簡易檢索 / 詳目顯示

研究生: 吳恩加
An-Chia Wu
論文名稱: 熱氫處理對Mg97Y2Zn1合金機械性質影響之研究
A study on the effect of thermal hydrogen treatment on the mechanical properties of Mg97Y2Zn1 alloy
指導教授: 丘群
Chun Chiu
口試委員: 王朝正
Chaur-Jeng Wang
陳士勛
Shih-Hsun Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 111
中文關鍵詞: 鎂釔鋅合金熱氫處理長周期疊層相機械性質表面改質
外文關鍵詞: Mg-Y-Zn alloy, Thermal hydrogen treatment, LPSO, Mechanical properties, Surface modification
相關次數: 點閱:273下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本研究使用Mg97Y2Zn1(at.%)之鎂釔鋅合金作為基材進行熱氫處理,以200 ℃、250 ℃及300 ℃為處理溫度及4.83 MPa之吸氫壓力來進行熱氫處理,並分別以3、5及7小時之吸氫時間,1小時放氫時間來交叉分析,於成分、金相結構、機械強度方面來分析探討熱氫處理對於Mg97Y2Zn1合金之影響。
    研究結果顯示,200 ℃之熱氫處理對於Mg97Y2Zn1合金對整體機械強度影響並不明顯,於250 ℃以上才會使材料表面原始之α-Mg及Mg12Y1Zn1相(長周期疊層相,Long Period Stacking Ordered Phase: LPSO)組成中的LPSO相轉變成Mg24Y5並且造成表面成分比例改變,其中300 ℃之試片更為明顯,也因為表面成分改變劇烈,較深層位置之成分也跟著變動造成內部LPSO相消失,且因溫度及處理時間增加而使得晶粒成長現象明顯,故強度沒有上升反而下降。而本研究最強拉伸強度於熱氫處理參數為250 ℃,5小時吸氫1小時放氫之熱氫處理試片中得到,其中原始之α-Mg及LPSO相轉變成Mg24Y5及表面成分比例改變,表面微觀結構細化且內部LPSO相並沒有受到影響而保持,且此強化之效果相較於晶粒成長之影響更為顯著,使得拉伸強度增強35 MPa(約30%),降伏強度也增強38 MPa(約58%)。


    In this study, was used as the substrate, the hydrogen treatment was carried out at 200 °C, 250 °C, 300 °C and 4.83 MPa for Mg97Y2Zn1 (at.%) alloy. The hydrogen absorption time was 3, 5, and 7 hours, and the. desorption time was 1 hour. The effects of thermal hydrogen treatment on composition, microstructure and mechanical properties of Mg97Y2Zn1 (at.%) alloy were studied.
    The results show that the thermal hydrogen treatment at 200 °C has no effects on mechanical properties of Mg97Y2Zn1 (at.%) alloy. The transformation of Mg12Y1Zn1 phases (Long Period Stacking Ordered Phase: LPSO) to Mg24Y5 and the change of surface composition ratio were observed at 250 °C. The transformation is clearer at 300 °C. The internal LPSO phase disappeared due to change of composition. The grain growth was observed due to the increase of temperature and treatment time. The overall mechanical properties declined. The best thermal hydrogen treatment parameters in this study are 250 °C, 5-hour hydrogen absorption time and 1-hour hydrogen desorption time, the original LPSO phase transformed to Mg24Y5 and the surface composition ratio was changed, the surface microstructure is refined and the internal LPSO The phase is not affected and is maintained, and the effect of this strengthening is more significant than the grain growth, which increases the tensile strength by 35 MPa (about 30%) and the yield strength by 38 MPa (about 58%).

    摘要 I Abstract II 致謝 III 第一章 序論 1 1.1前言 1 1.2實驗動機及目的 2 第二章 文獻回顧 3 2.1鎂與鎂合金之簡介 3 2.1.1純鎂之特性 3 2.1.2鎂合金之特性 3 2.1.3鎂合金之合金命名 4 2.1.4合金元素添加之影響 6 2.2鎂鋅釔合金之簡介 9 2.3鎂合金之強化方式 15 2.3.1固溶強化 15 2.3.2析出強化 15 2.3.3晶粒細化 16 2.4鎂合金之晶粒細化 17 2.4.1熱氫製程 17 2.4.2鎂合金於熱氫製程之晶粒細化原理 21 2.4.3熱氫製程下之鎂合金與鈦合金晶粒細化之差異 24 2.5細晶表面對於材料整體機械強度之影響 26 第三章 實驗方法 28 3.1實驗流程 28 3.2實驗材料 30 3.3熔煉設備及試片製備 31 3.3.1熔煉設備 31 3.3.2試片製備 32 3.4吸放氫加熱控制系統 33 3.5分析儀器 34 3.5.1光學顯微鏡 34 3.5.2場發式掃描電子顯微鏡 35 3.5.3 X光繞射分析儀 36 3.6機械強度測試 38 第四章 結果與討論 41 4.1金相及成分分析 41 4.1.1鎂鋅釔鑄件(原材)分析 41 4.1.2 200 ℃熱氫處理後試片分析 46 4.1.3 250 ℃熱氫處理後試片分析 53 4.1.4 300 ℃熱氫處理後試片分析 63 4.1.5熱氫製程影響檢驗 73 4.2機械強度分析 77 第五章 結論 86 參考文獻 88

    [1] H. Watarai, “Trend of research and development for magnesium alloys”, Science & technology trends, vol 7, pp. 84-97.
    [2] I. Polmear, D.S. John, J.F. Nie and M Qian, “Light alloys (fifth edition) metallurgy of the light metals”, Metallurgy of the light metals, 2017, pp. 1-29.
    [3] 蔡幸甫,鎂合金在台灣之現況及其發展機會,工業材料雜誌,頁 71-76。
    [4] M. Matsuda, S. Ii, Y. Kawamura, Y. Ikuhara and M. Nishida, “Interaction between long period stacking order phase and deformation twin in rapidly solidified Mg97Zn1Y2 alloy”, Materials science and engineering, vol 386, issues 1-2, pp. 447-452.
    [5] R. Pederson, “Microstructure and phase transformation of Ti-6Al-4V”, Licentiate thesis / Luleå university of technology 2002, pp.31.
    [6] I. Polmear, D. StJohn, J.F. Nie and M Qian, “6-Magnesium alloys”, Light alloys (fifth edition) metallurgy of the light metals 2017, pp. 287-367.

    [7] X.S. Shi, J.X. Zou, C. Liu, L.F. Cheng, D.J. Li, X.Q. Zeng and W.J. Ding, “Study on hydrogenation behaviors of a Mg-13Y alloy”, International journal of hydrogen energy vol 39, Issue 16, pp. 8303-8310.
    [8] M. Sahlberg and Y. Andersson, “Hydrogen absorption in Mg–Y–Zn ternary compounds”, Journal of alloys and compounds vol 446-447, pp. 134-137.
    [9] 張文政、劉正、毛萍莉,鎂金屬提煉和精煉工藝的研究發展,機械工程材料第三十七期十一號,頁 12-16。
    [10] I. Polmear, D. StJohn, J.F. Nie and M Qian, “3-Casting of light alloys”, Light alloys (fifth edition) metallurgy of the light metals 2017, pp. 109-156.
    [11] R. Crichton, “Chapter 23-Metals in the environment”, Biological inorganic chemistry (third edition) a new introduction to molecular structure and function 2019, pp. 625-644.
    [12] C. Moosbrugger, “Chapter 1 Introduction to magnesium alloys”, Engineering properties of magnesium alloys 2017, pp. 1-10.

    [13] Y. Kawamura and M. Yamasaki, “Formation and mechanical properties of Mg97Zn1RE2 alloys with long-period stacking ordered structure”, Materials transactions, Vol. 48, No.11 pp.2986-2992.
    [14] J.K. Kin., W.S. Ko, S Sandlöbes, M. Heidelmann, B. Grabowski and D. Raabe, “The role of metastable LPSO building block clusters in phase transformations of an Mg-Y-Zn alloy”, Acta materialia vol 112, pp.171-183.
    [15] X. Yang, S.S. Wu, S.L. Lü, L.Y. Hao and X.G. Fang, “Effects of Ni levels on microstructure and mechanical properties of Mg-Ni-Y alloy reinforced with LPSO structure”, Journal of alloys and compounds vol 726, pp. 276-283.
    [16] W.S. Chuang, C.H. Hsieh, J.C. Huang, P.H. Lin, K. Takagi, Y. Mine and K. Takashima, “Relation between sample size and deformation mechanism in Mg-Zn-Y 18R LPSO single crystals”, Intermetallics vol 91, pp. 110-119.
    [17] N. Tahreen, D.F. Zhang, F.S. Pan, X.Q. Jiang, D.Y. Li, D.L. Chen, “Strengthening mechanisms in magnesium alloys containing ternary I,W and LPSO phases”, Journal of materials science & technology volume 34, issue 7, pp. 1110-1118.

    [18] D.K. Xu, E.H. H. and Y.B. Xu, “Effect of long-period stacking ordered phase on microstructure, mechanical property and corrosion resistance of Mg alloys: a review”, Progress in natural science: materials international vol 26, pp. 117-128.
    [19] C. Chiu and H.M. Huang, “Microstructure and properties of Mg-Zn-Y alloy powder compacted by equal channel angular pressing”, Materials 2018 vol. 9, pp. 1678.
    [20] W.C. Liu, S. Feng, Z.Q. Li, J. Zhao, G.H. Wu, X.F. Wang, L. Xiao and W.J. Ding, “Effect of rolling strain on microstructure and tensile properties of dual-phase Mg-8Li-3Al-2Zn-0.5Y alloy”, Journal of materials science & technology vol 34, issue 12, pp. 2256-2262.
    [21] S. A. Alsubaie, P. Bazarnik, M. Lewandowska, Yi H. and T. G. Langdon, “Evolution of microstructure and hardness in an AZ80 magnesium alloy processed by high-pressure torsion”, Journal of materials research and technology vol 5, issue 2, pp. 152-158.
    [22] B.Q. Shi, R.S. Chena and W. Ke, “Solid solution strengthening in polycrystals of Mg-Sn binary alloys”, Journal of alloys and compounds volume 509, issue 7, 17 february 2011, pp. 3357-3362.

    [23] J. Tan, Y.H. Sun, H.B. Xie, B.Z. Sun and Y. Qi, “Atomic-resolution investigation of Y-rich solid solution with an invariable orientation in Mg-Y binary alloy”, Journal of alloys and compounds vol 766, pp. 716-720.
    [24] C.C. Kammerer, N.S. Kulkarni, R.J. Warmack and Y.H. Sohn, “Interdiffusion and impurity diffusion in polycrystalline Mg solid solution with Al or Zn”, Journal of alloys and compounds vol 617, pp.
    968-974.
    [25] T.W. Cain, C.F. Glover and J.R. Scully, “The corrosion of solid solution Mg-Sn binary alloys in NaCl solutions”, Electrochimica acta vol 297, pp. 564-575.
    [26] D. Nagarajan, X. Ren and C.H. Cáceres, “Anelastic behavior of Mg-Al and Mg-Zn solid solutions”, Materials science and engineering: a vol 696, pp. 387-392.
    [27] L.B. Ren, G.F. Quan, M.Y. Zhou, Y.Y. Guo, Z.Z. Jiang and Q. Tang, “Effect of Y addition on the aging hardening behavior and precipitation evolution of extruded Mg-Al-Zn alloys”, Materials science and engineering: a vol 690, pp. 195-207.

    [28] Z.Y. Zhao, P.K. Bai, R.G. Guan, V. Murugadoss, H. Liu, X.J. Wang. and Z.H. Guo, “Microstructural evolution and mechanical strengthening mechanism of Mg-3Sn-1Mn-1La alloy after heat treatments”, Materials science and engineering: a vol 734, pp. 200-209.
    [29] C.X. Huang, H.R. Liu, R.G. Liu, T.F. Xi, B.Q. Wu, Y.F. Mo, Z.X. Zhang, Z. Tian. and W. Liu, “Simulation study of effects of Ti content on microstructure evolution and elastic constants of immiscible Mg-Ti alloys during rapid quenching process”, Materials letters vol 220, pp. 253-256.
    [30] J.S. Mo, W.H. Sun, A. D. Klarner and A.A. Luo, “Interphase boundary segregation of silver and enhanced precipitation of Mg17Al12 phase in a Mg-Al-Sn-Ag alloy”, Scripta materialia vol 154, pp. 192-196.
    [31] B.Q. Shi, Y.Q. Cheng, X.L. Shang, H. Yan, R.S. Chen and W. Ke, “Hall-petch relationship, twinning responses and their dependences on grain size in the rolled Mg-Zn and Mg-Y alloys”, Materials science and engineering: a vol 743, pp. 558-566.

    [32] J. Du, J. Yang, M. Kuwabara, W.F. Li and J.H. Peng, “Effect of strontium on the grain refining efficiency of Mg–3Al alloy refined by carbon inoculation”, Journal of alloys and compounds vol 470, issues 1-2, pp. 228-232.
    [33] M.J. Bermingham, S.D. McDonald, M.S. Dargusch and D.H. StJohn, “Grain-refinement mechanisms in titanium alloys”, Materials research society 2008, vol 23, pp. 97-104.
    [34] M. Qing, L.X. Hu, H.F. Sun and E.D. Wang, “Grain refining and property improvement of AZ31 Mg alloy by hot rolling”, Transactions of nonferrous metals society of china vol 19, pp. s326-s330.
    [35] R. Kirchheim and A. Pundt, “25-Hydrogen in metals”, Physical metallurgy (fifth edition) 2014, pp 2597-2705.
    [36] A. Aydınlı, B. Aktekin and T. Öztürk, “Size reduction in mg rich intermetallics via hydrogen decrepitation”, Journal of alloys and compounds vol 645, pp. s27-s31.
    [37] L.H. Xie, J.S. Li, T.B. Zhang and H.C. Kou, “De/hydrogenation kinetics against air exposure and microstructure evolution during hydrogen absorption/desorption of Mg-Ni-Ce alloys”, Renewable energy vol 113, pp. 1399-1407.

    [38] R. Hardian, C. Pistidda, A.L. Chaudhary, G. Capurso, G. Gizer, H. Cao, C. Milanese, A. Girella, A. Santoru, D. Yigit, H. Dieringa, K.U. Kainer, T. Klassen and M. Dornheim, “Waste Mg-Al based alloys for hydrogen storage”, International journal of hydrogen energy vol 43, pp. 16738-16748.
    [39] X. Ding, R.R. Chen, Y.L. Jin, X.Y. Chen, J.G. Guo., Y.Q. Su, H.S. Ding and H.Z. Fu, “Activation mechanism and dehydrogenation behavior in bulk hypo/hypereutectic Mg-Ni alloy”, Journal of power sources vol 374, pp. 158-165.
    [40] M. Vlček, J. Čížek, F. Lukáč, P. Hruška, B. Smola, I. Stulíková, H. Kudrnová, P. Minárik, T. Kmječ and T. Vlasák, “Hydrogen absorption in Mg-Gd alloy”, International journal of hydrogen energy vol 42, pp. 22598-22604.
    [41] C. Chiu, S.J. Huang, T.Y. Chou. and E. Rabkin, “Improving hydrogen storage performance of AZ31 Mg alloy by equal channel angular pressing and additives”, Journal of alloys and compounds vol 743, pp. 437-447.
    [42] 陳蔚璉、吳台一,Ti-6Al-4V及SP700合金循環電解滲氫暨後續固溶熱處理表面硬化,鑛冶,頁83-90。

    [43] A. Züttel, "Materials for hydrogen storage," Materialstoday, vol. 6, no. 9, pp. 24-33, 2003.
    [44] K.Goc, W.Prendota, J.Przewoźnik, Ł.Gondek, CzKapusta, A.Radziszewska, K.Mineo and A.Takasaki, “Magnetron sputtering as a method for introducing catalytic elements to magnesium hydride”, International journal of hydrogen energy volume 43, issue 45, pp 20836-20842.
    [45] K. Fu, X.J. Jiang, Y.R. Guo, S. Li, J. Zheng, W.H. Tian, X.G. Li, “Experimental investigation and thermodynamic assessment of the yttrium hydrogen binary system” Progress in natural science: materials international volume 28, issue 3, pp 332-336.
    [46] Z.Z. Xie, J.F. Fan., H.B Dong., F. Zhou. and B.S. Xu, “Microstructure evolution and nano-crystalline production of Mg-9Al-Zn alloy during HDDR processing”, Journal of alloys and compounds vol 699, pp. 841-848.
    [47] Y.F. Liu, J.F. Fan, H. Zhang, Q. Zhang., J. Gao, H.B. Dong and B.S. Xu, “Formation and mechanism of nanocrystalline AZ91 powders during HDDR processing”, Materials characterization vol 125, pp. 134-141.

    [48] J. Cui, L.Z. Ouyang, H. Wang, X.D. Yao and M Zhu, “On the hydrogen desorption entropy change of modified MgH2”, Journal of alloys and compounds vol 737, pp. 427-432.
    [49] S. Ishida, M. Noda, K. Funami, and H. Mori, “Grain refinement and mechanical properties of magnesium alloy by hydrogenation treatment”, Materials science forum vol 558-559, pp.757-762.
    [50] R. Lapovok, E. Zolotoyabko, A. Berner, V. Skripnyuk, E. Lakin, N. Larianovsky, Chunjie X. and E. Rabkin, “Hydrogenation effect on microstructure and mechanical properties of Mg-Gd-Y-Zn-Zr alloys”, Materials science and engineering: a vol 719, pp. 171-177.
    [51] J. Yamashita, R. Nishiumi, S. Fukada, K. Katayama, A. Sagara and J. Yagi, “Hydrogen permeation through flinabe including Ti powder”, Fusion engineering and design vol 136, pp. 173-177.
    [52] R.R. Chen, X.Y. Chen, X. Ding, X.Z. Li, J.J. Guo, H.S. Ding, Y.Q. Su and H.Z. Fu, “Effects of Ti/Mn ratio on microstructure and hydrogen storage properties of Ti-V-Mn alloys”, Journal of alloys and compounds vol 748, pp. 171-178.

    [53] Y.F. Yin, W. Xu, Q.Y. Sun, L. Xiao and J Sun, “Deformation and fracture behavior of commercially pure titanium with gradient nano-to-micron-grained surface layer”, Transactions of nonferrous metals society of china vol 25, pp. 738-747.
    [54] A. Amanov, B. Urmanov, T. Amanov and Y.S. Pyun, “Strengthening of Ti-6Al-4V Alloy by high temperature ultrasonic nanocrystal surface modification technique”, Materials letters vol 196, pp. 198-201.
    [55] M. Kheradmandfard, S. Farshid Kashani-Bozorg, Chang-Lae K., A. Zarei Hanzaki, Young-Shik P., Jung-Hyong K., A. Amanov and Dae-Eun K., “Nanostructured β-type titanium alloy fabricated by ultrasonic nanocrystal surface modification”, Ultrasonics sonochemistry vol 39, pp. 698-706.
    [56] 鄭信民、林麗娟,"X光繞射應用簡介",工業材料雜誌 181期, 民國91年。
    [57] ASTM international, “ASTM E8E8M-09 Standard test methods for tension testing of metallic materials”, 2011.

    無法下載圖示 全文公開日期 2024/06/05 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE