簡易檢索 / 詳目顯示

研究生: 舒嘉應
RIF ATUSSAUFIYAH
論文名稱: 用於鋰離子無負極電池之高濃電解液
Highly Concentrated Electrolyte for Lithium Ion Anode Free Battery
指導教授: 黃炳照
Bing-Joe Hwang
口試委員: 蘇威年
Wei-Nien Su
程敬義
Jim Cherng
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 160
中文關鍵詞: 無負極電池高濃度電解液含氟溶劑LiNO3KNO3
外文關鍵詞: Anode Free, Highly Concentrated Electrolyte, Fluorinated Solvent, LiNO3, KNO3
相關次數: 點閱:273下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年,發展了一種新型態可充放鋰離子電池,稱為無負極電池。其最大優勢在於電池負極端僅有電流收集器的存在,能量密度非常高。但目前仍有許多問題需要克服,尤以鋰枝晶的形成與電解液的分解最迫切需要被克服,此會顯著影響電池性能,循環壽命大幅降低。在眾多研究中,其中一種策略是使用高濃度電解液 (High concentrated Electrolyte, HCE) ,即相比一般電解液加入更多鹽類以提升電解液濃度。
    這項研究中主要目的是提升商業化LiTFSI DME/DOL(1:1)電解液在無負極電池之效能,藉由提升LiTFSI鹽類濃度,來克服前述問題。鹽類濃度由原本的1.3m提升至2.6m、3.9m與5.2m。為了再進一步改善HCE系統效能,嘗試添加10%(v/v)含氟溶劑1,1,2,2-Tetrafluoroethyl 2,2,3,3-tetrafluoropropyl ether (TTE)及Fluoroethylene carbonate (FEC),不僅如此,還另外添加少量(0.025、0.05、0.1% (w/w) ) LiNO3與(0.05%(w/w)) KNO3等固體添加劑。上述所有電解液組成會藉由充放電測試、SEM、Raman光譜檢測所有電解液組合,並利用XPS吸收光譜分析SEI組成分。
    在上述電解液組成中顯現出效率最高為5.2m LiTFSI DME/DOL 添加10%(v/v) FEC與0.05%(w/w) LiNO3,第一圈之庫倫效率達到94.1%。這種改進是來自於高HCE溶液中陽離子與陰離子強力配位,像是Contact-Ion-Pair(CIP)與Aggregated-Ion-Pair(AIP)。除此之外,與一般稀釋電解液相比,高濃度電解液形成之SEI含有FEC和鹽類與陰離子分解後的產物,更加有助於保護電池並提升循環壽命。


    A type of rechargeable lithium ion battery called anode-free battery was recently developed. The cathode-to-anode ratio of this battery is one, making it a quite phenomenal energy storage. Several important challenges that need to be addressed in the Cu|LFP anode free cell are the formation of lithium dendrite and the electrolyte decomposition. Both challenges can substantially affect the cycling performance of the cell. One strategy to mitigate these challenges is by utilizing a Highly Concentrated Electrolyte (HCE). HCE has an increased salt-to-solvent ratio compared to a dilute electrolyte.
    This study aims to improve the performance of commercial 1.3m LiTFSI in DME/DOL (1:1) electrolyte in the Cu|LFP anode free cell. This was done by increasing the salt-to-solvent ration of LiTFSI in the DME/DOL (1:1) solution. The concentrations of HCE that were used are 2.6m, 3.9m, and 5.2m. To further improve the performance, a 10% (v/v) fluorinated solvents (TTE and FEC) and a small amount of salt additives (0.025, 0.05, 0.1 % (w/w) LiNO3 and 0.05% (w/w) KNO3) were added. Each electrolyte combination was tested using a charge-discharge test, SEM, Raman Spectroscopy, and the SEI layer components were checked using the XPS analysis.
    The best cycling performance was shown by a combination of 5.2m LiTFSI/DME/DOL with 10% (v/v) FEC, and 0.05% (w/w) LiNO3 in which the initial coulombic efficiency was 94.10%. Such improvement came from the strong cation-anion coordination within the solution structure of HCE such as the Contact-Ion-Pair (CIP) and Aggregated-Ion-Pair (AIP). In addition to that, the formed SEI layer in HCE cell is more effective compared to the dilute electrolyte. The SEI layer components contain the FEC and salt-anion decomposition products.

    Table of Contents Abstract i 摘要 ii Acknowledgements iii Table of Contents iv List of Figures vii List of Tables xii List of Abbreviations xv Chapter 1 Introduction 1 1.1 Background 1 1.1.1 Objectives of Study 2 1.2 Rechargeable Battery 3 1.3 Battery Components 5 1.3.1 Electrode Materials 7 1.3.2 Separator 10 1.3.3 Electrolyte 11 1.4 Analysis Technique of the Electrochemical Performance 21 1.4.1 Charge-Discharge Test 21 1.4.2 Impedance Measurement 22 1.4.3 Scanning Electron Microscope (SEM) 23 1.4.4 Raman Spectroscopy 24 1.4.5 X-ray absorption spectroscopy (XPS) 25 Chapter 2 Experimental Method 27 2.1 Samples Preparation 27 2.1.1 Salt and Additive Drying 27 2.1.2 Molecular Sieve Drying 28 2.1.3 Solvents Drying 28 2.1.4 Electrolyte Fabrication 29 2.1.5 Copper Foil Preparation 35 2.1.6 LFP Cathode Preparation 36 2.1.7 Coin Cell Preparation 37 2.1.8 Coin Cell Assembly 38 2.1.9 SEM (Scanning Electron Microscope) Sample Preparation 41 2.1.10 Raman Electrolyte Scan Sample Preparation 41 2.1.11 XPS Scan Sample Preparation 42 2.2 Tests and Analysis 43 2.2.1 Charge-Discharge Tests 43 2.2.2 Impedance Test 47 2.2.3 SEM (Scanning Microscopy Electron) Scan 47 2.2.4 Raman Electrolyte Scan 48 2.2.5 XPS (X-Ray Photoelectron Spectroscopy) Scan 48 Chapter 3 Result and Discussion 49 3.1 Highly Concentrated Electrolyte (HCE) in Anode Free Battery 49 3.1.1 Electrochemical Performance 49 3.1.2 SEM (Scanning Electron Microscope) Surface Morphology Result 61 3.1.3 Raman Spectroscopy Result 65 3.1.4 XPS (X-ray Photoelectron Spectroscopy) Result 73 3.1.5 Summary of the HCE Study 78 3.2 Highly Concentrated Electrolyte (HCE) with Fluorinated Solvent (FS) as Diluent in Anode Free Battery 80 3.2.1 Electrochemical Performance 80 3.2.2 SEM (Scanning Electron Microscope) Surface Morphology Result 89 3.2.3 Ionic Conductivity Result 91 3.2.4 Raman Spectroscopy Result 92 3.2.5 XPS (X-ray Photoelectron Spectroscopy) 95 3.2.6 Summary of the HCE and Fluorinated Solvent Study 100 3.3 Highly Concentrated Electrolyte (HCE) with Fluorinated Solvents (FS) and Salt Additive (SA) in Anode Free Battery 103 3.3.1 Electrochemical Performance 103 3.3.2 SEM (Scanning Electron Microscope) Morphology Result 116 3.3.3 XPS (X-ray Photoelectron Spectroscopy) Result 119 3.3.4 Summary of the HCE combined with FS and Salt Additive Study 121 Chapter 4 General Conclusions and Recommendations 123 References 125 Appendices 130 Appendix A Methodology Flow Diagrams 131 Appendix A.1 Salt and Additive Drying Flow Diagram 131 Appendix A.2 Molecular Sieve Drying Flow Diagram 132 Appendix A.3 Solvents Drying Flow Diagram 133 Appendix A.4 Electrolyte Fabrication Flow Diagram 134 Appendix A.5 Copper Foil Preparation Flow Diagram 135 Appendix A.6 Coin Cell Preparation: LFP Cathode Preparation Flow Diagram 136 Appendix A.7 Coin Cell Preparation: Separator Preparation Flow Diagram 137 Appendix A.8 Coin Cell Preparation: Cu-Foil Preparation Flow Diagram 138 Appendix A.9 Coin Cell Components Washing Flow Diagram 139 Appendix A.10 Coin Cell Preparation: Coin Cell Assembly 140 Appendix A.11 SEM Sample Preparation Flow Diagram 141 Appendix A.12 Raman Electrolyte Scan Sample Preparation Flow Diagram 142 Appendix A.13 Impedance Sample Preparation Flow Diagram 143 Appendix A.14 XPS Scan Sample Preparation Flow Diagram 144 Appendix B Arbin Schedules 145 Appendix B.1 Arbin Schedule for Li|Cu Charge Discharge Schedule 145 Appendix B.2 Arbin Schedule for Li|LFP and Cu|LFP Charge Discharge Schedule 146 Appendix B.3 Arbin Schedule for Cu|LFP with Rested Step Charge Discharge Schedule 147 Appendix B.4 Arbin Schedule for SEM Cu|LFP Charge Discharge Schedule 149 Appendix B.5 Arbin Schedule for SEM Li|Cu Charge Discharge Schedule 150 Appendix B.6 Arbin Schedule for XPS Cu|LFP Charge Discharge Schedule 151 Appendix C Calculations 152 Appendix C.1 Calculation of Electrolyte Concentrations 152 Appendix C.2 Calculation of LiTFSI Mass Added to Make Different Electrolyte Concentrations 153 Appendix C.3 Calculation of FEC and TTE Volume 155 Appendix C.4 Calculation of the Impedance Measurement 156 Appendix C.5 Calculation of LiNO3 Mass Additive with Different Concentrations 158 Appendix C.6 Calculation of KNO3 Mass Additive with Different Concentrations 160

    References

    [1] J. Qian, W.A. Henderson, W. Xu, P. Bhattacharya, M. Engelhard, O. Borodin, J.-G. Zhang, Nature Communications 6 (2015).
    [2] J. Qian, B.D. Adams, J. Zheng, W. Xu, W.A. Henderson, J. Wang, M.E. Bowden, S. Xu, J. Hu, J.-G. Zhang, Advanced Function Materials 26 (2016) 7094-7102.
    [3] X.-B. Cheng, R. Zhang, C.-Z. Zhao, F. Wei, J.-G. Zhang, Q. Zhang, Advanced Science 3 (2015) 1-20.
    [4] R. Liu, J. Duaya, S.B. Lee, Chemical Communications 47 (2010) 1384-1404.
    [5] R.C. Fort, HOMO-LUMO ("filled-empty") Orbital Interactions, 2010.
    [6] J.B. Goodenough, Y. Kim, Chemistry of Materials 22 (2009) 587-603.
    [7] J.M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries, Nature, 2001.
    [8] N. Nitta, F. Wu, J.T. Lee, G. Yushin, Materials Today 18 (2015) 252-264.
    [9] C.J. Orendorff, Interface 21 (2012).
    [10] J. Zhang, L. Zhang, H. Liu, A. Sun, R.-S. Liu, Electrochemical Technologies for Energy Storage and Conversion: Volume 1 & 2, Wiley-VCH, 2011.
    [11] T.R. Jow, K. Xu, O. Borodin, M. Ue, Electrolytes for Lithium and Lithium-Ion Batteries Springer, 2014.
    [12] B. Flamme, G.R. Garcia, M. Weil, M. Haddad, P. Phansavath, V. Ratovelomanana-Vidala, A. Chagnes, Green Chemistry 19 (2017) 1828-1849.
    [13] T.R.J.K. Xu, O.B.M. Ue, Electrolytes for Lithium and Lithium-Ion Batteries Springer, 2014.
    [14] R. Younesi, G.M. Veith, P. Johansson, K. Edstrom, T. Vegge, Energy & Environmental Science 8 (2015) 190-1922.
    [15] J. Zheng, J.A. Lochala, A. Kwok, Z.D. Deng, J. Xiao, Advanced Science News 4 (2017) 1-19.
    [16] Sigma-Aldrich, Safety Data Sheet - Lithium hexafluorophosphate, 2016.
    [17] L. Yang, H. Zhang, P.F. Driscoll, B. Lucht, J.B. Kerr, ECS Transactions 33 (2011) 57-69.
    [18] H.-B. Han, S.-S. Zhou, D.-J. Zhang, S.-W. Feng, L.-F. Li, K. Liu, W.-F. Feng, J. Nie, H. Li, X.-J. Huang, M. Armand, Z.-B. Zhou, Journal of Power Sources 196 (2011) 3623-3632.
    [19] Y. Hu, Z. Wang, H. Li, X. Huang, L. Chen, Journal of The Electrochemical Society 151 (2004) A1424-A1428.
    [20] V. Aravindan, J. Gnanaraj, S. Madhavi, H.K. Liu, Chemistry - A European Journal 17 (2011) 14326 – 14346.
    [21] W.A. Henderson, Springer New York 58 (2014).
    [22] K. Xu, Chemical Reviews 114 (2014) 11503-11618.
    [23] G. Ma, L. Wang, J. Zhang, Y. Ding, Progress in Chemistry-Beijing 28 (2016) 1299-1312.
    [24] G. Yan, X. Li, Z. Wang, H. Guo, W. Peng, Q. Hu, J. Wang, J. Solid State Electrochem 21 (2017) 1589-1597.
    [25] J. Im, J. Lee, M.-H. Ryou, Y.M. Lee, K.Y. Cho, Journal of The Electrochemical Society 164 (2017) A6381-A6385.
    [26] K. Schroder, J. Alvarado, T.A. Yersak, J. Li, N. Dudney, L.J. Webb, Y.S. Meng, K.J. Stevenson, Chemistry of Materials 27 (2015) 5531-5542.
    [27] Z. Xu, J. Wang, J. Yang, X. Miao, R. Chen, J. Qian, R. Miao, Angewandte Chemie 128 (2016) 10528 –10531.
    [28] J.-H. Song, J.-T. Yeon, J.-Y. Jang, J.-G. Han, S.-M. Lee, N.-S. Choia, Journal of The Electrochemical Society 160 (2013) A873-A881.
    [29] E. Markevich, G. Salitra, D. Aurbach, ACS Energy Letters 2 (2017) 1337-1345.
    [30] C. Xu, F. Lindgren, B. Philippe, M. Gorgoi, F. Björefors, K. Edström, T.r. Gustafsson, Chemistry of Materials 27 (2015) 2591-2599.
    [31] K.A. See, H.-L. Wu, K.C. Lau, M. Shin, L. Cheng, Mahalingam Balasubramanian, K.G. Gallagher, L.A. Curtiss, A.A. Gewirth, Applied Materials & Interfaces 8 (2016) 34360−34371.
    [32] N. Azimi, Z. Xue, N.D. Rago, C. Takoudis, M.L. Gordin, J. Song, c.a.Z.Z. Donghai Wang, ∗,z, Journal of The Electrochemical Society 162 (2015) A64-A68.
    [33] N. Azimi, Z. Xue, I. Bloom, M.L. Gordin, D. Wang, T. Daniel, C. Takoudis, Z. Zhang, Applied Materials & Interfaces 7 (2015) 9169−9177.
    [34] M. Cuisinier, P.-E. Cabelguen, B.D. Adams, A. Garsuch, M. Balasubramanianc, L.F. Nazar, The Royal Society of Chemistry (2014) 2697–2705.
    [35] D. Aurbach, E. Pollak, R. Elazari, G. Salitra, C.S. Kelley, J. Affinitob, Journal of The Electrochemical Society 156 (2009) A694-A702.
    [36] V.S. Bryantsev, V. Giordani, W. Walker, J. Uddin, I. Lee, A.C.T.v. Duin, G.V. Chase, D. Addison, The Journal of Physical Chemistry 117 (2013) 11977−11988.
    [37] W. Walker, V. Giordani, J. Uddin, V.S. Bryantsev, G.V. Chase, D. Addison, Journal of The American Chemical Society 135 (2013) 2076-2079.
    [38] W. Jia, C. Fan, L. Wang, Q. Wang, M. Zhao, A. Zhou, J. Li, Applied Materials & Interfaces 8 (2016) 15399−15405.
    [39] Y. Yamada, A. Yamada, Journal of The Electrochemical Society 162 (2015) A2406-A2423.
    [40] D. Brouillette, D.E. Irish, N.J. Taylor, G. Perron, M. Odziemkowski, J.E. Desnoyers, Physical Chemistry Chemical Physics 4 (2002) 6063-6071.
    [41] W.A. Henderson, F. McKenna, M.A. Khan, N.R. Brooks, J. Victor G. Young, R. Frech, Chemistry of Materials 17 (2005) 2284-2289.
    [42] W.A. Henderson, Journal of Physical Chemistry B 110 (2006) 13177-13183.
    [43] D.M. Seo, O. Borodin, S.-D. Han, Q. Ly, P.D. Boyle, W.A. Henderson, Journal of The Electrochemical Society 159 (2012) A553-A565.
    [44] D.M. Seo, O. Borodin, S.-D. Han, P.D. Boyle, W.A. Henderson, The Journal of The Electrochemical Society 159 (2012) A1489-A1500.
    [45] S.-D. Han, O. Borodin, J.L. Allen, D.M. Seo, D.W. McOwen, S.-H. Yun, W.A. Henderson, The Journal of The Electrochemical Society 160 (2013) A2100-A2110
    [46] S.-D. Han, O. Borodin, D.M. Seo, Z.-B. Zhou, W.A. Henderson, The Journal of The Electrochemical Society 161 (2014) A2042-A2053
    [47] O. Borodin, S.-D. Han, J.S. Daubert, D.M. Seo, S.-H. Yun, W.A. Henderson, The Journal of The Electrochemical Society 162 (2015) A501-A510
    [48] S.-K. Jeonga, M. Inaba, Y. Iriyama, T. Abe, Z. Ogumi, Electrochemical and Solid-State Letters 6 (2003) A13-A15.
    [49] T.M. Pappenfus, W.A. Henderson, B.B. Owens, K.R. Mann, W.H. Smyrl, Journal of The Electrochemical Society 151 (2004) A209-A215.
    [50] W.A. Henderson, Macromolecules 40 (2007) 4963-4971.
    [51] J.H. Shin, E.J. Cairns, Journal of The Electrochemical Society 155 (2008) A368-A373.
    [52] T. Tamura, T. Hachida, K. Yoshida, N. Tachikawa, K. Dokko, M. Watanabe, Journal of Power Sources 195 (2010) 6095-6100.
    [53] T. Tamura, K. Yoshida, T. Hachida, M. Tsuchiya, M. Nakamura, Y. Kazue, N. Tachikawa, K. Dokko, M. Watanabe, Chemistry Letters 39 (2010) 753-755.
    [54] A. Orita, K. Kamijima, M. Yoshida, K. Dokko, M. Watanabe, Journal of Power Sources 196 (2011) 3874-3880.
    [55] S. Seki, K. Takei, H. Miyashiro, M. Watanabe, The Journal of The Electrochemical Society 158 (2011) A769-A774.
    [56] N. Tachikawa, K. Yamauchi, E. Takashima, J.-W. Park, K. Dokko, M. Watanabe, Chemical Communications 47 (2011) 8157–8159.
    [57] K. Yoshida, M. Nakamura, Y. Kazue, N. Tachikawa, S. Tsuzuki, S. Seki, K. Dokko, M. Watanabe, Journal of The American Chemical Society 133 (2011) 13121-13129.
    [58] D.W. McOwen, D.M. Seo, O. Borodin, J. Vatamanu, P.D. Boyle, W.A. Henderson, Energy Environmental Science 7 (2014) 416-426.
    [59] H. Liang, H. Li, Z. Wang, F. Wu, L. Chen, X. Huang, The Journal of Physical Chemistry B 105 (2001) 9966-9969.
    [60] R. Chen, F. Wu, H. Liang, L. Li, B. Xu, Journal of The Electrochemical Society 152 (2005) A1979-A1984.
    [61] R. Chen, F. Wu, L. Li, B. Xu, Xinping Qiu, S. Chen, The Journal of Physical Chemistry C 111 (2007) 5184-5194.
    [62] R. Chen, F. Wu, L. Li, X. Qiu, L. Chen, S. Chen, Vibrational Spectroscopy 44 (2007) 297-307.
    [63] Y. Choquette, G. Brisard, M. Parent, D. Brouillette, G. Perron, J.E. Desnoyers, M. Armand, D. Gravel, N. Slougui, The Journal of Electrochemical Society 145 (1998) 3500-3507.
    [64] P. Johansson, J. Tegenfeldt, J. Lindgren, Polymer 40 (1999) 4399-4406.
    [65] P. Johansson, Polymer 42 (2001) 4367-4373.
    [66] W.A. Henderson, N.R. Brooks, W.W. Brennessel, J. Victor G. Young, Chemistry of Materials 15 (2003) 4679-4684.
    [67] W.A. Henderson, N.R. Brooks, J. Victor G. Young, Chemistry of Materials 15 (2003) 4685-4690.
    [68] W.A. Henderson, N.R. Brooks, Inorganic Chemistry 42 (2003) 4522-4524.
    [69] J. Grondin, D. Talaga, J.-C. Lassegues, W.A. Henderson, Physical Chemistry Chemical Physics 6 (2004) 938–944.
    [70] W.A. Henderson, N.R. Brooks, W.W. Brennessel, J. Victor G. Young, Journal of Physical Chemistry A 108 (2004) 225-229.
    [71] J. Grondin, J.-C. Lassegues, M. Chami, L. Servant, D. Talaga, W.A. Henderson, Physical Chemistry Chemical Physics 6 (2004) 4260-4267.
    [72] K. Yoshida, M. Tsuchiya, N. Tachikawa, K. Dokko, M. Watanabe, The Journal of Physical Chemistry 115 (2011) 18384–18394.
    [73] L. Suo, Y.-S. Hu, H. Li, M. Armand, L. Chen, Nature Communications 4 (2012) 1-9.
    [74] K. Dokko, N. Tachikawa, K. Yamauchi, M. Tsuchiya, A. Yamazaki, E. Takashima, J.-W. Park, K. Ueno, S. Seki, N. Serizawa, M. Watanabe, Journal of The Electrochemical Society 160 (2013) A1304-A1310.
    [75] X.-B. Cheng, R. Zhang, C.-Z. Zhao, F. Wei, J.-G. Zhang, Q. Zhang, Advanced Science 3 (2016) 1-20.
    [76] Y. Lu, Z. Tu, J. Shu, L.A. Archer, Journal of Power Sources 279 (2015) 413-418.
    [77] Y. Lu, Z. Tu, L.A. Archer, Nature Materials 13 (2014) 962-969.
    [78] H. Kim, F. Wu, J.T. Lee, N. Nitta, H.-T. Lin, M. Oschatz, W.I. Cho, S. Kaskel, O. Borodin, G. Yushin, Advanced Energy Materials 5 (2014) 1-8.
    [79] M. Rongrong, J. Yang, X. Feng, Y. Nuli, Journal of Power Sources 271 (2014) 291-297.
    [80] K. Kanamura, H. Tamura, S. Shiraishi, Z.-i. Takehara, Journal of Electrochemical Society 142 (1995) 340-347.
    [81] C.R. Yang, Y.Y. Wang, C.C. Wan, Journal of Power Sources 72 (1998) 66-70.
