簡易檢索 / 詳目顯示

研究生: 洪珮真
Pei-Zhen Hong
論文名稱: 活性黃86抗藍光矽水膠隱形眼鏡的製備與分析
Preparation and analysis of blue-light blocking silicone hydrogel contact lenses using reactive yellow 86 dye
指導教授: 楊銘乾
Ming-Chien Yang
口試委員: 鄭詠馨
Yung-Hsin Cheng
劉定宇
Ting-Yu Liu
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 91
中文關鍵詞: 矽水膠PDMS-diolNVPReactive yellow 86活性染料抗藍光
外文關鍵詞: silicone hydrogel, PDMS-diol, NVP, Reactive yellow 86, reactive dye, blue-light blocking
相關次數: 點閱:299下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著3C產品日益發展,許多研究顯示過量的藍光會對角膜、晶狀體和視網膜造成不同程度的損傷,因此,如何抵擋藍光成為現今重要的議題,為了減少藍光對人體傷害,抗藍光產品越來越受到重視。本研究以端羥基聚二甲基矽氧烷(Hydroxyl-terminated polydimethylsiloxane, PDMS-diol)作為基材,與異佛爾酮二異氰酸酯(Isophorone diisoctanate, IPDI)以及聚乙二醇甲基丙烯酸酯(polyethylene glycol methacrylate, PEGMA)進行聚合反應,合成PDMS-PU macromer,加入N-乙烯基-2-吡咯烷酮(N-Vinylpyrrolidone, NVP)親水性單體形成矽水膠共聚物,再藉由紫外光硬化處理形成三維網狀結構之矽水膠共聚物。所得之矽水膠樣品,再以不同濃度之Reactive yellow 86 (RY86)水溶液,經由表面染色法來達到抗藍光效果,並探討具有不同含量之RY86矽水膠樣品其物性分析與生物相容性測試。結果顯示,隨著RY86含量增加其抗藍光效果也隨之增加,全段藍光波段(380-500nm)之穿透率下降約42%,部分藍光波段(415-455nm)之穿透率下降約60%,具有良好的抗藍光效果。研究結果顯示,RY86矽水膠具有良好的生物相容性與生物細胞無毒性,同時具有良好的透氧性以及親水性,未來對於功能性隱形眼鏡材料具有良好發展與應用。


    In this study, hydroxyl-terminated polydimethylsiloxane (PDMS-diol) was used as the base material, reacted with isophorone diisocyanate (IPDI) and polyethylene glycol methacrylate (PEGMA) to synthesize PDMS-PU macromer, and then add N-vinyl-2-pyrrolidone (NVP) to form a silicone hydrogel copolymer. After curing with ultraviolet light, the silicone hydrogel copolymer forms a three-dimensional network. The resultant silicone hydrogels were then dyed with reactive yellow 86 (RY86) to block blue light. The physical properties and the biocompatibilities of these RY86-dyed silicone hydrogels were investigated. According to the result of UV-Vis spectrophotometer analysis, it was confirmed that as the content of the blue light absorbers increases, the blocking strength against blue light also increases. The transmittance in the blue light wavelength region between 380 and 500nm is reduced by about 42%. In addition, the transmittance in the blue light wavelength region between 415 and 455nm is reduced by about 60%. It shows that the sample has good anti-blue light effect. The results show that RY86 can confer silicone hydrogel with suitable biocompatibility and non-cytotoxicity without reducing oxygen permeability and hydrophilicity. Therefore, this approach would be applicable for functional contact lenses.

    摘要 I Abstract II 誌謝 III 目錄 IV 圖索引 VII 表索引 IX 第一章 緒論 1 1.1 研究背景 1 1.2 研究目的 3 第貳章 文獻回顧 4 2.1 隱形眼鏡發展與歷史 4 2.2 單體(Monomers) 5 2.2.1 嵌段共聚物(Block copolymers) 6 2.2.2 互穿型網狀高分子結構(Interpenetrating Network Polymer) 6 2.3 自由基聚合反應 7 2.3.1 起始劑(initiator) 7 2.3.2 交聯劑(Crosslinker) 7 2.4 硬式隱形眼鏡(hard contact lens) 8 2.4.1 含氟硬式隱形眼鏡 8 2.4.2 醋酸丁酸纖維素(Cellulose Acetate Butyrate) 8 2.4.3 含矽硬式隱形眼鏡 8 2.5 軟性隱形眼鏡(soft contact lens) 9 2.5.1 MPC水膠 9 2.5.2 奈米銀水膠(silver nanoparticles, SNP) 10 2.5.3 透明質酸水膠 10 2.5.4 PVA水膠 11 2.6 矽水膠隱形眼鏡(Silicone contact lens) 12 2.6.1 聚胺酯高分子材料 12 2.6.2 含水量與透氧量關係 13 2.6.3 矽水膠表面處理 13 2.7 藍光對眼睛的危害 14 2.7.1 藍光對角膜的影響 14 2.7.2 藍光對晶狀體的影響 15 2.7.3 藍光對視網膜的影響 15 2.8 抗藍光隱形眼鏡 16 2.8.1 吸收式 16 2.8.2 反射式 16 2.9 Hydroxyl-terminated polydimethylsiloxane PDMS-diol 18 2.10 Isophorone diisocyanate IPDI 19 2.11 Poly(ethylene glycol) methacrylate PEGMA 20 2.12 N-Vinyl-2-pyrrolidinone NVP 21 2.13 Reactive yellow 86 22 第參章 實驗材料與方法 23 3.1 實驗材料 23 3.2 實驗設備 25 3.3 實驗流程圖 27 3.4 實驗原理與方法 28 3.4.1 實驗原理 28 3.4.2 實驗方法 29 3.4.3 配方表 30 3.5 物性分析 31 3.5.1 傅立葉紅外線光譜分析(Fourier transform infrared spectroscopy, FT-IR) 31 3.5.2 Reactive yellow 86接枝量 32 3.5.3 可見光透光率測定(Transmittance) 33 3.5.4 加速老化試驗(Accelerated Aging test) 34 3.5.5 平衡含水量測定(Equilibrium water content) 36 3.5.6 透氧係數測定(Oxygen permeability) 37 3.5.7 界達電位 (zeta potential) 38 3.5.8 拉伸試驗 (Tensile test) 39 3.5.9 接觸角測試 (Contact angle measurement) 40 3.6 生物相容性試驗 (Biocompatibility) 41 3.6.1 蛋白質吸附 (Protein adsorption) 41 3.6.2 細胞培養 (Cell culture) 43 3.6.3 細胞存活率分析 (MTT Assay) 44 3.6.4 細胞毒性試驗 (In-vitro cytotoxicity) 46 第肆章 結果與討論 49 4.1 傅立葉紅外線光譜測定 49 4.2 Reactive Yellow 86接枝量 51 4.3 可見光透光率測定 52 4.4 加速老化試驗 55 4.5 平衡含水量測定 57 4.6 透氧係數測定 60 4.7 界達電位測定 62 4.8 拉伸試驗 64 4.9 接觸角測試 65 4.10 蛋白質吸附 67 4.11 細胞相容性 68 第伍章 結論 71 參考文獻 73

    [1] Zheng, Q., Ren, Y., Reinach, P. S., Xiao, B., Lu, H., Zhu, Y., & Chen, W., Reactive oxygen species activated NLRP3 inflammasomes initiate inflammation in hyperosmolarity stressed human corneal epithelial cells and environment-induced dry eye patients, Experimental eye research, vol. 134, pp. 133-140, 2015
    [2] Lee, H. S., Cui, L., Li, Y., Choi, J. S., Choi, J. H., Li, Z., & Yoon, K. C., Influence of light emitting diode-derived blue light overexposure on mouse ocular surface, PLoS One, vol. 11, no. 8, e0161041, 2016
    [3] Zhao, Z. C., Zhou, Y., Tan, G., & Li, J., Research progress about the effect and prevention of blue light on eyes, International journal of ophthalmology, vol. 11, no. 12, pp. 1999-2003, 2018
    [4] Key, J. E., Development of contact lenses and their worldwide use, Eye & contact lens, vol. 33, pp. 343-345, 2007
    [5] Pearson, R. M., Karl Otto Himmler, manufacturer of the first contact lens, Contact Lens and Anterior Eye, vol. 30, no. 1, pp. 11-16, 2007
    [6] Bhamra, T. S., & Tighe, B. J., Mechanical properties of contact lenses: The contribution of measurement techniques and clinical feedback to 50 years of materials development, Contact Lens and Anterior Eye, vol. 40, no. 2, pp. 70-81, 2017
    [7] Wichterle, O., & Lìm, D., Hydrophilic gels for biological use, Nature, vol. 185, pp. 117-118, 1960
    [8] Begley, C. G., Caffery, B., Nichols, K. K., & Chalmers, R., Responses of contact lens wearers to a dry eye survey, Optometry and Vision Science, vol. 77, no. 1, pp. 40-46, 2000
    [9] Bes, L., Huan, K., Khoshdel, E., Lowe, M. J., McConville, C. F., & Haddleton, D. M., Poly (methylmethacrylate-dimethylsiloxane) triblock copolymers synthesized by transition metal mediated living radical polymerization: bulk and surface characterization, European polymer journal, vol. 39, no. 1, pp. 5-13, 2003
    [10] Friends, G. D., Kunzler, J. F., & Ozark, R. M., Recent advances in the design of polymers for contact lenses, In Macromolecular Symposia, vol. 98, no. 1, pp. 619-631, 1995
    [11] Yang, M. C., & Tran-Nguyen, P. L., Evaluation of silicone hydrogel contact lenses based on poly (dimethylsiloxane) dialkanol and hydrophilic polymers, Colloids and Surfaces B: Biointerfaces, vol. 206, pp. 111957, 2021
    [12] Tran, N. P. D., & Yang, M. C., Synthesis and characterization of silicone contact lenses based on TRIS-DMA-NVP-HEMA hydrogels, Polymers, vol. 11, no. 6, pp. 944, 2019
    [13] Luensmann, D., & Jones, L., Protein deposition on contact lenses: the past, the present, and the future, Contact Lens and Anterior Eye, vol. 35, no. 2, pp. 53-64, 2012
    [14] Husain, M. S. B., Gupta, A., Alashwal, B. Y., & Sharma, S., Synthesis of PVA/PVP based hydrogel for biomedical applications: a review, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, vol. 40, no. 20, pp. 2388-2393, 2018
    [15] Tranoudis, I., & Efron, N., In-eye performance of soft contact lenses made from different materials, Contact Lens and Anterior Eye, vol. 27, no. 3, pp. 133-148, 2004
    [16] Geraths, C., & Schäfer, R., Polymer materials for contact lens applications, US Patent 11 008 414, May. 18, 2021
    [17] Myung, D., Noolandl, J., Ta, C., & Frank, C. W., Interpenetrating polymer network hydrogel contact lenses, US Patent 7 857 447, Dec. 28, 2010
    [18] Pan, X., Tasdelen, M. A., Laun, J., Junkers, T., Yagci, Y., & Matyjaszewski, K., Photomediated controlled radical polymerization, Progress in Polymer Science, vol. 62, pp. 73-125, 2016
    [19] Musgrave, C. S. A., & Fang, F., Contact lens materials: a materials science perspective, Materials, vol. 12, no. 2, pp. 261, 2019
    [20] Czerner, M., Fasce, L. A., Martucci, J. F., Ruseckaite, R., & Frontini, P. M., Deformation and fracture behavior of physical gelatin gel systems, Food Hydrocolloids, vol. 60, pp. 299-307, 2016
    [21] Yokoyama, F., Masada, I., Shimamura, K., Ikawa, T., & Monobe, K., Morphology and structure of highly elastic poly (vinyl alcohol) hydrogel prepared by repeated freezing-and-melting, Colloid and Polymer Science, vol. 264, pp. 595-601, 1986
    [22] Stone, J., Changes in curvature of celluloseacetate butyrate lenses during hydration and dehydration, Journal of The British Contact Lens Association, vol. 1, no. 1, pp. 22-35, 1978.
    [23] Yang, W. H., Smolen, V. F., & Peppas, N. A., Oxygen permeability coefficients of polymers for hard and soft contact lens applications, Journal of Membrane Science, vol. 9, no. 1-2, pp. 53-67, 1981
    [24] Tranoudis, I., & Efron, N., In-eye performance of soft contact lenses made from different materials, Contact Lens and Anterior Eye, vol. 27, no. 3, pp. 133-148, 2004
    [25] Shimizu, T., Goda, T., Minoura, N., Takai, M., & Ishihara, K., Super-hydrophilic silicone hydrogels with interpenetrating poly (2-methacryloyloxyethyl phosphorylcholine) networks, Biomaterials, vol. 31, no. 12, pp. 3274-3280, 2010
    [26] Ravindran, A., Chandran, P., & Khan, S. S., Biofunctionalized silver nanoparticles: advances and prospects, Colloids and Surfaces B: Biointerfaces, vol. 105, pp. 342-352, 2013
    [27] Ravindran, A., Chandran, P., & Khan, S. S., Biofunctionalized silver nanoparticles: advances and prospects, Colloids and Surfaces B: Biointerfaces, vol. 105, pp. 342-352, 2013
    [28] Shayani Rad, M., Khameneh, B., Sabeti, Z., Mohajeri, S. A., & Fazly Bazzaz, B. S., Antibacterial activity of silver nanoparticle-loaded soft contact lens materials: the effect of monomer composition, Current Eye Research, vol. 41, no. 10, pp. 1286-1293, 2016
    [29] Necas, J. B. L. B. P., Bartosikova, L., Brauner, P., & Kolar, J. J. V. M., Hyaluronic acid (hyaluronan): a review, Veterinarni medicina, vol. 53, no. 8, pp. 397-411. 2008
    [30] Fallacara, A., Baldini, E., Manfredini, S., & Vertuani, S., Hyaluronic acid in the third millennium, Polymers, vol. 10, no. 7, pp. 701, 2018
    [31] Wygladacz, K. A., & Hook, D. J., Visualization of a hyaluronan network on the surface of silicone-hydrogel materials, Clinical Ophthalmology, vol. 10, pp. 1423-1433, 2016.
    [32] Singh, A., Li, P., Beachley, V., McDonnell, P., & Elisseeff, J. H., A hyaluronic acid-binding contact lens with enhanced water retention, Contact Lens and Anterior Eye, vol. 38, no. 2, pp. 79-84, 2015
    [33] Chang, W. H., Liu, P. Y., Lin, M. H., Lu, C. J., Chou, H. Y., Nian, C. Y., & Hsu, Y. H. H., Applications of hyaluronic acid in ophthalmology and contact lenses, Molecules, vol. 26, no. 9, pp. 2485, 2021
    [34] Weeks, A., Boone, A., Luensmann, D., Jones, L., & Sheardown, H., The effects of hyaluronic acid incorporated as a wetting agent on lysozyme denaturation in model contact lens materials, Journal of biomaterials applications, vol. 28, no. 3, pp. 323-333, 2013
    [35] Korogiannaki, M., Zhang, J., & Sheardown, H., Surface modification of model hydrogel contact lenses with hyaluronic acid via thiol-ene “click” chemistry for enhancing surface characteristics, Journal of biomaterials applications, vol. 32, no. 4, pp. 446-462, 2017
    [36] Xiong, D. S., Synthesis and properties of physically crosslinked poly(vinyl alcohol) hydrogels, Journal of China University of Mining and Technology, vol. 18, no. 2, pp. 271-274, 2008
    [37] Gupta, S., Sinha, S., & Sinha, A., Composition dependent mechanical response of transparent poly (vinyl alcohol) hydrogels, Colloids and Surfaces B: Biointerfaces, vol. 78, no. 1, pp. 115-119, 2010
    [38] Jones, L., Brennan, N. A., González-Méijome, J., Lally, J., Maldonado-Codina, C., Schmidt, T. A., ... & Nichols, J. J., The TFOS International Workshop on Contact Lens Discomfort: report of the contact lens materials, design, and care subcommittee, Investigative ophthalmology & visual science, vol. 54, no. 11, pp. 37-70, 2013
    [39] Xu J., Xue Y., Hu G., Lin T., Gou J., Yin T., He H., Zhang Y., & Tang X.A., A comprehensive review on contact lens for ophthalmic drug delivery, Journal of Controlled Release, vol. 281, pp. 97-118, 2018
    [40] Ghoreishi, S. G., Abbasi, F., & Jalili, K., Hydrophilicity improvement of silicone rubber by interpenetrating polymer network formation in the proximal layer of polymer surfac, Journal of Polymer Research, vol. 23, pp. 1-8, 2016
    [41] Janssen, P. T., & Van Bijsterveld, O. P., Origin and biosynthesis of human tear fluid proteins, Investigative ophthalmology & visual science, vol. 24, no. 5, pp. 623-630, 1983
    [42] Mueller, K. F., Heiber, S. J., & Plankl, W. L., silicone containing polymers with high oxygen permeability, US Patent 4 486 577, Dec. 04, 1984
    [43] Shimamura, Y., & Matsuoka, Y., Polyoxyethylene compound having multiple hydroxyl groups at end, and contact lens, US Patent 10 941 311, Mar. 09, 2021
    [44] Das, A., & Mahanwar, P., A brief discussion on advances in polyurethane applications, Advanced Industrial and Engineering Polymer Research, vol. 3, no. 3, pp. 93-101, 2020
    [45] Efron, N., Morgan, P. B., Cameron, I. D., Brennan, N. A., & Goodwin, M., Oxygen permeability and water content of silicone hydrogel contact lens materials, Optometry and Vision Science, vol. 84, no. 4, pp. 328-337, 2007
    [46] Liston, E. M., Martinu, L., & Wertheimer, M. R., Plasma surface modification of polymers for improved adhesion: a critical review, Journal of adhesion science and technology, vol. 7, no. 10, pp. 1091-1127, 1993.
    [47] Ikada, Y., Surface modification of polymers for medical applications, Biomaterials, vol. 15, no. 10, pp. 725-736, 1994
    [48] Bi, W. M., & Sun, K., Light-induced retinal damage and potential benefits and side effects of blue light-filtering intraocular lens, Recent Advances in Ophthalmology, vol. 34, no. 3, pp. 289-293, 2014
    [49] Ham Jr, W. T., Mueller, H. A., & Sliney, D. H., Retinal sensitivity to damage from short wavelength light, Nature, vol. 260, pp.153-155, 1976
    [50] Ouyang, X. I. N. L. I., Yang, J., Hong, Z., Wu, Y., Xie, Y., & Wang, G., Mechanisms of blue light-induced eye hazard and protective measures: a review, Biomedicine & Pharmacotherapy, vol. 130, pp. 110577, 2020
    [51] Ham, W. T., Ruffolo, J. J., Mueller, H. A., Clarke, A. M., & Moon, M. E., Histologic analysis of photochemical lesions produced in rhesus retina by short-wave-length light, Investigative ophthalmology & visual science, vol. 17, no. 10, pp. 1029-1035, 1978
    [52] Marie, M., Bigot, K., Angebault, C., Barrau, C., Gondouin, P., Pagan, D., & Picaud, S., Light action spectrum on oxidative stress and mitochondrial damage in A2E-loaded retinal pigment epithelium cells, Cell death & disease, vol. 9, no. 3, pp. 287-302, 2018
    [53] Lamb, L. E., & Simon, J. D., A2E: A Component of Ocular Lipofuscin, Photochemistry and photobiology, vol. 79, no. 2, pp. 127-136, 2004
    [54] Zheng, Q., Ren, Y., Reinach, P. S., Xiao, B., Lu, H., Zhu, Y., & Chen, W., Reactive oxygen species activated NLRP3 inflammasomes initiate inflammation in hyperosmolarity stressed human corneal epithelial cells and environment-induced dry eye patients, Experimental eye research, vol. 134, pp. 133-140, 2015
    [55] Lee, H. S., Cui, L., Li, Y., Choi, J. S., Choi, J. H., Li, Z., & Yoon, K. C., Influence of light emitting diode-derived blue light overexposure on mouse ocular surface, PLoS One, vol. 11, no. 8, e0161041, 2016
    [56] Choi, W., Lee, J. B., Cui, L., Li, Y., Li, Z., Choi, J. S., & Yoon, K. C., Therapeutic efficacy of topically applied antioxidant medicinal plant extracts in a mouse model of experimental dry eye, Oxidative medicine and cellular longevity, vol. 10, pp.1-10, 2016
    [57] Lee, J. B., Kim, S. H., Lee, S. C., Kim, H. G., Ahn, H. G., Li, Z., & Yoon, K. C., Blue light–induced oxidative stress in human corneal epithelial cells: protective effects of ethanol extracts of various medicinal plant mixtures, Investigative ophthalmology & visual science, vol. 55, no. 7, pp. 4119-4127, 2014
    [58] Resnikoff, S., Pascolini, D., Etya'ale, D., Kocur, I., Pararajasegaram, R., Pokharel, G. P., & Mariotti, S. P., Global data on visual impairment in the year 2002, Bulletin of the world health organization, vol. 82, no. 11, pp. 844-851, 2004
    [59] Xue, L., Bo, Y. U., & Hong, X., The establishment of a rat model for experimental retinal photic injury and observation of pathological changes in the retina, Chinese Journal of Optometry & Ophthalmology, vol. 5, no. 1, pp. 29-32, 2003
    [60] Xie, C., Li, X., Tong, J., Gu, Y., & Shen, Y., Effects of white light‐emitting diode (LED) light exposure with different Correlated Color Temperatures (CCT s) on human lens epithelial cells in culture, Photochemistry and Photobiology, vol. 90, no. 4, pp. 853-859, 2014
    [61] Babizhayev, M. A., Mitochondria induce oxidative stress, generation of reactive oxygen species and redox state unbalance of the eye lens leading to human cataract formation: disruption of redox lens organization by phospholipid hydroperoxides as a common basis for cataract disease, Cell Biochemistry and Function, vol. 29, no. 3, pp. 183-206, 2011.
    [62] Bai, J., Yang, F., Dong, L., & Zheng, Y., Ghrelin protects human lens epithelial cells against oxidative stress-induced damage, Oxidative Medicine and Cellular Longevity, vol.10 pp.1-2, 2017
    [63] Narimatsu, T., Negishi, K., Miyake, S., Hirasawa, M., Osada, H., Kurihara, T., Tsubota, K., & Ozawa, Y., Blue light-induced inflammatory marker expression in the retinal pigment epithelium-choroid of mice and the protective effect of a yellow intraocular lens material in vivo, Experimental eye research, vol. 132, pp. 48-55, 2015
    [64] Li, J. Y., Zhang, K., Xu, D., Zhou, W. T., Fang, W. Q., Wan, Y. Y., & Han, X. J., Mitochondrial fission is required for blue light-induced apoptosis and mitophagy in retinal neuronal R28 cells, Frontiers in Molecular Neuroscience, vol. 11, pp. 432, 2018
    [65] Sparrow, J. R., Zhou, J., & Cai, B., DNA is a target of the photodynamic effects elicited in A2E-laden RPE by blue-light illumination, Investigative ophthalmology & visual science, vol. 44, no. 5, pp. 2245-2251, 2003
    [66] Chen, P., Lai, Z., Wu, Y., Xu, L., Cai, X., Qiu, J., & Zhuang, J., Retinal neuron is more sensitive to blue light-induced damage than glia cell due to DNA double-strand breaks, Cells, vol. 8, no. 1, p. 68, 2019
    [67] Zhao, Z. C., Zhou, Y., Tan, G., & Li, J., Research progress about the effect and prevention of blue light on eyes, International journal of ophthalmology, vol. 11, no. 12, pp. 1999-2003, 2018
    [68] Ryu, G. C., Lee, C. W., & Seo, E. S., Synthesizing of Blue-light Blocking Polymeric Materials and Manufacturing Contact Lenses, The Korean Journal of Vision Science, vol. 22, no. 4, pp. 419-424, 2020
    [69] Sekar, P., Dixon, P. J., & Chauhan, A., Pigmented contact lenses for managing ocular disorders, International Journal of Pharmaceutics, vol. 555, pp. 184-197, 2019
    [70] Lai, C. F., Li, J. S., Fang, Y. T., Chien, C. J., & Lee, C. H., UV and blue-light anti-reflective structurally colored contact lenses based on a copolymer hydrogel with amorphous array nanostructures, RSC advances, vol 8, no. 8, pp. 4006-4013, 2018
    [71] Ghoreishi, S. G., Abbasi, F., & Jalili, K., Hydrophilicity improvement of silicone rubber by interpenetrating polymer network formation in the proximal layer of polymer surface, Journal of Polymer Research, vol. 23, pp.1-8, 2016
    [72] Abbasi, F., Mirzadeh, H., & Simjoo, M., Hydrophilic interpenetrating polymer networks of poly (dimethyl siloxane) (PDMS) as biomaterial for cochlear implants, Journal of Biomaterials Science, Polymer Edition, vol. 17, no. 3, pp. 341-355, 2006
    [73] Rudy, A., Kuliasha, C., Uruena, J., Rex, J., Schulze, K. D., Stewart, D., & Perry, S. S., Lubricous hydrogel surface coatings on polydimethylsiloxane (PDMS), Tribology Letters, vol. 65, pp.1-11, 2017
    [74] Maldonado-Codina, C., & Efron, N., Hydrogel lenses-Materials and manufacture: A review, Optometry in Practice, vol. 4, no. 2, pp. 101-113, 2003.
    [75] Chen, J. S., Liu, T. Y., Tsou, H. M., Ting, Y. S., Tseng, Y. Q., & Wang, C. H., Biopolymer brushes grown on PDMS contact lenses by in situ atmospheric plasma-induced polymerization, Journal of Polymer Research, vol. 24, pp. 1-9, 2017
    [76] Jones, L., Senchyna, M., Glasier, M. A., Schickler, J., Forbes, I., Louie, D., & May, C., Lysozyme and lipid deposition on silicone hydrogel contact lens materials, Eye & contact lens, vol. 29, no.1, pp. 75-79, 2003
    [77] Venault, A., Liu, Y. H., Wu, J. R., Yang, H. S., Chang, Y., Lai, J. Y., & Aimar, P., Low-biofouling membranes prepared by liquid-induced phase separation of the PVDF/polystyrene-b-poly (ethylene glycol) methacrylate blend, Journal of Membrane Science, vol. 450, pp. 340-350, 2014
    [78] Lin, C. H., Yeh, Y. H., Lin, W. C., & Yang, M. C., Novel silicone hydrogel based on PDMS and PEGMA for contact lens application, Colloids and Surfaces B: Biointerfaces, vol. 123, pp. 986-994, 2014
    [79] Lewis, D. M., Developments in the chemistry of reactive dyes and their application processes, Coloration Technology, vol. 130, no. 6, pp. 382-412, 2014
    [80] Miranda, M. A., Ghosh, A., Mahmodi, G., Xie, S., Shaw, M., Kim, S., & Aichele, C. P., Treatment and Recovery of High-Value Elements from Produced Water. Water, vol. 14, no. 6, pp. 880, 2022

    QR CODE