簡易檢索 / 詳目顯示

研究生: Nguyen-Phuong-Dung Tran
Nguyen-Phuong-Dung Tran
論文名稱: 以TRIS、DMA、NVP、HEMA及矽膠奈米粒子製備隱形眼鏡及其眼科性能的研究
Preparation and Ophthalmic Performance of Silicone Hydrogel Contact Lenses Composing of TRIS, DMA, NVP, HEMA and Silicone Nanoparticles
指導教授: 楊銘乾
Ming-Chien Yang
口試委員: 楊銘乾
Ming-Chien Yang
高震宇
Chen-Yu Kao
Cheng-Kang Lee
Cheng-Kang Lee
Tai-Horng Young
Tai-Horng Young
Chiang-Ting Chien
Chiang-Ting Chien
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 107
中文關鍵詞: Silicone NanoparticlesSilicone Hydrogel Contact LensesTRIS-DMA-NVP polymerDMA-NVP polymerHEMA-NVP polymer
外文關鍵詞: Silicone Nanoparticles, Silicone Hydrogel Contact Lenses, TRIS-DMA-NVP polymer, DMA-NVP polymer, HEMA-NVP polymer
相關次數: 點閱:404下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨在探討隱形眼鏡之組成分對其物理及生物性質的影響。本論文分為三部分進行探討。第一部分係以3-(甲基丙烯醯氧基)丙基三(三甲基甲矽烷氧基)矽烷(3-(methacryloyloxy)propyltris(trimethylsiloxy)silane, TRIS),N,N-二甲基丙烯醯胺(N,N-dimethylacrylamide, DMA),1-乙烯基-2-吡咯烷酮(1-vinyl-2-pyrrolidinone, NVP)和甲基丙烯酸2-羥乙酯(2-hydroxyethylmethacrylate, HEMA)聚合而成軟式鏡片。所得之鏡片進行的測試包括平衡水含量(EWC),氧氣透過性(Dk),透光度,接觸角,機械測試,蛋白質吸附和細胞毒性。結果顯示,配方中的TRIS濃度會提升Dk而降低EWC,而DMA和NVP均有助於水膠的親水性。Dk的最大值為74.9 barrer,對應於EWC為44.5%,接觸角為82°。此外,L929纖維母細胞均能在所有水凝膠上生長,顯示無細胞毒性。總之,本研究中的矽水膠具有良好的氧透過性,勁度和光學透明性以及抗蛋白質吸附性。因此,這些矽水膠可用於製造隱形眼鏡。
    第二部分係由聚二甲基矽氧烷(polydimethylsiloxane, PDMS)和原矽酸四乙酯(tetraethyl orthosilicate, TEOS)以溶膠 - 凝膠法合成矽氧烷奈米粒子(SiNPs)。 然後再將這些SiNPs與HEMA和NVP混合,以光起始聚合法合成水膠隱形眼鏡。 所得之鏡片進行的測試包括動態光散射(DLS),透射電子顯微鏡(TEM),掃描電子顯微鏡(SEM),EWC,Dk,透光度和接觸角。 SiNPs的平均直徑為336 nm。 結果顯示,增加SiNPs的含量,可提升p(HEMA-co-NVP)-SiNPs鏡片的Dk,但不影響其EWC。 對於含有1.2 wt% SiNPs的鏡片,Dk的最大值為71 barrer,而其最高EWC達到73%。因此,這種新方法可用於製造軟鏡片。
    第三部分係以DMA、NVP和SiNPs合成軟式鏡片。所有樣品的物理和生物化學性質的測試包括SEM,EWC,Dk,透光度,接觸角,機械性質,蛋白質吸附和細胞毒性等。結果顯示,SiNPs的加入增加了Dk而不影響鏡片的EWC。含1.2 wt%的SiNPs,p(DMA-co-NVP)-SiNPs的Dk為94.8 barrer,而其EWC維持在85.14%。特別是,DNS12的接觸角約40°。另外,蛋白質吸附主要取決於帶負電的SiNPs。SiNPs含量越高,樣品的人血清白蛋白(HSA)越低,和溶菌酶沉積越高。此外,L929纖維母細胞能在所有水膠樣品上生長,顯示無細胞毒性。總之,SiNPs與水膠的組合具有高Dk,而不會顯著影響透光度。因此這一種組成可於製造軟式隱形眼鏡。


    This thesis is aiming to investigate the effect of the composition on the physical and biological properties of silicone contact lenses. This thesis is divided into three parts to conduct the investigation. In the first part, soft lenses were synthesized by the polymerization of 3-(methacryloyloxy)propyltris(trimethylsiloxy)silane (TRIS), N,N-dimethylacrylamide (DMA), 1-vinyl-2-pyrrolidinone (NVP), and 2-hydroxyethylmethacrylate (HEMA). The physical and biochemical characterizations of silicone hydrogel lenses were measured by methods comprising equilibrium water content (EWC), oxygen permeability (Dk), optical transparency, contact angle, mechanical test, protein adsorption, and cytotoxicity. The results indicated that the TRIS concentration in all formulations enhanced Dk and decreased the EWC, whereas both DMA and NVP contributed to the hydrophilicity of the hydrogels. The maximum value of Dk was 74.9 barrer, corresponding to EWC of 44.5% as well as a contact angle of 82°. Furthermore, L929 fibroblasts grew on all these hydrogels, suggesting non-cytotoxicity. Generally, the silicone hydrogels in this study presented good oxygen permeability, stiffness, and optical transparency as well as anti-protein adsorption. Consequently, these silicone hydrogel polymers would be feasible for making contact lens.
    In the second part, silicone nanoparticles composites (SiNPs) were synthesized by the combination of tetraethyl orthosilicate (TEOS) and polydimethylsiloxane (PDMS) via the sol-gel reaction. Before the polymerization of hydrogel lenses, these SiNPs were blended with HEMA and NVP monomers. All samples were subject to characterization consisting of dynamic light scattering (DLS), transmission electron microscope (TEM), scanning electron microscope (SEM), EWC, Dk, optical transparency, and contact angle. SiNPs has the average diameter of SiNPs of 336 nm. The result showed that the different mixing concentrations of SiNPs composites increased Dk, but did not influence the EWC of p(HEMA-co-NVP)-SiNPs lenses. The maximum of Dk was 71 barrer for p(HEMA-co-NVP) sample containing 1.2 wt% of SiNPs whereas its highest EWC attained 73%. These results demonstrate a novel approach for producing soft lenses.
    In the third part, soft lenses were synthesized by the polymerization of DMA, NVP, and SiNPs. The physical and biochemical properties of all samples were analyzed based on methods such as SEM, EWC, Dk, optical transparency, contact angle, mechanical properties, protein adsorption, and cytotoxicity. The results indicated that the addition of SiNPs increased the Dk without influencing the EWC of the soft lenses. With 1.2 wt% of SiNPs, the Dk of p(DMA-co-NVP)-SiNPs was 94.8 barrer whereas its EWC remained at 85.14%. In particular, DNS12 displayed a contact angle around 39.65°. Additionally, protein adsorption primarily depended on the negatively charged SiNPs. Higher SiNPs content led to lower human serum albumin (HSA) and higher lysozyme deposition on all samples. Moreover, L929 fibroblasts grew on all hydrogel samples, suggesting non-cytotoxicity. Generally, the combination of SiNPs with hydrogels exhibited high Dk, without influencing importantly the optical transparency, moduli. These results may be applicable as ophthalmic biomaterials in for soft contact lens.

    Abstract Acknowledgments Index List of figures List of tables Abbreviation list Chapter 1: Introduction - 1 - 1.1 Background of the study. - 1 - 1.2 Motivation and objectives of study - 2 - Chapter 2: Literature review - 4 - 2.1 Contact lens’s development - 4 - 2.2 Contact lens classification - 5 - 2.2.1 Hard contact lens - 6 - 2.2.1.1 Hard PMMA lens - 6 - 2.2.1.2 Gas permeable rigid lens .- 6 - 2.2.2 Soft contact lens - 7 - 2.2.2.1 Hydrogel lens - 8 - 2.2.2.2 Silicone hydrogel lens - 9 - 2.3 Special properties of soft contact lens material - 11 - 2.3.1 Water retention - 11 - 2.3.2 Oxygen permeability - 12 - 2.3.2.1 Oxygen permeability - 12 - 2.3.2.2 Oxygen transmissibility - 14 - 2.3.3 Optical transparency - 15 - 2.3.4 Surface wettability - 15 - 2.3.5 Protein adsorption on contact lens - 17 - 2.3.6 Mechanical properties - 19 - 2.4 Materials introduction - 20 - 2.4.1 DMA - 20 - 2.4.2 NVP - 21 - 2.4.3 HEMA - 22 - 2.4.4 TRIS - 23 - 2.4.5 PDMS - 23 - 2.4.6 TEOS - 25 - 2.4.7 EGDMA - 25 - 2.5 Photoinitiator crosslinking mechanism - 26 - Chapter 3: Synthesis and characterization of silicone contact lenses based on TRIS-DMA-NVP-HEMA hydrogels - 28 - 3.1 Experimental section - 28 - 3.1.1 Materials - 28 - 3.1.2 Equipment apparatus - 28 - 3.1.3 Experimental steps - 29 - 3.1.4 Physical and biocompatibility characteristic testing - 30 - 3.1.4.1 Equilibrium water content - 31 - 3.1.4.2 Oxygen permeability - 31 - 3.1.4.3 Optical transparency - 31 - 3.1.4.4 Contact angle - 31 - 3.1.4.5 Mechanical strength - 32 - 3.1.4.6 Protein adsorption - 33 - 3.1.4.7 Cytotoxicity - 34 - 3.2 Result and discussion - 35 - 3.2.1 Equilibrium water content - 36 - 3.2.2 Oxygen permeability - 36 - 3.2.3 Optical transparency - 38 - 3.2.4 Contact angle - 39 - 3.2.5 Mechanical properties - 40 - 3.2.6 Protein adsorption - 41 - 3.2.7 Cytotoxicity - 43 - 3.2.8 Comparison with commercial lenses - 46 - Chapter 4: Effect of silicone nanoparticles on the ophthalmic performance of hydrogel contact lenses - 48 - 4.1 Experimental section - 48 - 4.1.1 Materials - 48 - 4.1.2 Equipment apparatus - 48 - 4.1.3 Experimental steps - 49 - 4.1.3.1 Preparation of silicone nanoparticles - 49 - 4.1.3.2 Preparation of SiNPs hydrogel samples - 50 - 4.1.4 Physical characteristic testing - 52 - 4.1.4.1 Elemental analysis and size of particles - 52 - 4.1.4.2 Equilibrium water content - 52 - 4.1.4.3 Optical transparency - 53 - 4.1.4.4 Contact angle - 53 - 4.1.4.5 Oxygen permeability - 53 - 4.2 Result and discussion - 53 - 4.2.1 Size and elemental composition of particles - 54 - 4.2.2 Optical transparency - 56 - 4.2.3 Equilibrium water content - 56 - 4.2.4 Contact angle - 57 - 4.2.5 Oxygen permeability - 57 - Chapter 5: Synthesis and characterization of soft contact lens based on the combination of SiNPs with hydrophobic and hydrophilic monomers - 62 - 5.1 Experimental section - 62 - 5.1.1 Materials - 62 - 5.1.2 Equipment apparatus - 62 - 5.1.3 Experimental steps - 63 - 5.1.3.1 Preparation of silicone nanoparticles - 63 - 5.1.3.2 Preparation of SiNPs hydrogel samples - 64 - 5.1.4 Physical and biocompatibility characteristic testing - 65 - 5.1.4.1 Equilibrium water content - 65 - 5.1.4.2 Oxygen permeability - 65 - 5.1.4.3 Optical transparency - 66 - 5.1.4.4 Contact angle - 66 - 5.1.4.5 Mechanical strength - 66 - 5.1.4.6 Surface morphology - 66 - 5.1.4.7 Protein adsorption - 66 - 5.1.4.8 Cytotoxicity - 67 - 5.2 Result and discussion - 67 - 5.2.1 Equilibrium water content - 67 - 5.2.2 Oxygen permeability - 68 - 5.2.3 Optical transparency - 69 - 5.2.4 Contact angle - 70 - 5.2.5 Mechanical properties - 71 - 5.2.6 Surface morphology - 72 - 5.2.7 Protein adsorption - 73 - 5.2.8 Cytotoxicity - 74 - Chapter 6: Conclusion - 78 - References - 80 -

    1. Augst, A.D.; Kong, H.J.; Mooney, D.J. Alginate hydrogels as biomaterials. Macromol. Biosci. 2006, 6, 623-633.
    2. Mikos, A.G.; Sarakinos, G.; Leite, S.M.; Vacant, J.P.; Langer, R. Laminated three-dimensional biodegradable foams for use in tissue engineering. Biomaterials 1993, 14, 323-330.
    3. Shoichet, M.S. Polymer scaffolds for biomaterials applications. Macromolecules 2009, 43, 581-591.
    4. Zhao, Z.; Xie, H.; An, S.; Jiang, Y. The relationship between oxygen permeability and phase separation morphology of the multicomponent silicone hydrogels. J. Phys. Chem. B 2014, 118, 14640-14647.
    5. Debord, J.D.; Lyon, L.A. Thermoresponsive photonic crystals. J. Phys. Chem. B 2000, 104, 6327-6331.
    6. Lee, W.-F.; Lin, W.-J. Effect of Silicon Monomers on the Swelling and Mechanical Properties of (PEGMA-co-HEMA) Hydrogels. J. Polym. Res. 2003, 10, 31-38.
    7. Maldonado-Codina, C.; Efron, N. Hydrogel lenses-materials and manufacture. A review. Optometry in Practice 2003, 4, 101-113.
    8. Willis, S.L.; Court, J.L.; Redman, R.P.; Wang, J.-H.; Leppard, S.W.; O’Byrne, V.J.; Small, S.A.; Lewis, A.L.; Jones, S.A.; Stratford, P.W. A novel phosphorylcholine-coated contact lens for extended wear use. Biomaterials 2001, 22, 3261-3272.
    9. Wu, J.; He, C.; He, H.; Cheng, C.; Zhu, J.; Xiao, Z.; Zhang, H.; Li, X.; Zheng, J.; Xiao, J. Importance of zwitterionic incorporation into polymethacrylate-based hydrogels for simultaneously improving optical transparency, oxygen permeability, and antifouling properties. J. Mater. Chem. B 2017, 5, 4595-4606.
    10. Zhao, Z.-b.; An, S.-s.; Xie, H.-j.; Jiang, Y. Copolymerization and properties of multicomponent crosslinked hydrogels. Chinese J. Polym. Sci. 2015, 33, 173-183.
    11. Begley, C.G.; Caffery, B.; Nichols, K.K.; Chalmers, R. Responses of contact lens wearers to a dry eye survey. Optom. Vis. Sci. 2000, 77, 40-46.
    12. Richdale, K.; Sinnott, L.T.; Skadahl, E.; Nichols, J.J. Frequency of and factors associated with contact lens dissatisfaction and discontinuation. Cornea 2007, 26, 168-174.
    13. Hapnes, R. Soft contact lenses worn at a simulated altitude of 18000 feet. Acta Ophthalmol. 1980, 58, 90-95.
    14. Mandell, R.; Farrell, R. Corneal swelling at low atmospheric oxygen pressures. Invest. Ophthalmol. Vis. Sci. 1980, 19, 697-702.
    15. Clarke, C. Contact lenses at high altitude: experience on Everest south-west face 1975. Br. J. Ophthalmol. 1976, 60, 479-480.
    16. Chen, J.-S.; Liu, T.-Y.; Tsou, H.-M.; Ting, Y.-S.; Tseng, Y.-Q.; Wang, C.-H. Biopolymer brushes grown on PDMS contact lenses by in situ atmospheric plasma-induced polymerization. J. Polym. Res. 2017, 24, 69.
    17. Seitz, M.E.; Wiseman, M.E.; Hilker, I.; Loos, J.; Tian, M.; Li, J.; Goswami, M.; Litvinov, V.M.; Curtin, S.; Bulters, M. Influence of silicone distribution and mobility on the oxygen permeability of model silicone hydrogels. Polymer 2017, 118, 150-162.
    18. Fonn, D.; Dumbleton, K.; Jalbert, I.; Sivak, A. Benefits of silicone hydrogel lenses. Contact Lens Spectrum 2006, 21, 38.
    19. Awasthi, A.; Meng, F.; Künzler, J.; Linhardt, J.; Papagelis, P.; Oltean, G.; Myers, S. Ethylenically unsaturated polycarbosiloxanes for novel silicone hydrogels: synthesis, end‐group analysis, contact lens formulations, and structure–property correlations. Polym. Adv. Technol. 2013, 24, 557-567.
    20. Nicolson, P.C. Continuous wear contact lens surface chemistry and wearability. Eye contact lens 2003, 29, S30-S32.
    21. Ghoreishi, S.; Abbasi, F.; Jalili, K. Hydrophilicity improvement of silicone rubber by interpenetrating polymer network formation in the proximal layer of polymer surface. J. Polym. Res. 2016, 23, 115.
    22. Jones, L.; Brennan, N.A.; González-Méijome, J.; Lally, J.; Maldonado-Codina, C.; Schmidt, T.A.; Subbaraman, L.; Young, G.; Nichols, J.J. The TFOS International Workshop on Contact Lens Discomfort: report of the contact lens materials, design, and care subcommittee. Invest. Ophthalmol. Vis. Sci. 2013, 54, TFOS37-TFOS70.
    23. Lin, C.-H.; Cho, H.-L.; Yeh, Y.-H.; Yang, M.-C. Improvement of the surface wettability of silicone hydrogel contact lenses via layer-by-layer self-assembly technique. Colloids Surf. B Biointerfaces 2015, 136, 735-743.
    24. Saini, A.; Rapuano, C.J.; Laibson, P.R.; Cohen, E.J.; Hammersmith, K.M. Episodes of microbial keratitis with therapeutic silicone hydrogel bandage soft contact lenses. Eye contact lens 2013, 39, 324-328.
    25. Szczotka-Flynn, L.; Jiang, Y.; Raghupathy, S.; Bielefeld, R.A.; Garvey, M.T.; Jacobs, M.R.; Kern, J.; Debanne, S.M. Corneal inflammatory events with daily silicone hydrogel lens wear. Optom. Vis. Sci. 2014, 91, 3-12.
    26. Lai, Y.C. Novel polyurethane–silicone hydrogels. J. Appl. Polym. Sci. 1995, 56, 301-310.
    27. Chekina, N.; Pavlyuchenko, V.; Danilichev, V.; Ushakov, N.; Novikov, S.; Ivanchev, S. A new polymeric silicone hydrogel for medical applications: synthesis and properties. Polym. Adv. Technol. 2006, 17, 872-877.
    28. Paterson, S.M.; Liu, L.; Brook, M.A.; Sheardown, H. Poly (ethylene glycol)‐or silicone‐modified hyaluronan for contact lens wetting agent applications. J. Biomed. Mater. Res. A 2015, 103, 2602-2610.
    29. Young, G.; Keir, N.; Hunt, C.; Woods, C.A. Clinical evaluation of long-term users of two contact lens care preservative systems. Eye contact lens 2009, 35, 50-58.
    30. Zhao, Z.-B.; An, S.-S.; Xie, H.-J.; Han, X.-L.; Wang, F.-H.; Jiang, Y. The relationship between the hydrophilicity and surface chemical composition microphase separation structure of multicomponent silicone hydrogels. J. Phys. Chem. B 2015, 119, 9780-9786.
    31. Jacob, J.T. Biocompatibility in the development of silicone-hydrogel lenses. Eye contact lens 2013, 39, 13-19.
    32. Silva, D.; Fernandes, A.; Nunes, T.; Colaço, R.; Serro, A. The effect of albumin and cholesterol on the biotribological behavior of hydrogels for contact lenses. Acta biomaterialia 2015, 26, 184-194.
    33. Lin, C.-H.; Yeh, Y.-H.; Lin, W.-C.; Yang, M.-C. Novel silicone hydrogel based on PDMS and PEGMA for contact lens application. Colloids Surf. B Biointerfaces 2014, 123, 986-994.
    34. Wang, J.J.; Li, X.S. Improved oxygen permeability and mechanical strength of silicone hydrogels with interpenetrating network structure. Chinese J. Polym. Sci. 2010, 28, 849-857.
    35. Nishimura, S. 2014. The investigation of the thermal effect of contact lens wear. Retrieved from https://www.allaboutvision.com/contacts/faq/when-invented.htm
    36. Caló, E.; Khutoryanskiy, V.V. Biomedical applications of hydrogels: A review of patents and commercial products. Eur. Polym. J. 2015, 65, 252-267.
    37. Bennett, E.S.; Weissman, B.A. (Eds.). 2005. Clinical contact lens practice. Lippincott Williams & Wilkins
    38. Morgan, P.B.; Woods, C.A.; Tranoudis, I.G.; Efron, N.; Jones, L.; etc. International Contact Lens Prescribing In 2018. Contact Lens Spectrum 2019, 34, 26-32.
    39. Nichols, J.J.; Fisher, D. Contact Lenses 2018. Contact Lens Spectrum 2019, 34, 18-23.
    40. Musgrave, C.S.A.; Fang, F. Contact lens materials: A materials science perspective. Materials 2019, 12, 261.
    41. Dabezies, O.H. (Eds.). 1984. Contact lenses: The CLAO guide to basic science and clinical practice. Grune and Stratton
    42. Bruce, A.; Brennan, N.; Lindsay, R. Diagnosis and mangement of ocular changes during contact lens wear, Part II. Clin. Signs Ophthalmol 1995, 17, 2-11.
    43. McMahon, T.T.; Zadnik, K. Twenty-five years of contact lenses: the impact on the cornea and ophthalmic practice. Cornea 2000, 19, 730-740.
    44. Vincent, S.J.; Alonso-Caneiro, D.; Collins, M.J. Corneal changes following short-term miniscleral contact lens wear. Contact Lens Anterio. 2014, 37, 461-468.
    45. Schifrin, L.G.; Rich, W.J. (Eds.). 1984. The contact lens industry: structure, competition, and public policy. DIANE Publishing
    46. Ahmed, E.M. Hydrogel: Preparation, characterization, and applications: A review. J. Adv. Res. 2015, 6, 105-121.
    47. Dergunov, S.A.; Mun, G.A. γ-irradiated chitosan-polyvinyl pyrrolidone hydrogels as pH-sensitive protein delivery system. Radiat. Phys. Chem. 2009, 78, 65-68.
    48. Efron, N.; Morgan, P.B.; Cameron, I.D.; Brennan, N.A.; Goodwin, M. Oxygen permeability and water content of silicone hydrogel contact lens materials. Optom. Vis. Sci. 2007, 84, E328-E337.
    49. Nicolson, P.C.; Vogt, J. Soft contact lens polymers: an evolution. Biomaterials 2001, 22, 3273-3283.
    50. Lai, Y.-C. The role of bulky polysiloxanylalkyl methacrylates in oxygen permeable hydrogel materials. Polym. Mater. Sci. Eng. 1993, 228-229.
    51. González-Méijome, J.M.; González-Pérez, J.; Fernandes, P.R.B.; Ferreira, D.P.L.; Mollá, S.; Compañ-Moreno, V. Silicone hydrogel materials for contact lens applications. Concise Encylopedia of High Performance Silicones 2014, 293-308.
    52. Efron, N. (Eds.). 2016. Contact Lens Practice E-Book. Elsevier Health Sciences
    53. Kastl, P. (Eds.). 1995. Contact Lenses: The CLAO Guide to Basic Science and Clinical Practice, Dubuque, IA: Kendall. Hunt Publishing Company
    54. Efron, N. (Eds.). 2012. Contact lens complications. Elsevier
    55. Fatt, I. New physiological paradigms to assess the effect of lens oxygen transmissibility on corneal health. CLAO J. 1996, 22, 25-29.
    56. French, K. Contact lens material properties. Part 3–Oxygen performance. Optician 2005, 230, 16-21.
    57. Efron, N. (Eds.). 2002. Contact lenses A-Z. Butterworth-Heinemann
    58. Morgan, P.B.; Efron, N. The oxygen performance of contemporary hydrogel contact lenses. Contact Lens Anterio. 1998, 21, 2-6.
    59. Korogiannaki, M.; Guidi, G.; Jones, L.; Sheardown, H. Timolol maleate release from hyaluronic acid-containing model silicone hydrogel contact lens materials. J. Biomater. Appl. 2015, 30, 361-376.
    60. Tighe, B.J. A decade of silicone hydrogel development: surface properties, mechanical properties, and ocular compatibility. Eye contact lens 2013, 39, 4-12.
    61. Yuan, Y.; Lee, T.R. (Eds.). 2013. Contact angle and wetting properties. Springer
    62. French, K. Contact lens material properties part 1: Wettability. Optician 2005, 230, 20-28.
    63. Jones, L.; Senchyna, M.; Glasier, M.-A.; Schickler, J.; Forbes, I.; Louie, D.; May, C. Lysozyme and lipid deposition on silicone hydrogel contact lens materials. Eye contact lens 2003, 29, S75-S79.
    64. Luensmann, D.; Jones, L. Albumin adsorption to contact lens materials: a review. Contact Lens Anterio. 2008, 31, 179-187.
    65. Garrett, Q.; Garrett, R.W.; Milthorpe, B.K. Lysozyme sorption in hydrogel contact lenses. Invest. Ophthalmol. Vis. Sci. 1999, 40, 897-903.
    66. Franklin, V.; Bright, A.; Pearce, E.; Tighe, B. Hydrogel lens spoilation Part 5: Tear proteins and proteinaceous films. Optician 1992, 204, 16-26.
    67. Garrett, Q.; Chatelier, R.C.; Griesser, H.J.; Milthorpe, B.K. Effect of charged groups on the adsorption and penetration of proteins onto and into carboxymethylated poly (HEMA) hydrogels. Biomaterials 1998, 19, 2175-2186.
    68. Steffen, R.; Schnider, C. A next-generation silicone hydrogel lens for daily wear. Optician Sutton 2004, 23-25.
    69. Zhao, Z.; Carnt, N.A.; Aliwarga, Y.; Wei, X.; Naduvilath, T.; Garrett, Q.; Korth, J.; Willcox, M.D. Care regimen and lens material influence on silicone hydrogel contact lens deposition. Optom. Vis. Sci. 2009, 86, 251-259.
    70. Jones, L.; Mann, A.; Evans, K.; Franklin, V.; Tighe, B. An in vivo comparison of the kinetics of protein and lipid deposition on group II and group IV frequent-replacement contact lenses. Optom. Vis. Sci. 2000, 77, 503-510.
    71. Jones, L.; Powell, C.H. Uptake and release phenomena in contact lens care by silicone hydrogel lenses. Eye contact lens 2013, 39, 29-36.
    72. Senchyna, M.; Jones, L.; Louie, D.; May, C.; Forbes, I.; Glasier, M.-A. Quantitative and conformational characterization of lysozyme deposited on balafilcon and etafilcon contact lens materials. Curr. Eye Res. 2004, 28, 25-36.
    73. Carnell, S.; Campbell, D.; Ross, G.; Tighe, B. Dehydration at the lens surface: Surface energy and surfactant persistence. 2011,
    74. Bhamra, T.S.; Tighe, B.J. Mechanical properties of contact lenses: The contribution of measurement techniques and clinical feedback to 50 years of materials development. Contact Lens Anterio. 2017, 40, 70-81.
    75. French, K. Contact lens material properties part 2: mechanical behaviour and modulus. Optician 2005, 230, 29-34.
    76. Dumbleton, K. Noninflammatory silicone hydrogel contact lens complications. Eye contact lens 2003, 29, S186-S189.
    77. Mullarney, M.P.; Seery, T.A.; Weiss, R. Drug diffusion in hydrophobically modified N, N-dimethylacrylamide hydrogels. Polymer 2006, 47, 3845-3855.
    78. Valdebenito, A.; Encinas, M.V. Effect of solvent on the free radical polymerization of N, N‐dimethylacrylamide. Polym. Int. 2010, 59, 1246-1251.
    79. Parambil, A.M.; Puttaiahgowda, Y.M.; Shankarappa, P. Copolymerization of N-Vinyl pyrrolidone with methyl methacrylate by Ti (III)-DMG redox initiator. Turk. J. Chem. 2012, 36, 397-409.
    80. Tranoudis, I.; Efron, N. Tensile properties of soft contact lens materials. Contact Lens Anterio. 2004, 27, 177-191.
    81. Abbasi, F.; Mirzadeh, H.; Katbab, A.A. Modification of polysiloxane polymers for biomedical applications: a review. Polym. Int. 2001, 50, 1279-1287.
    82. Abbasi, F.; Mirzadeh, H.; Simjoo, M. Hydrophilic interpenetrating polymer networks of poly (dimethyl siloxane)(PDMS) as biomaterial for cochlear implants. J. Biomater. Sci. Polym. Ed. 2006, 17, 341-355.
    83. Chen, D.; Chen, F.; Hu, X.; Zhang, H.; Yin, X.; Zhou, Y. Thermal stability, mechanical and optical properties of novel addition cured PDMS composites with nano-silica sol and MQ silicone resin. Compos. Sci. Technol. 2015, 117, 307-314.
    84. Mi, H.-Y.; Jing, X.; Huang, H.-X.; Turng, L.-S. Novel polydimethylsiloxane (PDMS) composites reinforced with three-dimensional continuous silica fibers. Mater. Lett. 2018, 210, 173-176.
    85. Rudy, A.; Kuliasha, C.; Uruena, J.; Rex, J.; Schulze, K.D.; Stewart, D.; Angelini, T.; Sawyer, W.; Perry, S.S. Lubricous hydrogel surface coatings on polydimethylsiloxane (PDMS). Tribol. Lett. 2017, 65, 3.
    86. Lin, C.-H.; Lin, W.-C.; Yang, M.-C. Fabrication and characterization of ophthalmically compatible hydrogels composed of poly (dimethyl siloxane-urethane)/Pluronic F127. Colloids Surf. B Biointerfaces 2009, 71, 36-44.
    87. Gezer, P.G.; Brodsky, S.; Hsiao, A.; Liu, G.L.; Kokini, J.L. Modification of the hydrophilic/hydrophobic characteristic of zein film surfaces by contact with oxygen plasma treated PDMS and oleic acid content. Colloids Surf. B Biointerfaces 2015, 135, 433-440.
    88. Lee, D.; Yang, S. Surface modification of PDMS by atmospheric-pressure plasma-enhanced chemical vapor deposition and analysis of long-lasting surface hydrophilicity. Sens. Actuators B Chem. 2012, 162, 425-434.
    89. Sui, G.; Wang, J.; Lee, C.-C.; Lu, W.; Lee, S.P.; Leyton, J.V.; Wu, A.M.; Tseng, H.-R. Solution-phase surface modification in intact poly (dimethylsiloxane) microfluidic channels. Analyt. Chem. 2006, 78, 5543-5551.
    90. Bhattacharya, S.; Datta, A.; Berg, J.M.; Gangopadhyay, S. Studies on surface wettability of poly (dimethyl) siloxane (PDMS) and glass under oxygen-plasma treatment and correlation with bond strength. J. Microelectromech. S. 2005, 14, 590-597.
    91. Tong, L.; Zhou, W.; Zhao, Y.; Yu, X.; Wang, H.; Chu, P.K. Enhanced cytocompatibility and reduced genotoxicity of polydimethylsiloxane modified by plasma immersion ion implantation. Colloids Surf. B Biointerfaces 2016, 148, 139-146.
    92. Yue, Z.; Liu, X.; Molino, P.J.; Wallace, G.G. Bio-functionalisation of polydimethylsiloxane with hyaluronic acid and hyaluronic acid–collagen conjugate for neural interfacing. Biomaterials 2011, 32, 4714-4724.
    93. Vickers, J.A.; Caulum, M.M.; Henry, C.S. Generation of hydrophilic poly (dimethylsiloxane) for high-performance microchip electrophoresis. Analyt. Chem. 2006, 78, 7446-7452.
    94. Song, M.; Kwon, Y. Synthesis and Properties of Siloxane-Containing Hybrid Hydrogels with α, ω-Functionalized Macromers. ‎J. Nanosci. Nanotechnol. 2011, 11, 4406-4413.
    95. Abbasi, F.; Mirzadeh, H. Properties of poly (dimethylsiloxane)/hydrogel multicomponent systems. J. Polym. Sci. B Polym. Phys. 2003, 41, 2145-2156.
    96. Bulla, D.; Morimoto, N. Deposition of thick TEOS PECVD silicon oxide layers for integrated optical waveguide applications. Thin Solid Films 1998, 334, 60-64.
    97. Flanigen, E.M.; Broach, R.; Wilson, S. (Eds.). 2010. Zeolites in industrial separation and catalysis.
    98. Rösch, L.; John, P.; Reitmeier, R. (Eds.). 2000. Silicon compounds, organic.
    99. Das, N. A review on nature and preparation of hydrogel based on starting material. Int. J. Pharm. Pharm. Sci. 2013, 5, 55-58.
    100. Maldonado-Codina; Carole; Efron, N. Hydrogel lenses - materials and manufacture. A review. Optometry in Practice 2003, 4, 101 - 115.
    101. Lai, Y.C.; Valint, J.; Paul, L. Control of properties in silicone hydrogels by using a pair of hydrophilic monomers. J. Appl. Polym. Sci. 1996, 61, 2051-2058.
    102. Wang, Y.; Tan, G.; Zhang, S.; Guang, Y. Influence of water states in hydrogels on the transmissibility and permeability of oxygen in contact lens materials. Appl. Surf. Sci. 2008, 255, 604-606.
    103. Pozuelo, J.; Compañ, V.; González-Méijome, J.M.; González, M.; Mollá, S. Oxygen and ionic transport in hydrogel and silicone-hydrogel contact lens materials: An experimental and theoretical study. J. Membr. Sci. 2014, 452, 62-72.
    104. Sun, D.; Zhou, J. Effect of water content on microstructures and oxygen permeation in PSiMA–IPN–PMPC hydrogel: a molecular simulation study. Chem. Eng. Sci. 2012, 78, 236-245.
    105. Tranoudis, I.; Efron, N. Water properties of soft contact lens materials. Contact Lens Anterio. 2004, 27, 193-208.
    106. Song, M.; Shin, Y.H.; Kwon, Y. Synthesis and properties of siloxane-containing hybrid hydrogels: optical transmittance, oxygen permeability and equilibrium water content. ‎J. Nanosci. Nanotechnol. 2010, 10, 6934-6938.
    107. Maldonado-Codina, C.; Morgan, P.B.; Efron, N.; Canry, J.C. Characterization of the surface of conventional hydrogel and silicone hydrogel contact lenses by time-of-flight secondary ion mass spectrometry. Optom. Vis. Sci. 2004, 81, 455-460.
    108. Read, M.L.; Morgan, P.B.; Maldonado‐Codina, C. Measurement errors related to contact angle analysis of hydrogel and silicone hydrogel contact lenses. ‎J. Biomed. Mater. Res. B 2009, 91, 662-668.
    109. Zhao, Z.B.; An, S.S.; Xie, H.J.; Han, X.L.; Wang, F.H.; Jiang, Y. The relationship between the hydrophilicity and surface chemical composition microphase separation structure of multicomponent silicone hydrogels. J. Phys. Chem. B 2015, 119, 9780-9786.
    110. Wang, J.; Li, X. Preparation and characterization of interpenetrating polymer network silicone hydrogels with high oxygen permeability. J. Appl. Polym. Sci. 2010, 116, 2749-2757.
    111. Green-Church, K.B.; Nichols, K.K.; Kleinholz, N.M.; Zhang, L.; Nichols, J.J. Investigation of the human tear film proteome using multiple proteomic approaches. Mol. Vis. 2008, 14, 456.
    112. Demirel, G.; Özçetin, G.; Turan, E.; Çaykara, T. pH/Temperature–Sensitive Imprinted Ionic Poly (N‐tert‐butylacrylamide‐co‐acrylamide/maleic acid) Hydrogels for Bovine Serum Albumin. Macromol. Biosci. 2005, 5, 1032-1037.
    113. Moradi, O.; Modarress, H.; Noroozi, M. Experimental study of albumin and lysozyme adsorption onto acrylic acid (AA) and 2-hydroxyethyl methacrylate (HEMA) surfaces. J. Colloid Interface Sci. 2004, 271, 16-19.
    114. Kim, J.; Somorjai, G.A. Molecular packing of lysozyme, fibrinogen, and bovine serum albumin on hydrophilic and hydrophobic surfaces studied by infrared− visible sum frequency generation and fluorescence microscopy. J. Am. Chem. Soc. 2003, 125, 3150-3158.
    115. Garrett, Q.; Laycock, B.; Garrett, R.W. Hydrogel lens monomer constituents modulate protein sorption. Invest. Ophthalmol. Vis. Sci. 2000, 41, 1687-1695.
    116. Luensmann, D.; Jones, L. Protein deposition on contact lenses: the past, the present, and the future. Contact Lens Anterio. 2012, 35, 53-64.
    117. Subbaraman, L.N.; Glasier, M.-A.; Senchyna, M.; Sheardown, H.; Jones, L. Kinetics of in vitro lysozyme deposition on silicone hydrogel, PMMA, and FDA groups I, II, and IV contact lens materials. Curr. Eye Res. 2006, 31, 787-796.
    118. De, G.; Karmakar, B.; Ganguli, D. Hydrolysis–condensation reactions of TEOS in the presence of acetic acid leading to the generation of glass-like silica microspheres in solution at room temperature. ‎J. Mater. Chem. 2000, 10, 2289-2293.
    119. Van Beek, M.; Weeks, A.; Jones, L.; Sheardown, H. Immobilized hyaluronic acid containing model silicone hydrogels reduce protein adsorption. J. Biomater. Sci. Polym. Ed. 2008, 19, 1425-1436.
    120. Gavara, R.; Compañ, V. Oxygen, water, and sodium chloride transport in soft contact lenses materials. ‎J. Biomed. Mater. Res. B 2017, 105, 2218-2231.
    121. Maldonado-Codina, C.; Morgan, P.B.; Efron, N.; Canry, J.-C. Characterization of the surface of conventional hydrogel and silicone hydrogel contact lenses by time-of-flight secondary ion mass spectrometry. Optom. Vis. Sci. 2004, 81, 455-460.
    122. Duench, S.; Sorbara, L.; Keir, N.; Simpson, T.; Jones, L. Impact of silicone hydrogel lenses and solutions on corneal epithelial permeability. Optom. Vis. Sci. 2013, 90, 546-556.
    123. Lord, M.S.; Stenzel, M.H.; Simmons, A.; Milthorpe, B.K. The effect of charged groups on protein interactions with poly (HEMA) hydrogels. Biomaterials 2006, 27, 567-575.
    124. Carney, F.P.; Nash, W.L.; Sentell, K.B. The adsorption of major tear film lipids in vitro to various silicone hydrogels over time. Invest. Ophthalmol. Vis. Sci. 2008, 49, 120-124.

    無法下載圖示 全文公開日期 2023/08/12 (校內網路)
    全文公開日期 2029/08/12 (校外網路)
    全文公開日期 2024/08/12 (國家圖書館:臺灣博碩士論文系統)
    QR CODE