    [82] S. Xiong, K. Xie, Y. Diao, X. Hong, Journal of Power Sources 236 (2013) 181-187.
    [83] S. Xiong, K. Xie, Y. Diao, X. Hong, Journal of Power Sources 246 (2014) 840-845.
    [84] A.M. Andersson, K. Edstrom, Journal of The Electrochemical Society 148 (2001) A1100-A1109.
    [85] K. Edstrom, A.M. Andersson, A. Bishop, L. Fransson, J. Lindgren, A. Hussenius, Journal of Power Sources 97-98 (2001) 87-91.
    [86] Gamry-Instruments, EIS: Potentiostatic or Galvanostatic Mode?, 2018.
    [87] Iowa-State-University, How the SEM Works, 2018.
    [88] Nanoscience, How an SEM Works, 2018.
    [89] Renishaw, A basic overview of Raman spectroscopy, 2005.
    [90] C. Rulli, Raman Spectroscopy, 2005.
    [91] L. Suo, Z. Fang, Y.-S. Hu, L. Chen, Chin. Phys. B 25 (2016).
    [92] J. Salvas, J.-S. Simard, N. Abatzoglou, American Pharmaceutical Review 13 (2010) 46-53.
    [93] R.M. CEN Online, X-ray Photoelectron Spectroscopy, 2011.
    [94] Jeol, Photoelectron Spectrometer (ESCA), 2017.
    [95] Synquest-Laboratories, 1,1,2,2-Tetrafluoroethyl 2,2,3,3-tetrafluoropropyl ether, 2010.
    [96] Tokyo-Chemical-Industry, 1,1,2,2-Tetrafluoroethyl 2,2,3,3-Tetrafluoropropyl Ether, 2018.
    [97] ChemSpider, Potassium nitrate, 2015.
    [98] ScienceLab, Material Safety Data Sheet: Potassium nitrate MSDS, 2005.
    [99] Global-Source, 1,1,2,2-Tetrafluoroethyl-2,2,3,3 Tetrafluoropropyl Ether, 2018.
    [100] Aleees, Data from Aleees Company, Aleees, Taiwan, 2018.
    [101] C.M. Lopez, J.T. Vaughey, D.W. Dees, Journal of The Electrochemical Society 156 (2009) A726-A729.
    [102] D. Lu, Y. Shao, T. Lozano, W.D. Bennett, G.L. Graff, B. Polzin, J. Zhang, M.H. Engelhard, N.T. Saenz, W.A. Henderson, P. Bhattacharya, J. Liu, J. Xiao, Advanced Energy Materials 5 (2015) 1-7.
    [103] J.-J. Woo, V.A. Maroni, G. Liu, J.T. Vaughey, D.J. Gosztola, K. Amine, Z. Zhang, Journal of Electrochemical Society 161 (2014).
    [104] I. Yoshimatsu, T. Hirai, J.-I. Yamaki, Journal of Electrochemical Society 135 (1998) 2422-2427.
    [105] F. Yang, Y. Qiao, B. Gao, P. Duan, Y. Zhu, Ionics 22 (2016) 1603-1610.
    [106] J. Zheng, P. Yan, D. Mei, M.H. Engelhard, S.S. Cartmell, B.J. Polzin, C. Wang, J.-G. Zhang, W. Xu, Advanced Energy Materials 6 (2016).
    [107] J. Steiger, D. Kramer, R. Mönig, Electrochimica Acta 136 (2014) 529-536.
    [108] Y. Yamada, K. Furukawa, K. Sodeyama, K. Kikuchi, M. Yaegashi, Y. Tateyama, A. Yamada, Journal of the American Chemical Society 136 (2014) 5039-5046.
    [109] N. Goutev, K. Ohno, H. Matsuura, Journal of Physical Chemistry A 104 (2000) 9226-9232.
    [110] P.K. Muhuri, B. Das, D.K. Hazra, Journal of Physical Chemistry B 101 (1997) 3329-3332.
    [111] P.J. Victor, B. Das, D.K. Hazra, Journal of Physical Chemistry A 105 (2001) 5960-5964.
    [112] V. Mohacek-Grosev, K. Furi, H. Ivankovic, Vibrational Spectroscopy 64 (2013) 101-107.
    [113] I. Rey, P. Johansson, J. Lindgren, J.C. Lassègues, J. Grondin, L. Servant, Journal of Physical Chemistry A 102 (1998) 3249-3258.
    [114] D.M. Seo, O. Borodin, S.-D. Han, Q. Ly, P.D. Boyle, W.A. Henderson, Journal of The Electrochemical Society 159 (2012) A553-A565.
    [115] K. Matsubara, R. Kaneuchi, N. Maekita, Journal of The Chemical Society, Faraday Transactions 94 (1998) 3601-3605.
    [116] T. Jaumann, J. Balach, M. Klose, S. Oswald, J. Eckert, L. Giebeler, Journal of The Electrochemical Society 163 (2016) A557-A564.
    [117] A. Wang, S. Kadam, H. Li, S. Shi, Y. Qi, Nature Partner Journals 15 (2017) 1-26.
    [118] K. Leung, K.L. Jungjohann, The Journal of Physical Chemistry 121 (2017) pp 20188–20196.
    [119] L. Fan, H.L. Zhuang, L. Gao, Y. Lu, L.A. Archer, Journal of Materials Chemistry A 5 (2017) 3483-3492.
    [120] S. Röser, A. Lerchen, L. Ibing, X. Cao, J. Kasnatscheew, F. Glorius, M. Winter, R. Wagner, Chemistry of Materials 29 (2017) 7733-7739.
    [121] K. Kim, I. Park, S.-Y. Ha, Y. Kim, M.-H. Woo, M.-H. Jeong, W.C. Shin, M. Ue, S.Y. Hong, N.-S. Choi, Electrochimica Acta 225 (2017) 358-368.
    [122] G.M. Veith, M. Doucet, R.L. Sacci, B. Vacaliuc, J.K. Baldwin, J.F. Browning, Nature: Scientific Reports 7 (2017) 1-15.
    [123] D. Aurbach, M.L. Daroux, P.W. Faguy, E. Yeager, Journal of the Electrochemical Society: Electrochemical Science and Technology 134 (1987) 1611-1620.
    [124] D. Aurbach, A. Zaban, A. Schechter, Y. Ein-Eli, E. Zinigrad, B. Markovsky, The Journal of Electrochemical Society 142 (1995) 2873-2881.
    [125] L.A. Huff, H. Tavassol, J.L. Esbenshade, W. Xing, Y.-M. Chiang, A.A. Gewirth, Applied Materials & Interfaces 8 (2015) 371-380.
    [126] D. Aurbach, Y. Ein-Ely, A. Zaban, The Journal of Electrochemical Society 141 (1994) L1-L3.
    [127] D. Aurbach, Journal of Power Sources 89 (2000) 206-218.
    [128] D. Lin, Y. Liu, Y. Cui, Nature Nanotechnology 12 (2017) 194-206.
    [129] K.A. See, H.-L. Wu, K.C. Lau, M. Shin, L. Cheng, M. Balasubramanian, K.G. Gallagher, L.A. Curtiss, A.A. Gewirth, Applied Materials & Interfaces 8 (2016) 34360-34371.
    [130] L.E. Camacho-Forero, P.B. Balbuena, Physical Chemistry Chemical Physics 19 (2017) 30861-30873.
    [131] N. Togasaki, T. Gobara, T. Momma, T. Osaka, T. Numata, Journal of The Electrochemical Society 164 (2017) A2225-A2230.
    [132] N. Ding, L. Zhou, C. Zhou, D. Geng, J. Yang, S.W. Chien, Z. Liu, M.-F. Ng, A. Yu, T.S.A. Hor, M.B. Sullivan, Y. Zong, Nature Scientific Reports 6 (2016) 1-10.

    無法下載圖示 全文公開日期 2023/08/30 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE