簡易檢索 / 詳目顯示

研究生: 康晟恩
Sheng-En Kang
論文名稱: 以大氣電漿噴射束改質高分子複合材表面應用於無電鍍銅製程之研究
Surface Modification on Composite Polymer by Atmospheric Pressure Plasma Jet for Electroless Copper Plating
指導教授: 郭俞麟
Yu-Lin Kuo
口試委員: 曹耕毓
Keng-Yu Tsao
王丞浩
Chen-Hao Wang
楊永欽
Yung-Chin Yang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 124
中文關鍵詞: 常壓電漿噴射束化學蝕刻無電鍍附著度
外文關鍵詞: Atmospheric Pressure Plasma Jet, Chemical Etching, Electroless Copper Plating, Adhesion
相關次數: 點閱:358下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • 第一章 緒論 1 1.1 前言 1 1.2 研究動機 3 第二章 文獻回顧 5 2.1 無電鍍法 5 2.1.1 無電鍍法基本介紹 5 2.1.2 無電鍍銅液組成與特性 6 2.1.3 無電鍍銅鍍液反應及觸媒催化機制 8 2.1.4 錫鈀膠組成及活化之步驟與原理 10 2.1.5 無電鍍法應用與分析 10 2.2 電漿簡介 13 2.2.1 電漿基本介紹 13 2.2.2 電漿反應機制 13 2.2.3 電漿系統分類 15 2.2.4 常壓電漿工作型態分類 17 2.2.5 常壓電漿噴束激發型式 19 2.2.6 常壓電漿噴射束與表面改質 21 2.2.7 電漿氣體效應 25 2.3 工業塑料簡介 29 2.3.1 工程塑料種類 29 2.3.2 LCP簡介 30 2.3.3 極性與非極性 33 2.3.4 水接觸角與表面自由能 34 2.3.5 塑料表面改質原因與方法介紹 35 2.3.6 電漿改質高分子之原理 40 第三章 實驗流程與設備 42 3.1 實驗總覽 42 3.2 實驗藥品與設備 43 3.2.1 實驗藥品 43 3.2.2 實驗儀器 44 3.3 實驗設備 44 3.3.1 常壓電漿噴射束 44 3.4 檢測儀器與分析 46 3.4.1 光放射光譜儀(OES) 46 3.4.2 熱重分析儀(TGA) 47 3.4.3 水滴接觸角儀(WCA) 48 3.4.4 自由基定量分析(DPPH) 48 3.4.5 紫外光/可見光光譜儀(UV_VIS) 49 3.4.6 光學顯微鏡(OM) 50 3.4.7 場發射掃描式電子顯微鏡(FE-SEM) 51 3.4.8 傅立葉轉換紅外線光譜儀(FTIR) 52 3.4.9 原子力顯微鏡(AFM) 53 3.4.10 百格刀(CCT) 56 3.4.11 拉拔測試儀(POT) 57 3.4.12 四點探針(4-point probe) 58 3.4.13 X射線螢光光譜儀(XRF) 59 3.4.14 X射線繞射儀(XRD) 60 3.5 實驗製程 62 3.5.1 基材前處理 62 3.5.2 電漿處理 62 3.5.3 化學蝕刻處理 63 3.5.4 活化與速化處理 64 3.5.5 無電鍍銅處理 65 第四章 結果與討論 66 4.1 LCP與常壓電漿噴射束基本性質測定 66 4.1.1 TGA熱重分析 66 4.1.1 常壓電漿噴射束長度與溫度測定 67 4.1.2 OES常壓電漿噴射束物種測定 67 4.2 LCP經粗化後之表面特性測定 70 4.2.1 WCA親水性與老化分析 70 4.2.2 表面自由能分析 72 4.2.3 FTIR表面化學元素測定 75 4.2.4 DPPH自由基數量測定 77 4.2.5 OM表面形貌分析 79 4.2.6 SEM表面形貌分析 81 4.2.7 AFM表面粗糙度分析 84 4.3 銅鍍層之特性測定 88 4.3.1 EDX表面化學元素分析 88 4.3.2 XRD表面化學元素分析 88 4.3.3 XRF薄膜厚度與元素分析 91 4.3.4 四點探針電阻測量 91 4.3.5 百格刀附著測試 94 4.3.6 拉拔附著測試 95 4.3.7 SEM撕裂面形貌分析 98 4.3.8 電漿處理之化學鍍流程機制 101 第五章 結論 104 第六章 未來展望 106 第七章 參考資料 107

    [1] 5G新材料產業研究:LCP,全球5G天線革命性核心膜材. Available: https://kknews.cc/science/a6y945x.html
    [2] 意圖就看懂4G與5G技術差異. Available: https://rf.eefocus.com/article/id-331918
    [3] 5G基礎知識. Available: https://www.tvoao.com/a/197657.aspx
    [4] 液晶高分子(LCP)應用在哪?一文告訴你. Available: https://kknews.cc/news/2xljrbe.html
    [5] S. Olivera, H. B. Muralidhara, K. Venkatesh, K. Gopalakrishna, and C. S. Vivek, "Plating on acrylonitrile–butadiene–styrene (ABS) plastic: a review," Journal of materials science, vol. 51, no. 8, pp. 3657-3674, 2016.
    [6] 定制天線. Available: https://www.te.com.cn/chn-zh/products/antennas/custom-antennas.html
    [7] I. Ohno, O. Wakabayashi, and S. Haruyama, "Anodic oxidation of reductants in electroless plating," Journal of the electrochemical society, vol. 132, no. 10, p. 2323, 1985.
    [8] M. Oita, M. Matsuoka, and C. Iwakura, "Deposition rate and morphology of electroless copper film from solutions containing 2, 2′-dipyridyl," Electrochimica acta, vol. 42, no. 9, pp. 1435-1440, 1997.
    [9] M. Paunovic, "Electrochemical deposition," Encyclopedia of Electrochemistry: Online, 2007.
    [10] Y. Shacham-Diamand and V. M. Dubin, "Copper electroless deposition technology for ultra-large-scale-integration (ULSI) metallization," Microelectronic Engineering, vol. 33, no. 1-4, pp. 47-58, 1997.
    [11] H. Meyer, R. Nichols, D. Schröer, and L. Stamp, "The use of conducting polymers and colloids in the through hole plating of printed circuit boards," Electrochimica acta, vol. 39, no. 8-9, pp. 1325-1338, 1994.
    [12] C. Deckert, "Electroless copper plating, a review: Part I," Plating and surface finishing, vol. 82, no. 2, pp. 48-55, 1995.
    [13] C. Tendero, C. Tixier, P. Tristant, J. Desmaison, and P. Leprince, "Atmospheric pressure plasmas: A review," Spectrochimica Acta Part B: Atomic Spectroscopy, vol. 61, no. 1, pp. 2-30, 2006.
    [14] R. Fonck, D. Darrow, and K. Jaehnig, "Determination of plasma-ion velocity distribution via charge-exchange recombination spectroscopy," Physical Review A, vol. 29, no. 6, p. 3288, 1984.
    [15] 工業材料研究所尖端材料實驗室“淺談電漿表面處理技術” 工業材料, 123 , (1997) , pp.82.
    [16] A. Schutze, J. Y. Jeong, S. E. Babayan, J. Park, G. S. Selwyn, and R. F. Hicks, "The atmospheric-pressure plasma jet: a review and comparison to other plasma sources," IEEE transactions on plasma science, vol. 26, no. 6, pp. 1685-1694, 1998.
    [17] 楊士賢, "以脈衝式電漿輔助化學氣相沉積法製備氟化非晶碳膜之研究," 碩士, 化學工程研究所, 中原大學, 桃園縣, 2005.
    [18] 劉志宏“以大氣電漿進行材料表面微米級圖案化之加工技術” 機械工業雜誌,306,66 2008.
    [19] 郭福升, "大面積常壓電漿技術之研究," 碩士, 化學系碩博士班, 國立成功大學, 台南市, 2003.
    [20] F. Massines and G. Gouda, "A comparison of polypropylene-surface treatment by filamentary, homogeneous and glow discharges in helium at atmospheric pressure," Journal of Physics D: Applied Physics, vol. 31, no. 24, p. 3411, 1998.
    [21] V. Prysiazhnyi, M. Stupavská, J. Ráheľ, C. Kleber, M. Černák, and L. Rafailović, "A comparison of chemical and atmospheric plasma assisted copper plating on carbon fiber reinforced epoxy polymer surfaces," Surface and Coatings Technology, vol. 258, pp. 1082-1089, 2014.
    [22] D. P. Subedi, U. M. Joshi, and C. San Wong, "Dielectric barrier discharge (DBD) plasmas and their applications," in Plasma Science and Technology for Emerging Economies: Springer, 2017, pp. 693-737.
    [23] J.-S. Chang, P. A. Lawless, and T. Yamamoto, "Corona discharge processes," IEEE Transactions on plasma science, vol. 19, no. 6, pp. 1152-1166, 1991.
    [24] M. Hur and S. H. Hong, "Comparative analysis of turbulent effects on thermal plasma characteristics inside the plasma torches with rod-and well-type cathodes," Journal of Physics D: Applied Physics, vol. 35, no. 16, p. 1946, 2002.
    [25] K. Pochner, W. Neff, and R. Lebert, "Atmospheric pressure gas discharges for surface treatment," Surface and Coatings Technology, vol. 74, pp. 394-398, 1995.
    [26] J. Chauvin, F. Judée, M. Yousfi, P. Vicendo, and N. Merbahi, "Analysis of reactive oxygen and nitrogen species generated in three liquid media by low temperature helium plasma jet," Scientific reports, vol. 7, no. 1, pp. 1-15, 2017.
    [27] X. Deng, A. Y. Nikiforov, P. Vanraes, and C. Leys, "Direct current plasma jet at atmospheric pressure operating in nitrogen and air," Journal of Applied Physics, vol. 113, no. 2, p. 023305, 2013.
    [28] A. Bogaerts, E. Neyts, R. Gijbels, and J. Van der Mullen, "Gas discharge plasmas and their applications," Spectrochimica Acta Part B: Atomic Spectroscopy, vol. 57, no. 4, pp. 609-658, 2002.
    [29] H. Koinuma et al., "Development and application of a microbeam plasma generator," Applied physics letters, vol. 60, no. 7, pp. 816-817, 1992.
    [30] X. Lu, M. Laroussi, and V. Puech, "On atmospheric-pressure non-equilibrium plasma jets and plasma bullets," Plasma Sources Science and Technology, vol. 21, no. 3, p. 034005, 2012.
    [31] A. Al-Shamma’a, S. Wylie, J. Lucas, and R. Stuart, "Microwave plasma jet for material processing at 2.45 GHz," Journal of materials processing technology, vol. 121, no. 1, pp. 143-147, 2002.
    [32] A. Dato, "Graphene synthesized in atmospheric plasmas—A review," Journal of Materials Research, vol. 34, no. 1, pp. 214-230, 2019.
    [33] J. R. Conrad, J. L. Radtke, R. A. Dodd, F. J. Worzala, and N. C. Tran, "Plasma source ion‐implantation technique for surface modification of materials," Journal of Applied Physics, vol. 62, no. 11, pp. 4591-4596, 1987.
    [34] G. Rozovskis, J. Vinkevičius, and J. Jačiauskiene, "Plasma surface modification of polyimide for improving adhesion to electroless copper coatings," Journal of adhesion science and technology, vol. 10, no. 5, pp. 399-406, 1996.
    [35] J. Ge, M. Turunen, and J. Kivilahti, "Surface modification of a liquid‐crystalline polymer for copper metallization," Journal of Polymer Science Part B: Polymer Physics, vol. 41, no. 6, pp. 623-636, 2003.
    [36] T. Desmet, R. Morent, N. De Geyter, C. Leys, E. Schacht, and P. Dubruel, "Nonthermal plasma technology as a versatile strategy for polymeric biomaterials surface modification: a review," Biomacromolecules, vol. 10, no. 9, pp. 2351-2378, 2009.
    [37] L. He, A. Karumuri, and S. M. Mukhopadhyay, "Wettability tailoring of nanotube carpets: morphology-chemistry synergy for hydrophobic–hydrophilic cycling," RSC advances, vol. 7, no. 41, pp. 25265-25275, 2017.
    [38] T. Bhatia et al., "Mechanisms of ceramic coating deposition in solution-precursor plasma spray," Journal of materials research, vol. 17, no. 9, pp. 2363-2372, 2002.
    [39] S. Schneider et al., "The role of VUV radiation in the inactivation of bacteria with an atmospheric pressure plasma jet," Plasma Processes and Polymers, vol. 9, no. 6, pp. 561-568, 2012.
    [40] T. Takamatsu et al., "Investigation of reactive species using various gas plasmas," Rsc Advances, vol. 4, no. 75, pp. 39901-39905, 2014.
    [41] H. C. Barshilia, A. Ananth, N. Gupta, and C. Anandan, "Superhydrophobic nanostructured Kapton® surfaces fabricated through Ar+ O2 plasma treatment: Effects of different environments on wetting behaviour," Applied Surface Science, vol. 268, pp. 464-471, 2013.
    [42] S.-J. Cho, T. Nguyen, and J.-H. Boo, "Polyimide surface modification by using microwave plasma for adhesion enhancement of Cu electroless plating," Journal of nanoscience and nanotechnology, vol. 11, no. 6, pp. 5328-5333, 2011.
    [43] K. J. Bigham, "LCP Introduction To Liquid Crystal Polymers," ed: Zeus Industrial Products, Inc. Orangeburg, South Carolina, 2016.
    [44] D. Quéré, "Rough ideas on wetting," Physica A: Statistical Mechanics and its Applications, vol. 313, no. 1-2, pp. 32-46, 2002.
    [45] L. Makkonen, "Young’s equation revisited," Journal of Physics: Condensed Matter, vol. 28, no. 13, p. 135001, 2016.
    [46] C. Rulison, "So you want to measure surface energy," Charlotte NC (cf. p. 99), 1999.
    [47] F. Awaja, M. Gilbert, G. Kelly, B. Fox, and P. J. Pigram, "Adhesion of polymers," Progress in polymer science, vol. 34, no. 9, pp. 948-968, 2009.
    [48] L. Chen, M. Crnic, Z. Lai, and J. Liu, "Process development and adhesion behavior of electroless copper on liquid crystal polymer (LCP) for electronic packaging application," IEEE transactions on electronics packaging manufacturing, vol. 25, no. 4, pp. 273-278, 2002.
    [49] L. Mazzola, E. Bemporad, and F. Carassiti, "Flame treatment on plastic: A new surface free energy statistical prediction model and characterization of treated surfaces," Applied Surface Science, vol. 257, no. 6, pp. 2148-2158, 2011.
    [50] R. Pascoe and B. O'Connell, "Flame treatment for the selective wetting and separation of PVC and PET," Waste Management, vol. 23, no. 9, pp. 845-850, 2003.
    [51] C. Lambare, P.-Y. Tessier, F. Poncin-Epaillard, and D. Debarnot, "Plasma functionalization and etching for enhancing metal adhesion onto polymeric substrates," RSC advances, vol. 5, no. 77, pp. 62348-62357, 2015.
    [52] L. Siebert et al., "Perfect polymer interlocking by spherical particles: capillary force shapes hierarchical composite undercuts," Nanoscale Horizons, vol. 4, no. 4, pp. 947-952, 2019.
    [53] K. Miyauchi, H. Watanabe, and M. Yuasa, "A study of adhesive improvement of a Cr-Ni alloy layer on a liquid crystal polymer (LCP) surface," Progress in Organic Coatings, vol. 94, pp. 73-78, 2016.
    [54] 奇毅光電有限公司. Available: http://gieoptics.com/big5/product_01_03.php
    [55] Netzsch. Available: https://www.netzsch-thermal-analysis.com/en/products-solutions/simultaneous-thermogravimetry-differential-scanning-calorimetry/sta-449-f3-jupiter/
    [56] 欣創達科技公司. Available: http://www.sindatek.com/100sb.htm
    [57] R. Hebbar, A. Isloor, and A. Ismail, "Contact angle measurements," in Membrane characterization: Elsevier, 2017, pp. 219-255.
    [58] T. Yamaguchi, H. Takamura, T. Matoba, and J. Terao, "HPLC method for evaluation of the free radical-scavenging activity of foods by using 1, 1-diphenyl-2-picrylhydrazyl," Bioscience, biotechnology, and biochemistry, vol. 62, no. 6, pp. 1201-1204, 1998.
    [59] 隴祥科技有限公司. Available: https://www.longxiang-tec.com/bx41m-esd.html
    [60] Y. Jusman, S. C. Ng, and N. A. Abu Osman, "Investigation of CPD and HMDS sample preparation techniques for cervical cells in developing computer-aided screening system based on FE-SEM/EDX," The Scientific World Journal, vol. 2014, 2014.
    [61] JEOL. Available: https://www.jeol.co.jp/en/products/list_sem.html
    [62] JASCO. Available: http://www.jascoint.co.jp/asia/products/spectroscopy/ftir/ftir6700.html
    [63] N. Jaggi and D. Vij, "Fourier transform infrared spectroscopy," in Handbook of Applied Solid State Spectroscopy: Springer, 2006, pp. 411-450.
    [64] M. Mutsaers, "Near infrared spectroscopy as a diagnostic tool in surveillance of arboviral vector control, predicting Wolbachia infection in post-mortem Aedes aegypti," 2018.
    [65] Bruker. Available: https://www.bruker.com/cn/products/x-ray-diffraction-and-elemental-analysis/x-ray-diffraction/d2-phaser.html
    [66] K. Mittal, "Adhesion measurement of thin films," Electrocomponent science and technology, vol. 3, no. 1, pp. 21-42, 1976.
    [67] ALGOL. Available: http://www.algol.com.tw/product_description.php?PNo=23&Protype=product&CNo=44
    [68] 凱思隆科技股份有限公司. Available: http://www.keithlink.com/EN/Showroom05/ugC_ShowroomItem_Detail.asp?hidShowKindID=1&hidShowTypeID=64&hidShowID=336
    [69] Malvern Panalytical. Available: https://www.dksh.com/global-en/products/ins/malvernpanalytical-epsilon1
    [70] O. Gharbi, "In-situ investigation of elemental corrosion reactions during the surface treatment of Al-Cu and Al-Cu-Li alloys," Paris 6, 2016.
    [71] A. Georg, Y. Yuan, J. Engemann, and A. Brockhaus, "Imaging of atomic oxygen in a microwave excited oxygen plasma with two-dimensional optical emission spectroscopy," Surface and Coatings Technology, vol. 97, no. 1-3, pp. 734-741, 1997.
    [72] T. Shirafuji et al., "FTIR study of methylene blue plasma degradation products through plasma treatment on water," in TENCON 2010-2010 IEEE Region 10 Conference, 2010, pp. 1938-1942: IEEE.
    [73] R. Walkup, K. Saenger, and G. Selwyn, "Studies of atomic oxygen in O2+ CF4 rf discharges by two‐photon laser‐induced fluorescence and optical emission spectroscopy," The Journal of chemical physics, vol. 84, no. 5, pp. 2668-2674, 1986.
    [74] R. Wang et al., "Atmospheric-pressure cold plasma treatment of contaminated fresh fruit and vegetable slices: inactivation and physiochemical properties evaluation," The European Physical Journal D, vol. 66, no. 10, pp. 1-7, 2012.
    [75] Y. Kurihara, H. Ohata, M. Kawaguchi, S. Yamazaki, and K. Kimura, "Improvement of adhesion and long‐term adhesive reliability of liquid crystalline polyester film by plasma treatment," Journal of applied polymer science, vol. 108, no. 1, pp. 85-92, 2008.
    [76] J. Nakamatsu, L. F. Delgado-Aparicio, R. Da Silva, and F. Soberon, "Ageing of plasma-treated poly (tetrafluoroethylene) surfaces," Journal of adhesion science and technology, vol. 13, no. 7, pp. 753-761, 1999.
    [77] J. Li, M. Turunen, S. Niiranen, H. Chen, and M. Paulasto-Kröckel, "A reliability study of adhesion mechanism between liquid crystal polymer and silicone adhesive," Microelectronics Reliability, vol. 52, no. 12, pp. 2962-2969, 2012.
    [78] M. Howlader, T. Suga, A. Takahashi, K. Saijo, S. Ozawa, and K. Nanbu, "Surface activated bonding of LCP/Cu for electronic packaging," Journal of materials science, vol. 40, no. 12, pp. 3177-3184, 2005.
    [79] M. Zhou, W. Zhang, D. Ding, and M. Li, "The effect of pretreatment on adhesive strength of Cu-plated liquid crystal polymer (LCP)," Applied surface science, vol. 258, no. 7, pp. 2643-2647, 2012.
    [80] M. Howlader, M. Iwashita, K. Nanbu, K. Saijo, and T. Suga, "Enhanced Cu/LCP adhesion by pre-sputter cleaning prior to Cu deposition," IEEE transactions on advanced packaging, vol. 28, no. 3, pp. 495-502, 2005.

    無法下載圖示 全文公開日期 2027/01/08 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE