簡易檢索 / 詳目顯示

研究生: Dinh Thi My Huong
Dinh Thi My Huong
論文名稱: 固定在醋酸纖維素和纖維素為基材的奈米纖維膜上的聚六亞甲基雙胍的抗菌活性研究:使用和不使用反應性綠 19 染料作為偶聯劑
A study on the antibacterial activity of poly(hexamethylene biguanide) immobilized on cellulose acetate and cellulose-based nanofiber membranes: With and without reactive green 19 dye as a coupling reagent
指導教授: 蔡伸隆
Shen-Long Tsai
張煜光
Yu-Kaung Chang
口試委員: 張煜光
Yu-Kaung Chang
王勝仕
Sheng-Shih Wang
藍祺偉
Chi-Wei Lan
李振綱
Cheng-Kang Lee
蔡伸隆
Shen-Long Tsai
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 112
語文別: 英文
論文頁數: 126
中文關鍵詞: 奈米纖維膜醋酸纖維素再生纖維素聚六亞甲基雙胍抗菌活性大腸桿菌反應性 染料
外文關鍵詞: Nanofiber membrane, Cellulose acetate, Regenerated cellulose, Poly(hexamethylene biguanide), Antibacterial activity, E.coli, Reactive dye
相關次數: 點閱:340下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 廣泛研究了固定聚六亞甲基雙胍(PHMB)未染色/染色醋酸纖維素及纖維素奈米纖維膜的抗菌性能。 這項研究使用靜電紡絲生產醋酸纖維素 (CA) 奈米纖維膜,在鹼性溶液中水解形成 再生纖維素(RC) 奈米纖維膜。 然後將兩種類型的奈米纖維膜與 PHMB 固定以生產 CA-PHMB 和 RC-PHMB 奈米纖維膜。 結果表明,固定PHMB使奈米纖維膜的抗菌功效(AE,%)從CA-PHMB奈米纖維膜的65.67%增加到86.13%,將RC-PHMB奈米纖維膜從35.09%增加到100%。 根據化學和物理特性,抗菌功效受到 CA 奈米纖維去乙醯化、表面電荷和 PHMB 密度的顯著影響。 RC-PHMB 奈米纖維膜在大腸桿菌作用 10 分鐘後表現出 100% AE。 此外,即使在儲存20天後,RC-PHMB奈米纖維膜的AE仍保持在100%左右,證明了固定在RC奈米纖維膜上的PHMB的穩定性。
    染色抗菌膜 CA-RG19-PHMB 和 RC-RG19-PHMB 奈米纖維膜是透過反應性綠 19 染料 (RG19) 處理 CA 和 RC 奈米纖維膜,然後用 PHMB 固定它們來增強抗菌活性而製成的。CA-RG19-PHMB 奈米纖維膜在 5 mg/ml RG19處理3小時,0.004 (mg/ml) PHMB處理15分鐘,僅在 10 分鐘左右對大腸桿菌達100% AE。 RC-RG19-PHMB奈米纖維膜在1 mg/ml RG19處理3小時和0.003 (mg/ml) PHMB處理15分鐘,在2小時左右對大腸桿菌達100% AE 。 儲存 60 天後,兩種膜均保留 100% AE,並在五個測試週期後顯示相似的結果。 這些發現顯示CA-RG19-PHMB和RC-RG19-PHMB奈米纖維膜是有效且耐用的抗菌材料,適合各種應用。 總之,這些結果表明,新型RC-PHMB奈米纖維膜作為抗菌材料在生物醫學應用、食品包裝產業以及水過濾或處理方面具有廣闊的前景。


    The antibacterial properties of undyed/dyed cellulose acetate/cellulose nanofiber membranes immobilized with poly(hexamethylene biguanide) were extensively studied. This study used electrospinning to produce cellulose acetate (CA) nanofiber membranes hydrolyzed in an alkaline solution to create regenerated cellulose (RC) nanofiber membranes. Both nanofiber membranes were immobilized with PHMB to produce CA-PHMB and RC-PHMB nanofiber membranes. Results revealed that immobilizing PHMB increased the antibacterial efficacy (AE, %) of the nanofiber membranes from 65.67% to 86.13% for CA-PHMB nanofiber membranes and from 35.09% to 100% for RC-PHMB nanofiber membranes. Antibacterial efficacy was significantly influenced by CA nanofiber deacetylation, surface charge, and PHMB density based on chemical and physical properties. RC-PHMB nanofiber membrane demonstrated 100% AE after 10 min with E. coli.
