簡易檢索 / 詳目顯示

研究生: 潘登璿
Teng-Hsuan Pan
論文名稱: 利用微波電漿處理二氧化錫薄膜並應用於鈣鈦礦太陽能電池之電子傳輸層
Microwave plasma treatment on tin oxide thin films for the application in electron transport layer of perovskite solar cells
指導教授: 王孟菊
Meng-Jiy Wang
口試委員: 蔡大翔
Dah-Shyang Tsai
陳建彰
Jian-Zhang Chen
陳良益
Liang-Yih Chen
王孟菊
Meng-Jiy Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 112
中文關鍵詞: 微波氧氣電漿二氧化錫薄膜電子傳輸層鈣鈦礦太陽能電池
外文關鍵詞: Microwave oxygen plasma, Tin oxide thin film, Electron transport layer, Perovskite solar cells
相關次數: 點閱:282下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • 摘要 I Abstract III 目錄 V 圖目錄 VII 表目錄 XII 第一章 緒論 1 第二章 文獻回顧 3 2.1 製備SnO2薄膜應用於鈣鈦礦太陽能電池 3 2.1.1 溶膠-凝膠法 (sol-gel) 3 2.1.2 原子層沉積 (atomic layer deposition, ALD) 3 2.1.3 化學水浴沉積法 (chemical bath deposition, CBD) 4 2.2 電漿處理以溶膠-凝膠法製備的SnO2薄膜 5 2.3 微波電漿及其應用於金屬氧化物後處理 7 2.3.1 電漿 7 2.3.2 微波電漿 7 2.4 應用於鈣鈦礦太陽能電池的SnO2電子傳輸層之材料特性 8 2.4.1 SnO2薄膜的結晶性 8 2.4.2 溶膠-凝膠法製備的SnO2薄膜之膜厚 9 2.4.3 SnO2薄膜的化學組成及結構 10 2.4.4 SnO2薄膜於FTO上的覆蓋率 13 第三章 實驗方法與儀器原理 17 3.1 實驗藥品 17 3.1.1 蝕刻摻氟二氧化錫 (fluorine-doped tin oxide, FTO導電玻璃) 17 3.1.2 SnO2薄膜的製備 17 3.1.3 以循環伏安法探討SnO2薄膜於FTO上的覆蓋率 18 3.1.4 鈣鈦礦太陽能電池的製備 18 3.2 實驗設備 19 3.3 實驗步驟 20 3.3.1 空白基板清洗 20 3.3.2 以旋轉塗佈法製備SnO2薄膜 20 3.3.3 進行SnO2薄膜處理 21 3.3.4 以循環伏安法評估SnO2薄膜於FTO上的覆蓋率 22 3.3.5 鈣鈦礦太陽能電池的製備 23 3.4 SnO2薄膜之材料分析 28 3.4.1 X光繞射及晶體結構分析 28 3.4.2 場發射掃描式電子顯微鏡 (FE-SEM) 28 3.4.3 X射線光電子能譜儀 (ESCA) 29 3.4.4 以循環伏安法探討SnO2薄膜於FTO上的覆蓋率 30 3.5 I-V量測以SnO2薄膜為電子傳輸層的鈣鈦礦太陽能電池 30 第四章 結果與討論 33 4.1 熱處理SnO2薄膜之材料性質分析 33 4.1.1 熱處理SnO2薄膜的薄膜晶體結構分析 33 4.1.2 熱處理SnO2薄膜對薄膜膜厚的影響 34 4.1.3 熱處理SnO2薄膜對SnO2薄膜於FTO上覆蓋率的影響 35 4.1.4 熱處理SnO2薄膜對薄膜化學組成與結構的影響 36 4.2 熱處理之SnO2薄膜應用於鈣鈦礦太陽能電池 (PSCs) 46 4.2.1 利用不同SnCl2溶液濃度製備SnO2薄膜對鈣鈦礦太陽電池轉換效率的影響 46 4.2.2 熱處理SnO2薄膜的溫度對鈣鈦礦太陽電池轉換效率的影響 47 4.3 微波電漿處理SnO2薄膜之材料性質分析 51 4.3.1 分析微波電漿處理SnO2薄膜的薄膜晶體結構 51 4.3.2 微波氧氣電漿處理SnO2薄膜對薄膜表面型態的影響 53 4.3.3 微波電漿處理SnO2薄膜對薄膜厚度的影響 53 4.3.4 微波電漿處理SnO2薄膜對SnO2薄膜於FTO上覆蓋率的影響 54 4.3.5 微波電漿處理SnO2薄膜對薄膜化學組成與結構的影響 55 4.4 微波氧氣電漿處理之SnO2薄膜應用於鈣鈦礦太陽能電池 77 第五章 結論 81 5.1 熱處理SnO2薄膜之材料性質及應用於PSCs的能量轉換效率 81 5.2 微波電漿處理SnO2薄膜之材料性質及應用於PSCs的能量轉換效率 82 第六章 參考文獻 84

    [1] O. Ellabban, H. Abu-Rub, and F. Blaabjerg, "Renewable energy resources: Current status, future prospects and their enabling technology", Renewable and Sustainable Energy Reviews, vol. 39, pp. 748-764, 2014.
    [2] L. Xiong, Y. Guo, J. Wen, H. Liu, G. Yang, P. Qin, and G. Fang, "Review on the application of SnO2 in perovskite solar cells", Advanced Functional Materials, vol. 28, no. 35, p. 1802757, 2018.
    [3] M. M. Tavakoli, P. Yadav, R. Tavakoli, and J. Kong, "Surface engineering of TiO2 ETL for highly efficient and hysteresis‐less planar perovskite solar cell (21.4%) with enhanced open‐circuit voltage and stability", Advanced Energy Materials, vol. 8, no. 23, p. 1800794, 2018.
    [4] Q. Jiang, X. Zhang, and J. You, "SnO2: a wonderful electron transport layer for perovskite solar cells", Small, vol. 14, no. 31, p. 1801154, 2018.
    [5] W. Ke, G. Fang, Q. Liu, L. Xiong, P. Qin, H. Tao, J. Wang, H. Lei, B. Li, and J. Wan, "Low-temperature solution-processed tin oxide as an alternative electron transporting layer for efficient perovskite solar cells", Journal of the American Chemical Society, vol. 137, no. 21, pp. 6730-6733, 2015.
    [6] W. Ke, D. Zhao, A. J. Cimaroli, C. R. Grice, P. Qin, Q. Liu, L. Xiong, Y. Yan, and G. Fang, "Effects of annealing temperature of tin oxide electron selective layers on the performance of perovskite solar cells", Journal of Materials Chemistry A, vol. 3, no. 47, pp. 24163-24168, 2015.
    [7] H. Yu, H. I. Yeom, J. W. Lee, K. Lee, D. Hwang, J. Yun, J. Ryu, J. Lee, S. Bae, and S. K. Kim, "Superfast Room‐Temperature Activation of SnO2 Thin Films via Atmospheric Plasma Oxidation and their Application in Planar Perovskite Photovoltaics", Advanced Materials, vol. 30, no. 10, p. 1704825, 2018.
    [8] M. F. M. Noh, N. A. Arzaee, J. Safaei, N. A. Mohamed, H. P. Kim, J. Jang, and M. A. M. Teridi, "Eliminating oxygen vacancies in SnO2 films via aerosol-assisted chemical vapour deposition for perovskite solar cells and photoelectrochemical cells", Journal of Alloys and Compounds, vol. 773, pp. 997-1008, 2019.
    [9] Y. Chen, Q. Meng, L. Zhang, C. Han, H. Gao, Y. Zhang, and H. Yan, "SnO2-based electron transporting layer materials for perovskite solar cells: A review of recent progress", Journal of Energy Chemistry, vol. 35, pp. 144-167, 2019.
    [10] L. Kavan, L. Steier, and M. Grätzel, "Ultrathin buffer layers of SnO2 by atomic layer deposition: perfect blocking function and thermal stability", The Journal of Physical Chemistry C, vol. 121, no. 1, pp. 342-350, 2017.
    [11] J. P. C. Baena, L. Steier, W. Tress, M. Saliba, S. Neutzner, T. Matsui, F. Giordano, T. J. Jacobsson, A. R. S. Kandada, and S. M. Zakeeruddin, "Highly efficient planar perovskite solar cells through band alignment engineering", Energy & Environmental Science, vol. 8, no. 10, pp. 2928-2934, 2015.
    [12] E. H. Anaraki, A. Kermanpur, L. Steier, K. Domanski, T. Matsui, W. Tress, M. Saliba, A. Abate, M. Grätzel, and A. Hagfeldt, "Highly efficient and stable planar perovskite solar cells by solution-processed tin oxide", Energy & Environmental Science, vol. 9, no. 10, pp. 3128-3134, 2016.
    [13] J. Duan, Q. Xiong, B. Feng, Y. Xu, J. Zhang, and H. Wang, "Low-temperature processed SnO2 compact layer for efficient mesostructure perovskite solar cells", Applied Surface Science, vol. 391, pp. 677-683, 2017.
    [14] A. S. Subbiah, N. Mathews, S. Mhaisalkar, and S. K. Sarkar, "Novel Plasma-assisted low-temperature-processed SnO2 thin films for efficient flexible perovskite photovoltaics", ACS Energy Letters, vol. 3, no. 7, pp. 1482-1491, 2018.
    [15] S. Tiwari, A. Caiola, X. Bai, A. Lalsare, and J. Hu, "Microwave plasma-enhanced and microwave heated chemical reactions", Plasma Chemistry and Plasma Processing, vol. 40, no. 1, pp. 1-23, 2020.
    [16] S. Park, C.-H. Kim, W.-J. Lee, S. Sung, and M.-H. Yoon, "Sol-gel metal oxide dielectrics for all-solution-processed electronics", Materials Science and Engineering: R: Reports, vol. 114, pp. 1-22, 2017.
    [17] H. Yi, D. Wang, M. A. Mahmud, F. Haque, M. B. Upama, C. Xu, L. Duan, and A. Uddin, "Bilayer SnO2 as electron transport layer for highly efficient perovskite solar cells", ACS Applied Energy Materials, vol. 1, no. 11, pp. 6027-6039, 2018.
    [18] S. Jeong, S. Seo, H. Park, and H. Shin, "Atomic layer deposition of a SnO2 electron-transporting layer for planar perovskite solar cells with a power conversion efficiency of 18.3%", Chemical Communications, vol. 55, no. 17, pp. 2433-2436, 2019.
    [19] B. Roose, J.-P. C. Baena, K. C. Gödel, M. Graetzel, A. Hagfeldt, U. Steiner, and A. Abate, "Mesoporous SnO2 electron selective contact enables UV-stable perovskite solar cells", Nano Energy, vol. 30, pp. 517-522, 2016.
    [20] J. L. White, M. F. Baruch, J. E. Pander III, Y. Hu, I. C. Fortmeyer, J. E. Park, T. Zhang, K. Liao, J. Gu, and Y. Yan, "Light-driven heterogeneous reduction of carbon dioxide: photocatalysts and photoelectrodes", Chemical reviews, vol. 115, no. 23, pp. 12888-12935, 2015.
    [21] C. Niveditha, A. Nizamudeen, R. Ramanarayanan, M. J. Fatima, and S. Swaminathan, "Showcasing electrode-electrolyte interfacial potential as a vital parameter in the hydrogen generation by metal oxides electrodes", Materials Research Express, vol. 5, no. 3, p. 035504, 2018.
    [22] W. H. Bragg and W. L. Bragg, "The reflection of X-rays by crystals", Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, vol. 88, no. 605, pp. 428-438, 1913.
    [23] J. F. Moulder, "Handbook of X-ray photoelectron spectroscopy", Physical electronics, pp. 230-232, 1995.
    [24] M. F. M. Noh, N. A. Arzaee, and M. A. M. Teridi, "Effect of Oxygen Vacancies in Electron Transport Layer for Perovskite Solar Cells", in Solar Cells: Springer, 2020, pp. 283-305.
    [25] D. Meyerhofer, "Characteristics of resist films produced by spinning", Journal of Applied Physics, vol. 49, no. 7, pp. 3993-3997, 1978.
    [26] X. Ren, Y. Liu, D. G. Lee, W. B. Kim, G. S. Han, H. S. Jung, and S. Liu, "Chlorine‐modified SnO2 electron transport layer for high‐efficiency perovskite solar cells", InfoMat, vol. 2, no. 2, pp. 401-408, 2020.
    [27] P. Chetri and A. Choudhury, "Investigation of optical properties of SnO2 nanoparticles", Physica E: Low-dimensional Systems and Nanostructures, vol. 47, pp. 257-263, 2013.
    [28] H. Jadhav, S. Suryawanshi, M. More, and S. Sinha, "Pulsed laser deposition of tin oxide thin films for field emission studies", Applied Surface Science, vol. 419, pp. 764-769, 2017.
    [29] W. Xia, H. Wang, X. Zeng, J. Han, J. Zhu, M. Zhou, and S. Wu, "High-efficiency photocatalytic activity of type II SnO/Sn3O4 heterostructures via interfacial charge transfer", CrystEngComm, vol. 16, no. 30, pp. 6841-6847, 2014.
    [30] J. Wang, H. Li, S. Meng, X. Ye, X. Fu, and S. Chen, "Controlled synthesis of Sn-based oxides via a hydrothermal method and their visible light photocatalytic performances", RSC advances, vol. 7, no. 43, pp. 27024-27032, 2017.
    [31] K. Nose, A. Suzuki, N. Oda, M. Kamiko, and Y. Mitsuda, "Oxidation of SnO to SnO2 thin films in boiling water at atmospheric pressure", Applied Physics Letters, vol. 104, no. 9, p. 091905, 2014.
    [32] F. H. Aragón, I. Gonzalez, J. A. Coaquira, P. Hidalgo, H. F. Brito, J. D. Ardisson, W. A. Macedo, and P. C. Morais, "Structural and surface study of praseodymium-doped SnO2 nanoparticles prepared by the polymeric precursor method", The Journal of Physical Chemistry C, vol. 119, no. 16, pp. 8711-8717, 2015.
    [33] R. Félix, N. Llobera-Vila, C. Hartmann, C. Klimm, M. Hartig, R. Wilks, and M. Bär, "Preparation and in-system study of SnCl2 precursor layers: towards vacuum-based synthesis of Pb-free perovskites", RSC advances, vol. 8, no. 1, pp. 67-73, 2018.
    [34] Q. Sun, K. Diao, T. Sun, M. Li, X. Cui, H. Tian, and B. Xiang, "Enhanced gas-sensing performance of SnO2/Nb2O5 hybrid nanowires", RSC Advances, vol. 6, no. 107, pp. 105317-105321, 2016.
    [35] M. Kwoka, G. Czempik, and J. Szuber, "X-ray photoemission spectroscopy study of the surface chemistry of laser-assisted chemical vapour deposition SnO {sub x} thin films after exposure to hydrogen", acta physica slovaca, vol. 55, 2005.
    [36] L. Gouda, K. J. Rietwyk, J. Hu, A. Kama, A. Ginsburg, M. Priel, D. A. Keller, S. Tirosh, S. Meir, and R. Gottesman, "High-resolution study of TiO2 contact layer thickness on the performance of over 800 perovskite solar cells", ACS Energy Letters, vol. 2, no. 10, pp. 2356-2361, 2017.
    [37] M. Badillo-Avila, R. Castanedo-Perez, J. Marquez-Marin, D. Guzman-Caballero, and G. Torres-Delgado, "Fast rate oxidation to Cu2O, at room temperature, of metallic copper films produced by the argon-plasma bombardment of CuO films", Materials Chemistry and Physics, vol. 236, p. 121759, 2019.
    [38] A. Irzh, I. Genish, L. Klein, L. A. Solovyov, and A. Gedanken, "Synthesis of ZnO and Zn nanoparticles in microwave plasma and their deposition on glass slides", Langmuir, vol. 26, no. 8, pp. 5976-5984, 2010.
    [39] I. Bretos, R. Jiménez, J. Ricote, and M. L. Calzada, "Low-temperature crystallization of solution-derived metal oxide thin films assisted by chemical processes", Chemical Society Reviews, vol. 47, no. 2, pp. 291-308, 2018.
    [40] J. A. Hong, E. D. Jung, J. C. Yu, D. W. Kim, Y. S. Nam, I. Oh, E. Lee, J.-W. Yoo, S. Cho, and M. H. Song, "Improved Efficiency of Perovskite Solar Cells Using a Nitrogen-Doped Graphene-Oxide-Treated Tin Oxide Layer", ACS applied materials & interfaces, vol. 12, no. 2, pp. 2417-2423, 2019.
    [41] Y. Duan, W. Yang, W. Zheng, G. He, M. Chen, and M. Tian, "Solar Hydrogen Production from Cost Effective Stannic Oxide Under Visible Light Irradiation", Nanoscale research letters, vol. 14, no. 1, pp. 1-6, 2019.

    無法下載圖示 全文公開日期 2031/10/21 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE