簡易檢索 / 詳目顯示

研究生: 何岳珈
Yueh-chia Ho
論文名稱: 幾丁聚醣與透明質酸表面改質對矽水膠隱形眼鏡抗蛋白黏附與抗菌性之探討
Effect of surface modification with chitosan and hyaluronic acid on anti-protein-adhesion and antibacterial activity of silicone hydrogel contact lenses
指導教授: 楊銘乾
Ming-chien Yang
口試委員: 周啟雄
Chi-hsiung Jou
鄭智嘉
Chih-chia Cheng
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 104
中文關鍵詞: 抗蛋白沉積抗菌性表面改質隱形眼鏡矽水膠
外文關鍵詞: anti-adhesion of proteins, anti-bacterial activity, surface modification, contact lenses, silicone hydrogel
相關次數: 點閱:403下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究將以矽酮類高分子(silicone)作為隱形眼鏡基材,開發具有抗蛋白沉積、抗菌性、親水性佳、高舒適性的多功能矽水膠隱形眼鏡,以達到長時間配戴及配戴舒適性的效果。隱形眼鏡每日貼附在角膜上,空氣中或雙手上的微生物均有機會因鏡片清潔不足而入侵眼睛,使眼角膜發炎、疼痛等受損情況。因此,隱形眼鏡需具有抗菌性的功能,來維持眼睛的健康。眼睛乾澀為目前配戴隱形眼鏡最常面臨的問題,伴隨著鏡片上的沉澱物(淚液的蛋白質和脂質),而造成視覺對比度的下降,都會使配戴起來不舒適而減少配戴時間。因此,隱形眼鏡也須具備抗蛋白沉積功能,以增加配戴者的舒適度。
    本研究使用聚二甲基矽氧烷(PDMS)為基材,利用電漿活化表面,使表面產生過氧化物,而後接枝上丙烯酸單體(acrylic acid),再利用丙烯酸的羧基(-COOH)使之與幾丁聚醣(chitosan, CS)氫氧基(-OH)形成共價鍵結,完成固定幾丁聚醣程序。最後再經戊二醛交聯反應,結合上透明質酸(hyaluronic acid, HA)完成表面改質。以DPPH過氧化基分析和表面接枝密度量測,結果顯示出幾丁聚醣與透明質酸成功接枝於表面上且經原子力顯微鏡量測表面粗糙度,粗糙度值下降。親水性方面,接觸角有明顯降低,表面親水性有明顯提升。利用BCA蛋白質測定,可得知因透明質酸結構能抵抗蛋白質沾附,使得蛋白質吸附下降。細胞毒性經ISO 10993-5判斷為無毒性。抗菌性試驗中可發現幾丁聚醣對於金黃色葡萄球菌和大腸桿菌,具有優異的抗菌效果。


    This study is about modification of silicone hydrogel contact lenses. The resultant contact lenses exhibited anti-bacterial activity, anti-adhesion of proteins and high hydrophilicity. Our goal is to create more comfortable and longer-term contact lenses.
    Antibacterial activity and anti-protein deposition are the most important consideration in the contact lenses. People use contact lenses by touching the contact lenses with their finger. This contact may contaminate contact lenses and lead to inflammation and pain on the cornea. Therefore, anti-bacterial activity is needed to prevent pathogenic problems.
    Anti-protein deposition is needed to prolong the wearing time of contact lenses. Deposition of proteins and lipids will reduce visual contrast. It was one of the reason contact lenses is uncomfortable to wear.
    To meet our goal, chitosan (CS) and hyaluronic acid (HA) will be covalently bonded to the surface of the contact lenses (PDMS-CS-HA). According to these ways, we can enable to inhibiting bacteria growth and protein deposition on the contact lenses surface. However, the optical transparency, water content, oxygen permeability, tensile strength and modulus will not significantly change.
    The overall results demonstrated that new modification of contact lenses has a good potential in the application of ophthalmic lenses

    摘要 I Abstract II 致謝 III 目錄 IV 圖索引 VIII 表索引 XI 第壹章 緒論 1 1.1 研究背景 1 1.2 研究目的 3 第貳章 文獻回顧 5 2.1 水膠 5 2.2 水膠的合成與分類 6 2.2.1 物理交聯法 7 2.2.2 化學交聯法 8 2.3 智慧型水膠 9 2.3.1 酸鹼敏感型水膠 9 2.3.2 溫度敏感型水膠 10 2.3.3 光能敏感型水膠 11 2.3.4 其他型式之智慧型水膠 11 2.4 隱形眼鏡發展史 12 2.5 隱形眼鏡分類 15 2.5.1 依鏡片材質之柔軟性 15 2.5.2 依鏡片之覆蓋範圍 17 2.5.3 依鏡片材質之透氧性 17 2.5.4 依鏡片可戴用時間 18 2.5.5 依鏡片用途 18 2.6 隱形眼鏡材料的特殊性質 19 2.6.1 含水量 19 2.6.2 透氧性 20 2.6.3 含水量和透氧性之關係 22 2.6.4 離子電荷 23 2.7 隱形眼鏡與角膜之關係 24 2.8 高分子材料表面改質 26 2.9 電漿表面處理 28 2.9.1 電漿表面處理在生醫材料上的應用 29 2.10 紫外光硬化交聯處理 31 2.11 Polydimethylsiloxane,PDMS-diol 32 2.12 Isophorone diisocyanate,IPDI 33 2.13 幾丁聚醣 34 2.14 透明質酸 35 2.15 微生物 36 2.15.1 細菌 37 2.15.2 細菌的繁殖與生長 39 2.15.3 細菌生長環境的需求 41 第參章 實驗材料與方法 43 3.1 實驗材料 43 3.2 實驗設備 45 3.3 實驗流程 46 3.4 實驗原理及方法 47 3.4.1 實驗原理 47 3.4.2 實驗方法 49 3.5 DPPH過氧化基分析 51 3.6 羧酸根接枝率染色測驗 51 3.7 胺基接枝率染色測驗 51 3.8 物性分析 52 3.8.1 可見光透光率測定 (Transmittance) 52 3.8.2 平衡含水量測定 (Equilibrium water content) 53 3.8.3 透氧係數測定 (Oxygen Permeability) 54 3.8.4 接觸角測試 (Contact angle measurement) 55 3.8.5 原子力顯微鏡表面型態分析(Atomic force microscope, AFM) 56 3.8.6 拉伸試驗 (Tensile test) 57 3.9 生物相容性試驗 (Biocompatibility) 58 3.9.1 蛋白質吸附 (Protein adsorption) 58 3.9.2 細胞培養 (Cell culture) 60 3.9.3 細胞存活率分析 (MTT assay) 61 3.9.4 細胞毒性試驗 (In-vitro cytotoxicity) 62 3.9.5 抗菌性試驗 (Antibacterial activity) 64 第肆章 結果與討論 66 4.1 DPPH過氧化基分析 66 4.2 表面接枝密度量測 67 4.3 可見光透光率測定 68 4.4 平衡含水量測定 69 4.5 透氧係數測定 71 4.6 接觸角測試 72 4.7 原子力顯微鏡表面型態分析 74 4.8 拉伸試驗 76 4.9 蛋白質吸附試驗 77 4.10 細胞毒性試驗 79 4.11 抗菌性試驗 84 第伍章 結論 86 參考文獻 87

    [1] L. W. Jones, M. Byrne, J. B. Ciolino, J. Legerton, M. Markoulli, E. Papas, et al., "Revolutionary Future Uses of Contact Lenses," Optometry & Vision Science, vol. 93, pp. 325-327, 2016.
    [2] O. Wichterle and D. Lim, "Hydrophilic Gels for Biological Use," Nature, vol. 185, pp. 117-118, 01/09/print 1960.
    [3] I. V. Yannas, E. Lee, D. P. Orgill, E. M. Skrabut, and G. F. Murphy, "Synthesis and characterization of a model extracellular matrix that induces partial regeneration of adult mammalian skin," Proceedings of the National Academy of Sciences of the United States of America, vol. 86, pp. 933-937, 1989.
    [4] W. R. Gombotz and S. F. Wee, "Protein release from alginate matrices," Advanced Drug Delivery Reviews, vol. 64, Supplement, pp. 194-205, 2012.
    [5] F. Yokoyama, I. Masada, K. Shimamura, T. Ikawa, and K. Monobe, "Morphology and structure of highly elastic poly(vinyl alcohol) hydrogel prepared by repeated freezing-and-melting," 264, pp. 595-601, 1986.
    [6] D. W. Lim and T. G. Park, "Stereocomplex formation between enantiomeric PLA–PEG–PLA triblock copolymers: Characterization and use as protein-delivery microparticulate carriers," vol. 75, pp. 1615-1623, 2000.
    [7] K. Ishihara and I. Shinohara, "Photoinduced permeation control of proteins using amphiphilic azoaromatic polymer membrane," Journal of Polymer Science: Polymer Letters Edition, vol. 22, pp. 515-518, 1984.
    [8] M. Czerner, L. A. Fasce, J. F. Martucci, R. Ruseckaite, and P. M. Frontini, "Deformation and fracture behavior of physical gelatin gel systems," Food Hydrocolloids, vol. 60, pp. 299-307, 2016.
    [9] H. Cicek and A. Tuncel, "Immobilization of α-chymotrypsin in thermally reversible isopropylacrylamide-hydroxyethylmethacrylate copolymer gel," Journal of Polymer Science Part A: Polymer Chemistry, vol. 36, pp. 534-552, 1998.
    [10] L. Hovgaard and H. Brondsted, "Dextran hydrogels for colon-specific drug delivery," Journal of Controlled Release, vol. 36, pp. 159-166, 1995.
    [11] A. J. Kuijpers, G. H. Engbers, T. K. Meyvis, S. S., J. Demeester, J. Krijgsveld, et al., "Combined Gelatin−Chondroitin Sulfate Hydrogels for Controlled Release of Cationic Antibacterial Proteins," Macromolecules, vol. 33, pp. 3705-3713, 2000/05/01 2000.
    [12] N. A. Peppas and R. E. Berner, "Proposed method of intracopdal injection and gelation of poly (vinyl alcohol) solution in vocal cords: polymer considerations," Biomaterials, vol. 1, pp. 158-162, 1980/07/01 1980.
    [13] V. K. Gupta P, Garg S, "Hydrogels: from controlled release to pH-responsive drug delivery.," Drug Discovery Today, 2002.
    [14] Y. Qiu and K. Park, "Environment-sensitive hydrogels for drug delivery," Advanced Drug Delivery Reviews, vol. 64, Supplement, pp. 49-60, 12 2012.
    [15] K. A. Soppimath KS, "Aminabhavi TM.Chemically modified polyacrylamide-g-guar gum-based crosslinked anionic microgels as pH-sensitive drug delivery systems: preparation and characterization. ," Journal of Controlled Release, 2001.
    [16] S. Holtz and J. Bargon, "Laser-induced ablation of polymers using a patterned dopant generated from a leuco-dye precursor via flood exposure: A “portable conformable mask” approach to laser ablation of PMMA at 351 nm," Applied Physics A, vol. 60, pp. 529-535.
    [17] T.-m. Ong, W.-Z. Whong, J. Stewart, and H. E. Brockman, "Chlorophyllin: a potent antimutagen against environmental and dietary complex mixtures," Mutation Research Letters, vol. 173, pp. 111-115, 1986/02/01 1986.
    [18] 王滿堂, "隱形眼鏡學上, 下冊," ed: 藝軒圖書出版社, 2005.
    [19] A. Mamada, T. Tanaka, D. Kungwatchakun, and M. Irie, "Photoinduced phase transition of gels," Macromolecules, vol. 23, pp. 1517-1519, 1990/03/01 1990.
    [20] 鄧日青, "眼鏡配置原理即實作," 徐氏基金會, 1999.
    [21] M. G. Kodzwa, M. E. Staben, and D. G. Rethwisch, "Photoresponsive control of ion-exchange in leucohydroxide containing hydrogel membranes," Journal of Membrane Science, vol. 158, pp. 85-92, 1999.
    [22] K. A. Polse and M. Decker, "Oxygen tension under a contact lens," Investigative Ophthalmology & Visual Science, vol. 18, pp. 188-193, 1979.
    [23] N. B. Carlson, D. Kurtz, D. A. Heath, C. Hines, and R. Flom, Clinical procedures for ocular examination vol. 3: McGraw-Hill New York, 2004.
    [24] A. A. Azari and D. M. Albert, Ocular pathology case reviews: Elsevier Health Sciences, 2014.
    [25] F. M. M. Verdú and Á. M. P. Moreno, Fundamentos de visión binocular vol. 74: Universitat de València, 2004.
    [26] J. M. Goddard and J. H. Hotchkiss, "Polymer surface modification for the attachment of bioactive compounds," Progress in Polymer Science, vol. 32, pp. 698-725, 7 2007.
    [27] Y. Wang, J.-H. Kim, K.-H. Choo, Y.-S. Lee, and C.-H. Lee, "Hydrophilic modification of polypropylene microfiltration membranes by ozone-induced graft polymerization," Journal of Membrane Science, vol. 169, pp. 269-276, 2000.
    [28] I. L. J. Dogué, R. Förch, and N. Mermilliod, "Plasma-induced hydrogel grafting of vinyl monomers on polypropylene," Journal of Adhesion Science and Technology, vol. 9, pp. 1531-1545, 1995/01/01 1995.
    [29] P. K. Chu, J. Chen, L. Wang, and N. Huang, "Plasma-surface modification of biomaterials," Materials Science and Engineering: R: Reports, vol. 36, pp. 143-206, 2002.
    [30] 高正雄, 超 LSI 時代: 電漿化學: 復漢, 1999.
    [31] Q.Chen, L.Dai, M.Gao, S.Huang, and a.mAU, "Plasma Activation of Carbon Nanotube for Chemical Modification," vol. 105, pp. 618-622, 2001.
    [32] P. Favia and R. d’Agostino, "Plasma treatments and plasma deposition of polymers for biomedical applications," Surface and Coatings Technology, vol. 98, pp. 1102-1106, 1// 1998.
    [33] 吳耀庭, 黃曉鳳, 溫俊祥, and 工研院材料所高分子界面工程技術, "電漿表面處理在生醫材料上之應用," ed: 工研院材料所高分子介面工程研究部, 2004.
    [34] H. I. A.Kishida, M.Suzuki, Y.Hata, Y.Ikada, and J.Ikada, "J.Appl Polym.Sci.,Part A.Polym.Chem.,," vol. 26, 1988.
    [35] S. L. Cooper, T. A. Speckhard, K. K. S. Hwang, C. Z. Yang, and W. R. Laupan, "Properties of segmented polyurethane zwitterionomer elastomers," Journal of Macromolecular Science, vol. 23, pp. pp. 175-199, 1984.
    [36] T. A. Speckhard and S. L. Cooper, "Ultimate tensile properties of segmented polyurethane elastomers: factors leading to reduced properties for polyurethanes based on nonpolar soft segments," Rubber chemistry and technology, vol. 59, pp. 405-431, 1986.
    [37] 王朝陽, 趙耀明, 王浚, and 李雄武, "異佛爾酮二異氰酸酯溶液擴鏈合成聚乳酸類藥物緩試劑," 精細化工, vol. 23, p. 913, 2006.
    [38] B. M. A. Pizzi and W. Parsons, "Wood-induced catalytic activation of PF adhesives autopolymerization vs. PF/wood covalent bonding," Journal of Applied Polymer Science, vol. 52, pp. 1847-1856, 1994.
    [39] I. Sava, M. Bruma, B. Schulz, F. Mercer, V. Reddy, and N. Belomoina, "Synthesis and properties of silicon‐containing polyamides," Journal of applied polymer science, vol. 65, pp. 1533-1538, 1997.
    [40] E. W. Nester, C. E. Roberts, N. Pearsall, and B. McCarthy, Microbiology: Holt, Rinehart and Winston., 1978.
    [41] R. K. E. Poole, "Advances in Microbial Systems Biology," Elsevier Science Ltd, 2014.
    [42] 布洛克, T. D. Brock, M. T. Madigan, 謝哲松, and 麥迪甘, 微生物生物學: 編譯館, 1995.
    [43] M. B. Huglin and M. B. Zakaria, "Observations on the homogeneity of crosslinked copolymers prepared by γ-irradiation," Polymer, vol. 25, pp. 797-802, 1984/06/01 1984.
    [44] 許瓊文, "嬌生攻下五成眼鏡族市場的秘密," 今周刊, vol. 期518, pp. 112-113, 2006.
    [45] D. A. H. a. G. W. Merrz, "Critical oxygen levels to avoid corneal edema for daily and extended wear contact lenses.," Investigative Ophthalmology & Visual Science, vol. 25, pp. 1161-1167, October 1984.

    無法下載圖示 全文公開日期 2021/05/26 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 2021/05/26 (國家圖書館:臺灣博碩士論文系統)
    QR CODE