multiple fields manipulation on nitride material structures in ultraviolet light-emitting diodes, LIGHT-SCI APPL (2021). 10, p.129.
    10. Kim, B.-M., M. S. P. Reddy, Y.-W. Lee and C. Park, Enhanced surface and optical properties of colloidal silver nano-particles on GaN-based light-emitting diodes by a localized surface plasmon resonance effect using a low-cost metal-assisted chemical etching method, Opt. Commun. (2019). 450, p.276-281.
    11. Gu, X., T. Qiu, W. Zhang and P. K. Chu, Light-emitting diodes enhanced by localized surface plasmon resonance, Nanoscale Res. Lett. (2011). 6, p.1-12.
    12. Tien, C. H., S. H. Chuang, H. M. Lo, S. Tasi, C. L. Wu, S. L. Ou and D. S. Wuu, ITO/nano‐Ag plasmonic window applied for efficiency improvement of near‐ultraviolet light emitting diodes, Phys. Status Solidi. (a).(2017). 214, p.1600609.
    13. Ma, C., Y. Cao, X. Shen, Z. Wen, R. Ma, J. Long and X. Yuan, High reliable and chromaticity-tunable flip-chip w-LEDs with Ce: YAG glass-ceramics phosphor for long-lifetime automotive headlights applications, Optical Materials.(2017). 69, p.105-114.
    14. Ku, C.-H., W.-K. Wang and R.-H. Horng, Improvement of light extraction for AlGaN-based near UV LEDs with flip-chip bonding fabricated on grooved sapphire substrate using laser ablation, Mat Sci Semicon Proc. (2019). 95, p.48-53.
    15. Huang, C.-Y., C.-L. Tsai, C.-Y. Huang, R.-Y. Yang, Y. S. Wu, H.-W. Yen and Y.-K. Fu, Efficiency improvement analysis of nano-patterned sapphire substrates and semi-transparent superlattice contact layer in UVC light-emitting diodes, Appl. Phys. Lett. (2020). 117, p.261102.
    16. Shatalov, M., G. Simin, V. Adivarahan, A. Chitnis, S. Wu, R. Pachipulusu, V. Mandavilli, K. Simin, J. P. Zhang and J. W. Yang, Lateral current crowding in deep UV light emitting diodes over sapphire substrates, Jpn J Appl Phys. (2002). 41, p.5083.
    17. Lin, Y.-C., S.-J. Chang, Y.-K. Su, T.-Y. Tsai, C. Chang, S.-C. Shei, C. Kuo and S. Chen, InGaN/GaN light emitting diodes with Ni/Au, Ni/ITO and ITO p-type contacts, Solid-State Electronics.(2003). 47, p.849-853.
    18. Li, X., W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung and E. Tutuc, Large-area synthesis of high-quality and uniform graphene films on copper foils, Science.(2009). 324, p.1312-1314.
    19. Bae, S., H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. Ri Kim and Y. I. Song, Roll-to-roll production of 30-inch graphene films for transparent electrodes, Nat. (2010). 5, p.574-578.
    20. Chen, S., A. L. Moore, W. Cai, J. W. Suk, J. An, C. Mishra, C. Amos, C. W. Magnuson, J. Kang and L. Shi, Raman measurements of thermal transport in suspended monolayer graphene of variable sizes in vacuum and gaseous environments, ACS nano.(2011). 5, p.321-328.
    21. Zhang, H., J. Mischke, W. Mertin and G. Bacher, Graphene as a transparent conductive electrode in GaN-based LEDs, Materials.(2022). 15, p.2203.
    22. https://www.semiconductortoday.com/news_items/2013/MAY/KEYLAB_160513.html.
    23. Kim, B.-J., C. Lee, Y. Jung, K. Hyeon Baik, M. A. Mastro, J. K. Hite, C. R. Eddy Jr and J. Kim, Large-area transparent conductive few-layer graphene electrode in GaN-based ultra-violet light-emitting diodes, Appl. Phys. Lett. (2011). 99, p.143101.
    24. Chang, H., Z. Chen, W. Li, J. Yan, R. Hou, S. Yang, Z. Liu, G. Yuan, J. Wang and J. Li, Graphene-assisted quasi-van der Waals epitaxy of AlN film for ultraviolet light emitting diodes on nano-patterned sapphire substrate, Appl. Phys. Lett. (2019). 114, p.091107.
    25. Der Maur, M. A., A. Pecchia, G. Penazzi, W. Rodrigues and A. Di Carlo, Efficiency drop in green InGaN/GaN light emitting diodes: The role of random alloy fluctuations, PRL. (2016). 116, p.027401.
    26. Onwukaeme, C., B. Lee and H.-Y. Ryu, Temperature dependence of electron leakage current in InGaN blue light-emitting diode structures, Nanomaterials.(2022). 12, p.2405.
    27. Chernyakov, A., M. Sobolev, V. Ratnikov, N. Shmidt and E. Yakimov, Nonradiative recombination dynamics in InGaN/GaN LED defect system, Superlattices Microstruct.(2009). 45, p.301-307.
    28. Deng, S., Z. Chen, M. Li, M. Su, X. Zhu, K. Xiao, Y. Wang, J. Deng and W. Sun, Variable temperature thermal droop characteristics of 255 nm UV LED, Appl. Phys. Lett. (2022). 121, p.031104.
    29. Han, N., T. Viet Cuong, M. Han, B. Deul Ryu, S. Chandramohan, J. Bae Park, J. Hye Kang, Y.-J. Park, K. Bok Ko and H. Yun Kim, Improved heat dissipation in gallium nitride light-emitting diodes with embedded graphene oxide pattern, Nat. Commun. (2013). 4, p.1452.
    30. Parimoo, H., Q. Zhang, M. Vafadar, J. Sivasundarampillai and S. Zhao, AlGaN nanowire deep ultraviolet light emitting diodes with graphene electrode, Appl. Phys. Lett. (2022). 120, p.171108.
    31. Kim, S. J., K. Choi, B. Lee, Y. Kim and B. H. Hong, Materials for flexible, stretchable electronics: graphene and 2D materials, Annu. Rev. Mater. Sci. (2015). 45, p.63-84.
    32. Avouris, P. and C. Dimitrakopoulos, Graphene: synthesis and applications, Materials today.(2012). 15, p.86-97.
    33. Inagaki, M., Y. Kim and M. Endo, Graphene: preparation and structural perfection, J. Mater. Chem. (2011). 21, p.3280-3294.
    34. Lee, J. H., A. Avsar, J. Jung, J. Y. Tan, K. Watanabe, T. Taniguchi, S. Natarajan, G. Eda, S. Adam and A. H. Castro Neto, Van der Waals force: a dominant factor for reactivity of graphene, Nano letters.(2015). 15, p.319-325.
    35. Brisebois, P. and M. Siaj, Harvesting graphene oxide–years 1859 to 2019: a review of its structure, synthesis, properties and exfoliation, J. Mater. Chem. (2020). 8, p.1517-1547.
    36. Yang, G., L. Li, W. B. Lee and M. C. Ng, Structure of graphene and its disorders: a review, Sci Technol Adv Mater. (2018). 19, p.613-648.
    37. https://www.researchgate.net/figure/Overview-of-graphene-production-methods-with-top-down-approaches-starting-from-graphite_fig2_353388149.
    38. Zou, Z., L. Fu, X. Song, Y. Zhang and Z. Liu, Carbide-forming groups IVB-VIB metals: a new territory in the periodic table for CVD growth of graphene, Nano letters.(2014). 14, p.3832-3839.
    39. Fang, W., A. L. Hsu, Y. Song and J. Kong, A review of large-area bilayer graphene synthesis by chemical vapor deposition, Nanoscale.(2015). 7, p.20335-20351.
    40. Cai, W., Y. Zhu, X. Li, R. D. Piner and R. S. Ruoff, Large area few-layer graphene/graphite films as transparent thin conducting electrodes, Appl. Phys. Lett. (2009). 95, p.123115.
    41. Kim, S. M., A. Hsu, Y.-H. Lee, M. Dresselhaus, T. Palacios, K. K. Kim and J. Kong, The effect of copper pre-cleaning on graphene synthesis, Nanotechnology.(2013). 24, p.365602.
    42. "Advances in transferring chemical vapour deposition graphene: A review."
    43. Kang, J., D. Shin, S. Bae and B. H. Hong, Graphene transfer: key for applications, Nanoscale.(2012). 4, p.5527-5537.
    44. De Aza, P., C. Santos, A. Pazo, S. De Aza, R. Cusco and L. Artus, Vibrational properties of calcium phosphate compounds. 1. Raman spectrum of β-tricalcium phosphate, Chem. Mater. (1997). 9, p.912-915.
    45. Walls, D. F., Quantum theory of the Raman effect: I. Interaction with phonons, Zeitschrift für Physik A Hadrons and nuclei.(1970). 237, p.224-233.
    46. Wang, G., B. Zhang, H. Ji, X. Liu, T. He, L. Lv, Y. Hou and J. Shen, Monolayer graphene based organic optical terahertz modulator, Appl. Phys. Lett. (2017). 110, p.023301.
    47. Eckmann, A., A. Felten, A. Mishchenko, L. Britnell, R. Krupke, K. S. Novoselov and C. Casiraghi, Probing the nature of defects in graphene by Raman spectroscopy, Nano letters.(2012). 12, p.3925-3930.
    48. Casiraghi, C., S. Pisana, K. Novoselov, A. K. Geim and A. Ferrari, Raman fingerprint of charged impurities in graphene, Appl. Phys. Lett. (2007). 91,
    49. Liu, Y., Z. Liu, W. S. Lew and Q. J. Wang, Temperature dependence of the electrical transport properties in few-layer graphene interconnects, Nanoscale research letters.(2013). 8, p.1-7.
    50. Kumar, V., A. Kumar, D.-J. Lee and S.-S. Park, Estimation of number of graphene layers using different methods: a focused review, Materials.(2021). 14, p.4590.
    51. Hao, Y., Y. Wang, L. Wang, Z. Ni, Z. Wang, R. Wang, C. K. Koo, Z. Shen and J. T. Thong, Probing layer number and stacking order of few‐layer graphene by Raman spectroscopy, small.(2010). 6, p.195-200.
    52. Ali, A. H., A. Shuhaimi and Z. Hassan, Structural, optical and electrical characterization of ITO, ITO/Ag and ITO/Ni transparent conductive electrodes, Appl. Surf. Sci. (2014). 288, p.599-603.
    53. Cho, C.-Y., S.-H. Hong and S.-J. Park, Improvement of optical and electrical properties of indium tin oxide layer of GaN-based light-emitting diode by surface plasmon in silver nanoparticles, Thin Solid Films.(2015). 590, p.76-79.

    54. Wang, L., W. Liu, Y. Zhang, Z.-H. Zhang, S. T. Tan, X. Yi, G. Wang, X. Sun, H. Zhu and H. V. Demir, Graphene-based transparent conductive electrodes for GaN-based light emitting diodes: Challenges and countermeasures, Nano Energy.(2015). 12, p.419-436.
    55. Seo, T. H., S. Kim, M. J. Kim, H. Kim and E.-K. Suh, Compound Ag nanocluster-graphene electrodes as transparent and current spreading electrodes for improved light output power in near-ultraviolet light emitting diodes, J.Phys. D: Appl. Phys. (2014). 47, p.215103.
    56. Shim, J.-P., T. Hoon Seo, J.-H. Min, C. Mo Kang, E.-K. Suh and D.-S. Lee, Thin Ni film on graphene current spreading layer for GaN-based blue and ultra-violet light-emitting diodes, Appl. Phys. Lett. (2013). 102,
    57. Choe, M., C.-Y. Cho, J.-P. Shim, W. Park, S. K. Lim, W.-K. Hong, B. Hun Lee, D.-S. Lee, S.-J. Park and T. Lee, Au nanoparticle-decorated graphene electrodes for GaN-based optoelectronic devices, Appl. Phys. Lett. (2012). 101, p.031115.
    58. "https://www.tiri.narl.org.tw/Files/Doc/Publication/InstTdy/160/01600280.pdf."
    59. Cui, N., P. Guo, Q. Yuan, C. Ye, M. Yang, M. Yang, K. W. Chee, F. Wang, L. Fu and Q. Wei, Single-step formation of Ni nanoparticle-modified graphene–diamond hybrid electrodes for electrochemical glucose detection, Sensors.(2019). 19, p.2979.
    60. Liao, T.-Y., B.-Y. Lee, C.-W. Lee and P.-K. Wei, Large-area Raman enhancement substrates using spontaneous dewetting of gold films and silver nanoparticles deposition, Sens. Actuators B Chem..(2011). 156, p.245-250.
    61. Bleu, Y., F. Bourquard, J.-Y. Michalon, Y. Lefkir, S. Reynaud, A.-S. Loir, V. Barnier, F. Garrelie and C. Donnet, Transfer-free graphene synthesis by nickel catalyst dewetting using rapid thermal annealing, Appl. Surf. Sci.(2021). 555, p.149492.
    62. Kim, H., H.-H. Park and J. Kim, Electrical and optical properties of Ni-assisted grown single crystalline and transparent indium-tin-oxide nanowires, Mat Sci Semicon Proc.(2016). 48, p.79-84.
    63. Shim, J.-P., D. Kim, M. Choe, T. Lee, S.-J. Park and D.-S. Lee, A self-assembled Ag nanoparticle agglomeration process on graphene for enhanced light output in GaN-based LEDs, Nanotechnology.(2012). 23, p.255201.
    64. "https://www.azooptics.com/Article.aspx?ArticleID=2083."

    無法下載圖示 全文公開日期 2026/10/20 (校內網路)
    全文公開日期 2026/10/20 (校外網路)
    全文公開日期 2026/10/20 (國家圖書館:臺灣博碩士論文系統)
    QR CODE