簡易檢索 / 詳目顯示

研究生: 廖泓量
Hung-Liang Liao
論文名稱: 氧化鐵-奈米金核殼@石墨烯奈米複合物於表面增強拉曼光譜偵測以及電磁場熱療之應用
Applications of Fe3O4-Au@Graphene Nanocomposites for Rapid SERS Detection and Hyperthermia Treatment
指導教授: 楊銘乾
Ming-Chien Yang
口試委員: 劉定宇
Ting-Yu Liu
邱志瑋
Chih-Wei Chiu
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 102
中文關鍵詞: 四氧化三鐵米粒子核殼複合物石墨烯表面增強拉曼光譜磁生熱治療法
外文關鍵詞: graphene nanocompo sites, bio-detection, hyperthermal, coreshell
相關次數: 點閱:278下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究將金奈米粒子 (gold nanoparticles,Au NPs)包覆於聚乙烯亞胺 (PEI)改質過後的帶正電之四氧化三鐵奈米粒子(Fe3O4)而形成鐵金核殼複合物(Fe3O4-Au coreshell),並分布於聚二甲基二烯丙基氯化銨 (PDDA)改質石墨烯 (graphene)得到的GO-PDDA 上形成Fe3O4-Au@RGO 奈米複合物。Fe3O4-Au@RGO 具有光學穿透性並且能夠提升對於微生物的接觸面積進而提高表面增強拉曼光譜 (surfaceenhancedRaman scattering,SERS)偵測的靈敏度,藉由調控不同比例之Fe3O4-Au coreshell 和GO 尋找最佳拉曼增強效應並用於偵測小分子腺嘌呤 (adenine)、微生物金黃色葡萄球菌 (S. aureus)之SERS 訊號,也由於Fe3O4-Au@RGO 具有強磁性,可置於交流電高頻率磁場(high frequency magnetic field, HFMF)下產生熱能達到熱治療作用。結果顯示Fe3O4-Au@RGO 不僅擁有良好之拉曼增強效應,在熱治療方面也成功殺菌,為一多功能型奈米複合材料。


    In this study, Fe3O4-Au nanohybrids were prepared by seeding gold nanoparticle (AuNPs) onto Fe3O4 nanoparticles after coating with polyethylenimine (PEI). Then Fe3O4-Au nanohybrids were attached onto cationic poly(dimethyldiallylammonium chloride) (PDDA)-modified graphene oxide (GO) sheets through in situ self-assembly behaviors, termed as Fe3O4-Au@RGO. The resulting Fe3O4-Au@RGO was
    characterized systematically by transmission electron microscopy (TEM). It revealed that AuNPs were immobilized on the surface of Fe3O4, and the Fe3O4-Au nanohybrids were dispersed homogeneously on the graphene oxide layer. The surface charge and particle size of Fe3O4 would increase by PEI modification, confirmed by zetasizer measurement. The results showed that PEI and AuNPs were successfully coated on the surface of Fe3O4. Furthermore, the rapid surface-enhanced Raman scattering (SERS) detection and identification of small biomolecules (adenine) and microorganisms (gram-positive bacteria, Staphylococcus aureus) were conducted through Raman spectroscopy. Thus, it demonstrated that this nanohybrid can serve as a promising candidate for bio-applications, specifically for bio-detection. Also, the external application of a highfrequency magnetic field completely destroyed these aggregated microbes
    by the magnetically induced heat. Hence, the newly developed nanohybrids were shown to be viable for physically capturing microbes and also for potential hyperthermia treatment applications.

    致謝 中文摘要 Abstract 目錄 圖目錄 表目錄 第 1 章 (Introduction) 1.1 研究背景 1.2 研究目的 第 2 章 文獻回顧 (Literature) 2.1 金奈米粒子 2.1.1 金奈米粒子性質 2.1.2 金奈米粒子合成方法與結構 2.2 四氧化三鐵 2.2.1 四氧化三鐵奈米粒子簡介 2.2.2 四氧化三鐵合成方法 2.3 石墨烯 2.3.1 石墨烯的結構與性質 2.3.2 石墨烯的製備方法 2.4 聚二甲基二烯丙基氯化銨 2.5 聚乙烯亞胺 2.6 拉曼光譜 2.6.1 拉曼光譜的歷史 2.6.2 拉曼光譜的原理 2.7 表面增強拉曼光譜 2.7.1 表面增強拉曼光譜簡介 2.7.2 表面增強拉曼光譜效應機制 2.7.3 細菌之SERS訊號 2.8電磁場熱療法 2.8.1 電磁場熱療法原理簡介 2.8.2 電磁場熱療法發展 第 3 章 實驗 (Experiment) 3.1 實驗材料 3.2 實驗設備 3.3 實驗流程 3.4 實驗原理及方法 3.4.1 四氧化三鐵-聚乙烯亞胺複合物合成 3.4.2 金奈米粒子合成 3.4.3 Fe3O4-Au核殼複合物合成 3.4.4 氧化石墨烯合成 3.4.5 Graphene-PDDA 合成 3.4.6 Fe3O4-Au@RGO合成 3.4.7 表面增強拉曼光譜實驗 3.4.8 電磁場熱療法實驗 3.4.9 儀器分析 第 4 章 結果討論 (Results and Discussion) 4.1 四氧化三鐵-金@石墨烯奈米複合物合成 4.1.1 四氧化三鐵-聚乙烯亞胺複合物合成 4.1.2 金奈米粒子 4.1.3 Fe3O4-Au核殼複合物合成 4.1.4 氧化石墨烯以及GO-PDDA之合成 4.1.5 Fe3O4-Au@RGO奈米複合物之合成 4.2 SERS效應與應用探討 4.2.1 Fe3O4-Au核殼複合物於SERS效應之應用 4.2.2 Fe3O4-Au@RGO奈米複合物於SERS效應之應用 4.3電磁場熱療法實驗之應用探討 第 5 章 結論 參考文獻 (Reference)

    [1] D. A. Handley, "Colloidal Gold:Principles,methods and Applications" Academic Press 1, vol. 1, 1989.
    [2] M Faraday, "The Bakerian Lecture:Experimental Relations of Gold(and Other Metals) to Light," Philosophical Transactions of the Royal Society of London vol. 147, pp. 145-181, 1857.
    [3] K. Kneipp, A. S. Haka, H. Kneipp, K. Badizadegan, N. Yoshizawa, C. Boone, "Surface-enhanced Raman Spectroscopy in single living cells using gold nanoparticles," Applied Spectroscopy, vol. 56, pp. 150-154, Feb 2002.
    [4] C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, "Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates," Nano Letters, vol. 5, pp. 1569-1574, Aug 2005.
    [5] C. J. Orendorff, T. K. Sau, and C. J. Murphy "Surface-Enhanced Raman Spectroscopy of Self-Assembled Monolayers:  Sandwich Architecture and Nanoparticle Shape Dependence," Analytical Chemistry, vol. 77, pp. 3261-3266,
    [6] J. Kimling, B. Okenve, V. Kotaidis, H. Ballot, and A. Plech "Turkevich Method for Gold Nanoparticle Synthesis Revisited," The Journal of Physical Chemistry B, vol. 110, pp. 15700-15707.
    [7] J. Turkevich, and J. Hillier "A study of the nucleation and growth processes in the synthesis of colloidal gold," Discussions of the Faraday Society, vol. 11, pp. 55-75, 1951.
    [8] Kenneth R. Brown, Daniel G. Walter and Michael J. Natan."Seeding of Colloidal Au Nanoparticle Solution. 2. Improved Control of Particle Size and Shape" Chem. Mater. 12. 306.
    [9] Sophie Laurent, Marc Port, Alain Roch, Caroline Robic, Luce Vander Elst and, Robert. N. Muller "Magnetic Iron Oxide Nanoparticles: Synthesis, Stabilization, Vectorization,Physicochemical Characterizations, and Biological Applications" Chemical Reviews 108, 2064.
    [10] Ankamwar B, Huang JH, Liu RS, Hsiao M, Chen CH, Hwu YK, "Biocompatibility of Fe3O4 nanoparticles evaluated by in vitro cytotoxicity assays using normal, glia and breast cancer cells." Nanotechnology 21, 75102.
    [11] Wahajuddin, Arora S "Superparamagnetic iron oxide nanoparticles: magnetic nanoplatforms as drug carriers" International Journal of Nanomedicine 7, 3445.
    [12] Xiaodi Liu, Yufeng Tang, Yiyang Zhao and Bingyu Liang, "A Review on the Synthesis of Manganese Oxide Nanomaterials and Their Applications on Lithium-Ion Batteries" Journal of Nanomaterials 2013, 1.
    [13] A. K. G. a. P. Kim, "Graphene, a newly isolated form of carbon, provides a rich lode of novel fundamental physics and practical applications," Scientific American, vol. 298, pp. 90-97, 2008.
    [14] G. Eda, G. Fanchini, and M. Chhowalla, "Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material," Nat Nano, vol. 3, pp. 270-274, 05//print 2008.
    [15] A. K. Geim and K. S. Novoselov, "The rise of graphene," Nat Mater, vol. 6, pp. 183-191, 03//print 2007.
    [16] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, "Electric Field Effect in Atomically Thin Carbon Films," Science, vol. 306, pp. 666-669, October 22, 2004 2004.
    [17] J. Meyer, A. Chuvilin, and U. Kaiser, "Electron Microscopic Studies with Graphene," Microscopy and Microanalysis, vol. 15, pp. 126-127, 2009.
    [18] C. Andrey, C. M. Jannik, A.-S. Gerardo, and K. Ute, "From graphene constrictions to single carbon chains," New Journal of Physics, vol. 11, p. 083019, 2009.
    [19] C. Lee, X. Wei, J. W. Kysar, and J. Hone, "Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene," Science, vol. 321, pp. 385-388, July 18, 2008 2008.
    [20] A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, et al., "Superior Thermal Conductivity of Single-Layer Graphene," Nano Letters, vol. 8, pp. 902-907, 2008/03/01 2008.
    [21] K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, et al., "Ultrahigh electron mobility in suspended graphene," Solid State Communications, vol. 146, pp. 351-355, 6/ 2008.
    [22] XC Yu, H. Zhang, W. Li, X. Pan, N. Luo, Y. Wang, X. and Hou, J. G. (2011) ACS Nano 5: 952.
    [23] LX Xi Ling, Yuan Fang, Hua Xu, Haoli Zhang, Jing Kong,Mildred S. Dresselhaus,Jin Zhang,, and Zhongfan Liu, (2010) Nano Letters 10: 553.
    [24] J. Rafiee, X. Mi, H. Gullapalli, A. V. Thomas, F. Yavari, Y. Shi, et al., "Wetting transparency of graphene," Nat Mater, vol. 11, pp. 217-222, 03//print 2012.
    [25] S. Chen, Q. Wu, C. Mishra, J. Kang, H. Zhang, K. Cho, et al., "Thermal conductivity of isotopically modified graphene," Nat Mater, vol. 11, pp. 203-207, 03//print 2012.
    [26] A. H. C. Neto and K. Novoselov, "New directions in science and technology: two-dimensional crystals," Reports on Progress in Physics, vol. 74, p. 082501, 2011.
    [27] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, "Two-dimensional gas of massless Dirac fermions in graphene," Nature, vol. 438, pp. 197-200.
    [28] K. S. Novoselov and A. H. C. Neto, "Two-dimensional crystals-based heterostructures: materials with tailored properties," Physica Scripta, vol. 2012, p. 014006, 2012.
    [29] Y. Iyechika, "Application of graphene to high-speed transistors: expectations and challenges," Science and Technology Trends - Quarterly Review, vol. 37, pp. 76-92, 2010..
    [30] A. Reina, X. T. Jia, J. Ho, D. Nezich, H. B. Son, V. Bulovic, et al., "Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition," Nano Letters, vol. 9, pp. 30-35, Jan 2009.
    [31] A. N. Obraztsov, E. A. Obraztsova, A. V. Tyurnina, and A. A. Zolotukhin, "Chemical vapor deposition of thin graphite films of nanometer thickness," Carbon, vol. 45, pp. 2017-2021, Sep 2007.
    [32] I. Vlassiouk, M. Regmi, P. Fulvio, S. Dai, P. Datskos, G. Eres, et al., "Role of Hydrogen in Chemical Vapor Deposition Growth of Large Single-Crystal Graphene," ACS Nano, vol. 5, pp. 6069-6076, 2011/07/26 2011.
    [33] K. C. Yung, W. M. Wu, M. P. Pierpoint, and F. V. Kusmartsev, "Introduction to graphene electronics – a new era of digital transistors and devices," Contemporary Physics, vol. 54, pp. 233-251, 2013/09/01 2013.
    [34] H. He, J. Klinowski, M. Forster, and A. Lerf, "A new structural model for graphite oxide," Chemical Physics Letters, vol. 287, pp. 53-56, 4/24/ 1998.
    [35] A. Lerf, H. Y. He, M. Forster, and J. Klinowski, "Structure of graphite oxide revisited," Journal of Physical Chemistry B, vol. 102, pp. 4477-4482, Jun 4 1998.
    [36] M. Hirata, T. Gotou, S. Horiuchi, M. Fujiwara, and M. Ohba, "Thin-film particles of graphite oxide 1: High-yield synthesis and flexibility of the particles," Carbon, vol. 42, pp. 2929-2937, 2004.
    [37] T. Szabo, A. Szeri, and I. Dekany, "Composite graphitic nanolayers prepared by self-assembly between finely dispersed graphite oxide and a cationic polymer," Carbon, vol. 43, pp. 87-94, 2005.
    [38] B. C. Brodie, "Sur le poids atomique du graphite," Ann. Chim. Phys., vol. 59, pp. 466-472, 1860.
    [39] L. Staudenmaier, "Verfahren zur Darstellung der Graphitsäure," Berichte der deutschen chemischen Gesellschaft, vol. 31, pp. 1481-1487, 1898.
    [40] W. S. Hummers and R. E. Offeman, "Preparation of Graphitic Oxide," Journal of the American Chemical Society, vol. 80, pp. 1339-1339, 1958/03/01 1958.
    [41] A. Bagri, C. Mattevi, M. Acik, Y. J. Chabal, M. Chhowalla, and V. B. Shenoy, "Structural evolution during the reduction of chemically derived graphene oxide," Nat Chem, vol. 2, pp. 581-587, 07/print 2010.
    [42] G. B. Butler and R. J. Angelo, "Preparation and Polymerization of Unsaturated Quaternary Ammonium Compounds. VIII. A Proposed Alternating Intramolecular-Intermolecular Chain Propagation1," Journal of the American Chemical Society, vol. 79, pp. 3128-3131, 1957/06/01 1957.
    [43] J. Lu, X. D. Wang, and C. B. Xiao, "Preparation and characterization of konjac glucomannan/poly(diallydimethylammonium chloride) antibacterial blend films," Carbohydrate Polymers, vol. 73, pp. 427-437, Aug 2008.
    [44] C. Wandrey, J. Hernández-Barajas, and D. Hunkeler, "Diallyldimethylammonium Chloride and its Polymers," in Radical Polymerisation Polyelectrolytes. vol. 145, I. Capek, J. Hernfández-Barajas, D. Hunkeler, J. L. Reddinger, J. R. Reynolds, and C. Wandrey, Eds., ed: Springer Berlin Heidelberg, 1999, pp. 123-183.
    [45] B. P. Tripathi, N. C. Dubey, and M. Stamm, "Functional polyelectrolyte multilayer membranes for water purification applications," Journal of Hazardous Materials, vol. 252, pp. 401-412, May 2013.
    [46] H H P Yiu, SC McBain, A J El Haj, Dobson J "A triple-layer design for poly-
    ethyleneimine-coated, nanostructured magnetic particles and their use in DNA
    binding and transfection Stud Surf Sci Catal 165: 869.
    [47] Boussif O, Zanta MA, Mergny MD, Scherman D, Demeneix B, Behr JP. (1995)
    Proc. Nat. Acad. Sci 92: 7297.
    [48] D. A. Long, "Introductory Raman Spectroscopy. John R. Ferraro, Kazuo Nakamoto
    and Chris W. Brown. Academic Press, Amsterdam, Second Edition, 2003. xiii +
    434," Journal of Raman Spectroscopy, vol. 36, pp. 1012-1012, 2005.
    [49] M. Fleischmann, P. J. Hendra, and A. J. McQuillan, "Raman spectra of pyridine
    adsorbed at a silver electrode," Chemical Physics Letters, vol. 26, pp. 163-166,
    1974..
    [50] W. E. Doering and S. Nie, "Single-Molecule and Single-Nanoparticle SERS: 
    Examining the Roles of Surface Active Sites and Chemical Enhancement," The
    Journal of Physical Chemistry B, vol. 106, pp. 311-317, 2002/01/01 2001.
    [51] N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, A. Hohenau, G. Schider, "Optimized
    surface-enhanced Raman scattering on gold nanoparticle arrays," Applied
    Physics Letters, vol. 82, pp. 3095-3097, 2003..
    [52] S. Nie and S. R. Emory, "Probing Single Molecules and Single Nanoparticles by
    Surface-Enhanced Raman Scattering," Science, vol. 275, pp. 1102-1106,
    February 21, 1997 1997..
    [53] K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, et al., "Single
    Molecule Detection Using Surface-Enhanced Raman Scattering (SERS)," Physical
    Review Letters, vol. 78, pp. 1667-1670, 03/03/ 1997.
    [54] A. Campion and P. Kambhampati, "Surface-enhanced Raman scattering,"
    Chemical Society Reviews, vol. 27, pp. 241-250, 1998.
    [55] D. L. Jeanmaire and R. P. Van Duyne, "Surface raman spectroelectrochemistry:
    Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized
    silver electrode," Journal of Electroanalytical Chemistry and Interfacial
    Electrochemistry, vol. 84, pp. 1-20, 11/10/ 1977.
    [56] M. G. Albrecht and J. A. Creighton, "Anomalously intense Raman spectra of
    pyridine at a silver electrode," Journal of the American Chemical Society, vol. 99,
    pp. 5215-5217, 1977/06/01 1977.
    [57] E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, "Surface Enhanced Raman
    Scattering Enhancement Factors:  A Comprehensive Study," The Journal of
    Physical Chemistry C, vol. 111, pp. 13794-13803, 2007/09/01 2007.
    [58] A. J. Haes and R. P. Van Duyne, "A unified view of propagating and localized
    surface plasmon resonance biosensors," Analytical and Bioanalytical Chemistry,
    vol. 379, pp. 920-930, Aug 2004.
    [59] K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, "The Optical Properties of
    Metal Nanoparticles:  The Influence of Size, Shape, and Dielectric Environment,"
    The Journal of Physical Chemistry B, vol. 107, pp. 668-677, 2003/01/01 2002.
    [60] E. C. Le Ru and P. G. Etchegoin, "Chapter 3 - Introduction to plasmons and
    plasmonics," in Principles of Surface-Enhanced Raman Spectroscopy, E. C. L. Ru
    and P. G. Etchegoin, Eds., ed Amsterdam: Elsevier, 2009, pp. 121-183.
    [61] H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, "Spectroscopy of Single
    Hemoglobin Molecules by Surface Enhanced Raman Scattering," Physical Review
    Letters, vol. 83, pp. 4357-4360, 11/22/ 1999.
    [62] E. Hao and G. C. Schatz, "Electromagnetic fields around silver nanoparticles and
    dimers," The Journal of Chemical Physics, vol. 120, pp. 357-366, 2004..
    [63] T. R. Jensen, G. C. Schatz, and R. P. Van Duyne, "Nanosphere Lithography: 
    Surface Plasmon Resonance Spectrum of a Periodic Array of Silver Nanoparticles
    by Ultraviolet−Visible Extinction Spectroscopy and Electrodynamic Modeling,"
    The Journal of Physical Chemistry B, vol. 103, pp. 2394-2401, 1999/04/01 1999.
    [64] G. L. Liu and L. P. Lee, "Nanowell surface enhanced Raman scattering arrays
    fabricated by soft-lithography for label-free biomolecular detections in
    integrated microfluidics," Applied Physics Letters, vol. 87, pp. -, 2005
    [65] H. H. Wang, C. Y. Liu, S. B. Wu, N. W. Liu, C. Y. Peng, T. H. Chan, et al., "Highly
    Raman-enhancing substrates based on silver nanoparticle arrays with tunable
    sub-10 nm gaps," Advanced Materials, vol. 18, pp. 491-+, Feb 2006.
    [66] P. Kao, N. A. Malvadkar, M. Cetinkaya, H. Wang, D. L. Allara, and M. C. Demirel,
    "Surface-Enhanced Raman Detection on Metalized Nanostructured Poly(p-
    xylylene) Films," Advanced Materials, vol. 20, pp. 3562-3565, 2008.
    [67] Sophie Laurent, Urs O. Häfeli and Morteza Mahmoudi Magnetic fluid
    hyperthermia: Focus on superparamagnetic iron oxide nanoparticles Advances
    in Colloid and Interface Science 166: 8.
    [68] KO Koichiro Hayashi, Hiromi Suzuki, Makoto Sawada, Makoto Moriya, Wataru Sakamoto, and Toshinobu Yogo, "High-Frequency, Magnetic-Field-Responsive Drug Release from Magnetic Nanoparticle/Organic Hybrid Based on Hyperthermic Effect", ACS Applied Materials & Interfaces 2: 1903.
    [69] Carlos Martinez-Boubeta, Konstantinos Simeonidis, Antonios Makridis, Makis Angelakeris, Oscar Iglesias, Pablo Guardia, Andreu Cabot, Lluis Yedra, Sonia Estrade´, Francesca Peiro´,Zineb Saghi, Paul A. Midgley, Iva´n Conde-Lebora´n, David Serantes & Daniel Baldomir, "Learning from Nature to Improve the Heat Generation of Iron-Oxide Nanoparticles for Magnetic Hyperthermia Applications SCIENTIFIC REPORTS vol. 3,pp 1.
    [70] Tadao Sugimoto, and Egon Matijevic' "Formation of Uniform Spherical Magnetite Particles by Crystallization from Ferrous Hydroxide Gels" Journal of Colloid and Interface Science 74: 227.
    [71] Lei Lou, Ke Yu, Zhengli Zhang, Rong Huang, Jianzhong Zhu, Yiting Wang, and Ziqiang Zhu, "Dual-mode protein detection based on Fe3O4-Au hybrid nanoparticles", Nano Res. 5: 272.

    無法下載圖示 全文公開日期 2021/05/26 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 2021/05/26 (國家圖書館:臺灣博碩士論文系統)
    QR CODE