    Furthermore, the AE of the RC-PHMB nanofiber membrane remained around 100% even after 20 days of storage, demonstrating the stability of PHMB immobilized on the RC nanofiber membrane. Colored antibacterial membranes, CA-RG19-PHMB and RC-RG19-PHMB nanofiber membranes, were created by treating CA and RC nanofiber membranes with reactive green 19 dye (RG19) before immobilizing them with PHMB to enhance antibacterial activity. CA-RG19-PHMB nanofiber membrane, treated with 5 mg/ml RG19 for 3 h and 0.004 (mg/ml) PHMB for 15 min, achieving 100% AE against E. coli in only 10 min. RC-RG19-PHMB nanofiber membrane, treated with 1 mg/ml RG19 for 3 h and 0.003 (mg/ml) PHMB for 15 min, achieving 100% AE against E. coli in 2 h. After 60 days of storage, both membranes retained 100% AE and displayed similar results after five testing cycles. These findings indicate that CA-RG19-PHMB and RC-RG19-PHMB nanofiber membranes are effective and durable antibacterial materials suitable for various applications. In conclusion, these findings suggest that the novel RC-PHMB nanofiber membranes hold great promise as antibacterial materials for biomedical applications, the food packaging industry, and water filtration or treatment.

    Chapter 1 INTRODUCTION 1 1.1. Background 1 1.2. Aim and objectives of the study 3 CHAPTER 2 LITERATURE REVIEWS 5 2.1. Overview of cellulose electrospun nanofiber and antibacterial applications 5 2.1.1. Cellulose electrospun nanofibers 5 2.1.2. Antibacterials applications of cellulose-based electrospinning nanofiber 6 2.2. Overview of PHMB 7 2.2.1. PHMB –A next-generation biocide 7 2.2.2. The application of PHMB for antibacterial products 9 2.2.3. Overview of studies on incorporation of PHMB on cellulose materials 11 2.3. The incorporation of PHMB and undyed/dyed cellulose-based nanofiber 14 CHAPTER 3. MATERIALS AND METHODOLOGIES 16 3.1. Materials 16 3.1.1. Cellulose acetate material 16 3.1.2. Reactive green 19 dye 16 3.1.3. Polymer hexamethylene biguanides 17 3.1.4. Other chemicals 17 3.2. Modification processes 17 3.2.1. Electrospinning process to produce CA electrospun membrane 17 3.2.2. Hydrolysis process to convert CA to RC membrane 18 3.2.3. Reactive green 19 dye Immobilization 18 3.2.4. PHMB immobilization 19 3.3. Physical properties analysis 20 3.4. Antibacterial properties assay 20 3.5. Cytotoxicity assay 21 CHAPTER 4 Physical properties and antibacterial activities of the cellulose acetate and regenerated cellulose nanofibers immobilized with poly (hexamethylene biguanide) 22 4.1. Physical properties of the novel nanofiber membranes 22 4.1.2. Morphology of nanofiber membranes 22 4.1.2. FTIR analysis 22 4.1.3. Thermal stability of the novel membranes 25 4.1.4. Surface wettability 26 4.1.5. Surface charge of nanofiber membranes 27 4.1.6. Mechanical properties 31 4.2. Antibacterial Properties 32 4.2.1. Qualitative and quantitative results 32 4.2.2. Hydrolysis time of CA 34 4.2.3. Immobilization of PHMB and antibacterial efficacy 38 4.2.4. Effect of E. coli contact time 41 4.2.5. Effect of the bacterial cell concentration 42 4.3. Stability of the PHMB-modified nanofiber 43 4.3.1. Release of the immobilized PHMB 43 4.3.2. Storage stability and reusability of the PHMB attached nanofiber 43 4.4. Cytotoxicity tests 45 4.5. Remarks on the RC-PHMB nanofiber membrane as an antibacterial material 48 4.6. Conclusion 49 CHAPTER5 Physical properties and antibacterial activities of the cellulose acetate nanofiber immobilized with reactive green 19 dye and poly (hexamethylene biguanide) 50 5.1. Physical properties 50 5.1.1. Surface morphology analysis of the novel membranes 50 5.1.2. FTIR spectra of the nanofiber membranes 51 5.1. 3. Thermal stability analysis of the novel membranes 52 5.1.4. Mechanical properties of the novel membranes 53 5.2. Antibacterial performance of the nanofiber membranes 54 5.2.1. Qualitative and quantitative results 54 5.2.2. Effect of the immobilization density of dye on the antibacterial efficiency 57 5.2.3. Effect of the immobilized density of PHMB on the antibacterial activity 61 5.2.4. Kinetic of E. coli killing of the CA-RG19-PHMB membrane 63 5.3. Stability of the antibacterial activity of the CA-RG19-PHMB membrane 65 5.4. Cell viability and cytotoxicity 66 5.5. Conclusion 68 CHAPTER 6 Physical properties and Antibacterial activities of the regenerated cellulose nanofiber immobilized with Reactive green 19 dye and Poly (hexamethylene biguanide) 69 6.1. Physical properties 69 6.1.1. Surface morphology analysis of the novel membranes 69 6.1.2. FTIR spectra 71 6.1.3. Thermal stability 72 6.1.4. Mechanical properties 73 6.2. Antibacterial properties 74 6.2.1. Antibacterial performance and efficient of cellulose nanofiber membranes 74 6.2.1. Effect of the hydrolysis time on the Dye immobilization and PHMB immobilization 76 6.2.2. Effect of the dyeing process 77 6.2.2.1. Effect of RG19 concentration on PHMB immobilization and AE of RC membrane 77 6.2.2.2. Kinetic of RG10 immobilization of RC membrane 80 6.2.3. Isotherms and Immobilization kinetics of PHMB 81 6.2.3.1. Isotherms of PHMB immobilization on RC-RG19 membranes 81 6.2.3.2. Effect of PHMB concentration on the AE of RC-RG19-PHMB membrane 84 6.2.3.3. Kinetic of PHMB immobilization on the RC-RG19 membrane 85 6.2.4. Kinetic of E. coli killing of RC-RG19-PHMB membrane 87 6.3. PHMB leaching study 88 6.4. Cytotoxicity 89 6.5. Conclusion 92 CHAPTER 7 CONCLUSIONS 93 7.1. Remark on the antibacterial performance of undyed/dyed cellulose-based electrospun nanofiber membranes immobilized with PHMB 93 7.2. Conclusion 94 References Appendix

    1. Li, Q., et al., Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water research, 2008. 42(18): p. 4591-4602.
    2. Azam, A., et al., Antimicrobial activity of metal oxide nanoparticles against Gram-positive and Gram-negative bacteria: a comparative study. International journal of nanomedicine, 2012: p. 6003-6009.
    3. Schmid, G., Nanoparticles: from theory to application. 2011: John Wiley & Sons.
    4. Duncan, T.V., Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors. Journal of colloid and interface science, 2011. 363(1): p. 1-24.
    5. Gottesman, R., et al., Sonochemical coating of paper by microbiocidal silver nanoparticles. Langmuir, 2011. 27(2): p. 720-726.
    6. Perkas, N., et al., Ultrasound‐assisted coating of nylon 6, 6 with silver nanoparticles and its antibacterial activity. Journal of applied polymer science, 2007. 104(3): p. 1423-1430.
    7. Emamifar, A., et al., Effect of nanocomposite packaging containing Ag and ZnO on inactivation of Lactobacillus plantarum in orange juice. Food control, 2011. 22(3-4): p. 408-413.
    8. Miranda, M., et al., Ceramic/metal biocidal nanocomposites for bone-related applications. Journal of Materials Science: Materials in Medicine, 2012. 23: p. 1655-1662.
    9. Kokura, S., et al., Silver nanoparticles as a safe preservative for use in cosmetics. Nanomedicine: Nanotechnology, Biology and Medicine, 2010. 6(4): p. 570-574.
    10. Edwards‐Jones, V., The benefits of silver in hygiene, personal care and healthcare. Letters in applied microbiology, 2009. 49(2): p. 147-152.
    11. Liu, Y. and H.-I. Kim, Characterization and antibacterial properties of genipin-crosslinked chitosan/poly (ethylene glycol)/ZnO/Ag nanocomposites. Carbohydrate polymers, 2012. 89(1): p. 111-116.
    12. Huh, A.J. and Y.J. Kwon, “Nanoantibiotics”: a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. Journal of controlled release, 2011. 156(2): p. 128-145.
    13. Karwowska, E., Antibacterial potential of nanocomposite-based materials–a short review. Nanotechnology Reviews, 2017. 6(2): p. 243-254.
    14. Moritz, M. and M. Geszke-Moritz, The newest achievements in synthesis, immobilization and practical applications of antibacterial nanoparticles. Chemical Engineering Journal, 2013. 228: p. 596-613.
    15. Aydin Sevinç, B. and L. Hanley, Antibacterial activity of dental composites containing zinc oxide nanoparticles. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2010. 94(1): p. 22-31.
    16. Xue, Y., Z. Mou, and H. Xiao, Nanocellulose as a sustainable biomass material: structure, properties, present status and future prospects in biomedical applications. Nanoscale, 2017. 9(39): p. 14758-14781.
    17. Moon, R.J., et al., Cellulose nanomaterials review: structure, properties and nanocomposites. Chemical Society Reviews, 2011. 40(7): p. 3941-3994.
    18. Pandey, J.K., A.N. Nakagaito, and H. Takagi, Fabrication and applications of cellulose nanoparticle‐based polymer composites. Polym Eng Sci., 2013. 53(1): p. 1-8.
    19. Li, J., et al., Nanocellulose‐based antibacterial materials. Advanced healthcare materials, 2018. 7(20): p. 1800334.
    20. Azeredo, H.M., M.F. Rosa, and L.H.C. Mattoso, Nanocellulose in bio-based food packaging applications. Industrial Crops and Products, 2017. 97: p. 664-671.
    21. Carpenter, A.W., C.-F. de Lannoy, and M.R. Wiesner, Cellulose nanomaterials in water treatment technologies. Environmental science & technology, 2015. 49(9): p. 5277-5287.
    22. Tang, J., et al., Functionalization of cellulose nanocrystals for advanced applications. Journal of colloid and interface science, 2017. 494: p. 397-409.
    23. Tavakolian, M., et al., Dendrimer directed assembly of dicarboxylated hairy nanocellulose. Journal of colloid and interface science, 2019. 541: p. 444-453.
    24. Yang, H. and T.G. van de Ven, A bottom-up route to a chemically end-to-end assembly of nanocellulose fibers. Biomacromolecules, 2016. 17(6): p. 2240-2247.
    25. Van De Ven, T.G. and A. Sheikhi, Hairy cellulose nanocrystalloids: a novel class of nanocellulose. Nanoscale, 2016. 8(33): p. 15101-15114.
    26. Hosseinidoust, Z., et al., Cellulose nanocrystals with tunable surface charge for nanomedicine. Nanoscale, 2015. 7(40): p. 16647-16657.
    27. Yang, H., et al., Films prepared from electrosterically stabilized nanocrystalline cellulose. Langmuir, 2012. 28(20): p. 7834-7842.
    28. Liu, H. and Y.L. Hsieh, Ultrafine fibrous cellulose membranes from electrospinning of cellulose acetate. J Polym Sci B Polym Phys, 2002. 40(18): p. 2119-2129.
    29. Frey, M.W., Electrospinning cellulose and cellulose derivatives. Polymer Reviews, 2008. 48(2): p. 378-391.
    30. Demirci, S., A. Celebioglu, and T. Uyar, Surface modification of electrospun cellulose acetate nanofibers via RAFT polymerization for DNA adsorption. Carbohydrate polymers, 2014. 113: p. 200-207.
    31. Prasanth, R., et al., Electrospinning of cellulose: Process and applications. Nanocellulose Polymer Nanocomposites: Fundamentals and Applications; Thakur, VK, Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2014: p. 311-340.
    32. Chitpong, N. and S.M. Husson, Polyacid functionalized cellulose nanofiber membranes for removal of heavy metals from impaired waters. Journal of Membrane Science, 2017. 523: p. 418-429.
    33. Jian, S.-J., et al., Cellulose-based nanofiber membrane functionalized with dye affinity ligand for purification of malate dehydrogenase from Saccharomyces cerevisiae. Cellulose, 2022. 29(17): p. 9251-9281.
    34. Luo, Y., et al., Carbon nanotube-incorporated multilayered cellulose acetate nanofibers for tissue engineering applications. Carbohydr. Polym., 2013. 91(1): p. 419-427.
    35. Zhao, Y., et al., Dendrimer-functionalized electrospun cellulose acetate nanofibers for targeted cancer cell capture applications. J. Mater. Chem. B, 2014. 2(42): p. 7384-7393.
    36. Huang, W., et al., Controllable immobilization of naringinase on electrospun cellulose acetate nanofibers and their application to juice debittering. International journal of biological macromolecules, 2017. 98: p. 630-636.
    37. Zhao, T., G. Sun, and X. Song, An antimicrobial cationic reactive dye: Synthesis and applications on cellulosic fibers. Journal of applied polymer science, 2008. 108(3): p. 1917-1923.
    38. Ma, Z. and S. Ramakrishna, Electrospun regenerated cellulose nanofiber affinity membrane functionalized with protein A/G for IgG purification. Journal of Membrane Science, 2008. 319(1): p. 23-28.
    39. Ma, Z. and S. Ramakrishna, Electrospun regenerated cellulose nanofiber affinity membrane functionalized with protein A/G for IgG purification. Journal of Membrane Science, 2008. 319(1-2): p. 23-28.
    40. Kalwar, K. and M. Shen, Electrospun cellulose acetate nanofibers and Au@ AgNPs for antimicrobial activity-A mini review. Nanotechnol. Rev., 2019. 8(1): p. 246-257.
    41. Rieger, K.A., et al., Antimicrobial activity of silver ions released from zeolites immobilized on cellulose nanofiber mats. ACS applied materials & interfaces, 2016. 8(5): p. 3032-3040.
    42. Wsoo, M.A., et al., A review on the properties of electrospun cellulose acetate and its application in drug delivery systems: A new perspective. Carbohydrate research, 2020. 491: p. 107978.
    43. Serwecińska, L., Antimicrobials and antibiotic-resistant bacteria: a risk to the environment and to public health. Water, 2020. 12(12): p. 3313.
    44. Hoseinnejad, M., S.M. Jafari, and I. Katouzian, Inorganic and metal nanoparticles and their antimicrobial activity in food packaging applications. Critical reviews in microbiology, 2018. 44(2): p. 161-181.
    45. Zhang, T., et al., Pectin/lysozyme bilayers layer-by-layer deposited cellulose nanofibrous mats for antibacterial application. Carbohydrate polymers, 2015. 117: p. 687-693.
    46. Kenawy, E.-R., S. Worley, and R. Broughton, The chemistry and applications of antimicrobial polymers: a state-of-the-art review. Biomacromolecules, 2007. 8(5): p. 1359-1384.
    47. Kyzioł, A., et al., Tackling microbial infections and increasing resistance involving formulations based on antimicrobial polymers. Chemical Engineering Journal, 2020. 385: p. 123888.
    48. De Paula, G.F., G.I. Netto, and L.H.C. Mattoso, Physical and chemical characterization of poly (hexamethylene biguanide) hydrochloride. Polymers, 2011. 3(2): p. 928-941.
    49. Ng, I.-S., et al., Antibacterial efficacy of chitosan-and poly (hexamethylene biguanide)-immobilized nanofiber membrane. International journal of biological macromolecules, 2020. 154: p. 844-854.
    50. Llorens, E., et al., Polybiguanide (PHMB) loaded in PLA scaffolds displaying high hydrophobic, biocompatibility and antibacterial properties. Mater. Sci. Eng. C . 2015. 50: p. 74-84.
    51. Peng, J., et al., Poly (hexamethylene biguanide)(PHMB) as high-efficiency antibacterial coating for titanium substrates. Journal of Hazardous Materials, 2021. 411: p. 125110.
    52. Xing, H., et al., A biodegradable poly (amido amine) based on the antimicrobial polymer polyhexamethylene biguanide for efficient and safe gene delivery. Colloids and Surfaces B: Biointerfaces, 2019. 182: p. 110355.
    53. Butcher, M., PHMB: an effective antimicrobial in wound bioburden management. British journal of nursing, 2012. 21(Sup12): p. S16-S21.
    54. Kawabata, A. and J.A. Taylor, Effect of reactive dyes upon the uptake and antibacterial action of poly (hexamethylene biguanide) on cotton. Part 1: Effect of bis (monochlorotriazinyl) dyes. Coloration technology, 2004. 120(5): p. 213-219.
    55. Kawabata, A. and J. Taylor, The effect of reactive dyes upon the uptake and anti bacterial action of poly (hexamethylene biguanide) on cotton. Part 2: Uptake of poly (hexamethylene biguanide) on cotton dyed with β-sulphatoethylsulphonyl reactive dyes. Dyes and pigments, 2006. 68(2-3): p. 197-204.
    56. Kawabata, A. and J.A. Taylor, The effect of reactive dyes upon the uptake and antibacterial efficacy of poly (hexamethylene biguanide) on cotton. Part 3: Reduction in the antibacterial efficacy of poly (hexamethylene biguanide) on cotton, dyed with bis (monochlorotriazinyl) reactive dyes. Carbohydrate Polymers, 2007. 67(3): p. 375-389.
    57. Xu, F.-X., et al., Antibacterial efficacy of poly (hexamethylene biguanide) immobilized on chitosan/dye-modified nanofiber membranes. International journal of biological macromolecules, 2021. 181: p. 508-520.
    58. de Amorim, J.D.P., et al., Plant and bacterial nanocellulose: Production, properties and applications in medicine, food, cosmetics, electronics and engineering. A review. Environ. Chem. Lett., 2020. 18(3): p. 851-869.
    59. Pandey, A., Pharmaceutical and biomedical applications of cellulose nanofibers: a review. Environ. Chem. Lett., 2021. 19(3): p. 2043-2055.
    60. Bhardwaj, N. and S.C. Kundu, Electrospinning: A fascinating fiber fabrication technique. Biotechnology advances, 2010. 28(3): p. 325-347.
    61. Fang, J. and T. Lin, Energy harvesting properties of electrospun nanofibers. 2019: IOP Publishing.
    62. Huang, Z.-M., et al., A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites science and technology, 2003. 63(15): p. 2223-2253.
    63. Huang, L., S.S. Manickam, and J.R. McCutcheon, Increasing strength of electrospun nanofiber membranes for water filtration using solvent vapor. Journal of Membrane Science, 2013. 436: p. 213-220.
    64. Zhang, Y., C. Zhang, and Y. Wang, Recent progress in cellulose-based electrospun nanofibers as multifunctional materials. Nanoscale Advances, 2021. 3(21): p. 6040-6047.
    65. Khoshnevisan, K., et al., Cellulose acetate electrospun nanofibers for drug delivery systems: Applications and recent advances. Carbohydrate polymers, 2018. 198: p. 131-141.
    66. Jones, I.A. and L.T. Joshi, Biocide use in the antimicrobial era: a review. Molecules, 2021. 26(8): p. 2276.
    67. Liang, A., et al., Porous poly (hexamethylene biguanide) hydrochloride loaded silk fibroin sponges with antibacterial function. Materials, 2020. 13(2): p. 285.
    68. Chindera, K., et al., The antimicrobial polymer PHMB enters cells and selectively condenses bacterial chromosomes. Scientific reports, 2016. 6(1): p. 1-13.
    69. Sowlati-Hashjin, S., P. Carbone, and M. Karttunen, Insights into the polyhexamethylene biguanide (PHMB) mechanism of action on bacterial membrane and DNA: a molecular dynamics study. J. Phys. Chem. B . 2020. 124(22): p. 4487-4497.
    70. Hübner, N.-O. and A. Kramer, Review on the efficacy, safety and clinical applications of polihexanide, a modern wound antiseptic. Skin pharmacology and physiology, 2010. 23(Suppl. 1): p. 17-27.
    71. CAZZANIGA, A., The Effec of an Antimicrobial Gauze Dressing Impregnated with 0.2-percent Polyhexamethylene Biguanide as a Barrier to Prevent Pseudomonas aeruginosa Wound Invasion. Wound-compend. Clin. Res. Prac., 2002. 14: p. 169-176.
    72. Renzoni, A., et al., Impact of exposure of methicillin-resistant Staphylococcus aureus to polyhexanide in vitro and in vivo. Antimicrobial agents and chemotherapy, 2017. 61(10): p. 10.1128/aac. 00272-17.
    73. Liu, X., et al., Antimicrobial electrospun nanofibers of cellulose acetate and polyester urethane composite for wound dressing. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2012. 100(6): p. 1556-1565.
    74. de Mattos, I.B., et al., Uptake of PHMB in a bacterial nanocellulose-based wound dressing: A feasible clinical procedure. Burns, 2019. 45(4): p. 898-904.
    75. Yuan, Y. and H. Chen, Preparation and characterization of a biodegradable starch-based antibacterial film containing nanocellulose and polyhexamethylene biguanide. Food Packaging and Shelf Life, 2021. 30: p. 100718.
    76. Song, X., et al., Long term antibacterial effect cellulose film was modified with polyhexamethylene biguanide (PHMB). Industrial Crops and Products, 2022. 184: p. 115038.
    77. Yim, S.-L., et al., Longitudinal Study on the Antimicrobial Performance of a Polyhexamethylene Biguanide (PHMB)-Treated Textile Fabric in a Hospital Environment. Polymers, 2023. 15(5): p. 1203.
    78. Zhou, X., et al., A facile preparation process of polyhexamethylene biguanide/cellulose/polylactic acid fiber composite antibacterial paper. Industrial Crops and Products, 2023. 191: p. 115980.
    79. Chun, D. and G. Gamble, Using the reactive dye method to covalently attach antibacterial compounds to cotton. 2007.
    80. Liu, H. and Y.L. Hsieh, Surface methacrylation and graft copolymerization of ultrafine cellulose fibers. Journal of Polymer Science Part B: Polymer Physics, 2003. 41(9): p. 953-964.
    81. Son, W.K., et al., Electrospinning of ultrafine cellulose acetate fibers: studies of a new solvent system and deacetylation of ultrafine cellulose acetate fibers. Journal of Polymer Science Part B: Polymer Physics, 2004. 42(1): p. 5-11.
    82. Singh, J., H. Kaur, and M. Rawat, A novel green approach for the synthesis of tungsten oxide nanorods and its efficient potential towards photocatalytic degradation of reactive green 19 dye. Journal of Materials Science: Materials in Electronics, 2018. 29: p. 13715-13722.
    83. Wu, J.-Y., et al., Antibacterial efficacy of quaternized chitosan/poly (vinyl alcohol) nanofiber membrane crosslinked with blocked diisocyanate. Carbohydrate Polymers, 2021. 262: p. 117910.
    84. Shuiping, L., et al., Cellulose acetate nanofibers with photochromic property: Fabrication and characterization. Materials Letters, 2010. 64(22): p. 2427-2430.
    85. Jia, L., X. Huang, and Q. Tao, Enhanced hydrophilic and antibacterial efficiencies by the synergetic effect TiO2 nanofiber and graphene oxide in cellulose acetate nanofibers. International journal of biological macromolecules, 2019. 132: p. 1039-1043.
    86. Wang, D., et al., Preparation of cellulose acetate-polyacrylonitrile composite nanofibers by multi-fluid mixing electrospinning method: Morphology, wettability, and mechanical properties. Applied Surface Science, 2020. 510: p. 145462.
    87. Wang, K., et al., Determination of electrostatic force and its characteristics based on phase difference by amplitude modulation atomic force microscopy. Nanoscale Research Letters, 2016. 11(1): p. 1-9.
    88. Senna, A.M., K.M. Novack, and V.R. Botaro, Synthesis and characterization of hydrogels from cellulose acetate by esterification crosslinking with EDTA dianhydride. Carbohydrate polymers, 2014. 114: p. 260-268.
    89. Hu, W., et al., Graphene-based antibacterial paper. ACS nano, 2010. 4(7): p. 4317-4323.
    90. Aboamera, N.M., et al., An effective removal of organic dyes using surface functionalized cellulose acetate/graphene oxide composite nanofibers. Cellulose, 2018. 25(7): p. 4155-4166.
    91. Liu, Z., et al., Preparation and characterization of regenerated cellulose from ionic liquid using different methods. Carbohydrate polymers, 2015. 117: p. 99-105.
    92. Lokhande, V.H., et al., Hairy root induction and phytoremediation of textile dye, Reactive green 19A-HE4BD, in a halophyte, Sesuvium portulacastrum (L.) L. Biotechnology Reports, 2015. 8: p. 56-63.
    93. Telke, A., et al., Kinetics and Mechanism of Reactive Red 141 Degradation by a Bacterial Isolate Rhizobium radiobacter MTCC 8161. Acta Chimica Slovenica, 2008. 55(2).
    94. John, A., et al., Preparation of cellulose-ZnO hybrid films by a wet chemical method and their characterization. Cellulose, 2011. 18: p. 675-680.
    95. Golizadeh, M., et al., Evaluation of cellular attachment and proliferation on different surface charged functional cellulose electrospun nanofibers. Carbohydrate polymers, 2019. 207: p. 796-805.
    96. Bromberg, L., et al., Bactericidal core-shell paramagnetic nanoparticles functionalized with poly (hexamethylene biguanide). Langmuir, 2011. 27(1): p. 420-429.
    97. Cai, L., et al., Comparison of cytotoxicity evaluation of anticancer drugs between real-time cell analysis and CCK-8 method. ACS omega, 2019. 4(7): p. 12036-12042.
    98. Zhu, Q. and Y. Li, Effects of pore size distribution and fiber diameter on the coupled heat and liquid moisture transfer in porous textiles. International Journal of Heat and Mass Transfer, 2003. 46(26): p. 5099-5111.

    無法下載圖示 全文公開日期 2028/11/08 (校內網路)
    全文公開日期 2038/11/08 (校外網路)
    全文公開日期 2033/11/08 (國家圖書館:臺灣博碩士論文系統)
    QR CODE