簡易檢索 / 詳目顯示

研究生: 卓憲龍
Hsien-Lung Cho
論文名稱: 層接式自組裝之表面改質矽水膠隱形眼鏡
Surface modification of silicone hydrogel for contact lens via layer-by-layer self-assembly
指導教授: 楊銘乾
Ming-Chien Yang
口試委員: 周啟雄
Chi-Hsiung Jou
陳建光
Jem-Kun Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 80
中文關鍵詞: 矽水膠隱形眼鏡表面改質混摻共聚合親水性層接式自組裝
外文關鍵詞: silicone
相關次數: 點閱:324下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為解決疏水性矽酮(silicone)隱形眼鏡接觸眼球之不舒適感及脂質沾黏之問題,本研究採用共聚合以及層接式自組裝的方式來提高隱形眼鏡的親水性及含水量。本研究以矽酮為隱形眼鏡基材,利用氧電漿來活化表面,進行甲基丙烯酸二甲胺乙酯(DMAEM) [2-(dimethyl amino)ethyl methacrylate]接枝,於膜表面產生-NH3+基團,然後分別以透明質酸(hyaluronic acid, HA)與幾丁聚醣(chitosan, CS)以及海藻酸鈉(sodium alginate, AL)與幾丁聚醣,進行層接式自組裝形成多層聚集結構。經由染料確認幾丁聚醣、海藻酸、透明質酸接枝量會隨著固化層增加而有增加趨勢。接觸角會因透明質酸及海藻酸密度增加而降低,使得親水性提高。因(HA-CS)及(AL-CS)量增加更降低PDMS-HEMA薄膜的蛋白質吸附。此外層接式自組裝層對PDMS-HEMA的含水量、透氧率、透光率,均無明顯的影響。


    This work is to increase the hydrophilicty of silicone polymer in order to reduce its uncomfortableness and protein adsorption as a contact lens. The hydrophilic was improved through copolymerization followed by layer-by-layer self-assembly. After copolymerization, the silicone copolymer was treated with plasma to activate the surface, followed by grafting with 2-(dimethylamino)ethylmethacrylate (DMAEM) to introduce amino groups to the surface. Afterward, polyelectrolyte multi-layer of hyaluronic acid (HA) and chitosan (CS) was assembled through layer-by-layer self-assembly. Similar procedure was performed to form multi-layer of sodium alginate (AL) and chitosan. The results showed that the resulting silicone copolymer exhibited increased hydrophilicity and decreased protein adsorption. Furthermore, the light transmittance, oxygen permeability, tensile strength and modulus of the silicone copolymer were not significantly affected by the polyelectrolyte multi-layer.

    中文摘要 III Abstract IV 誌謝 V 目錄 VI 圖表目錄 VIII 表目錄 IX 第 一 章 前言 1 1-1 研究背景 1 1-2 研究目的 3 第 二 章 文獻回顧 5 2-1 水膠 5 2-2 水膠的合成與分類 6 2-3 功能性水膠 9 2-4 隱形眼鏡歷史 13 2-5 隱形眼鏡種類 14 2-6 隱形眼鏡特殊材質 18 2-7 隱形眼鏡之蛋白質吸附 21 2-8 高分子材料表面改質(Surface Modification) 23 2-9 層接式自組裝 25 2-10 紫外光硬化交聯處理 26 2-11 Polydimethylsiloxane,PDMS-diol 27 2-12 Isophorone diisocyanate,IPDI 28 2-13 幾丁聚醣 29 2-14 透明質酸 30 2-15 海藻酸鈉 31 第 三 章 實驗方法 33 3-1 實驗流程圖 33 3-2 實驗原理 34 3-3 藥品與材料 35 3-4 實驗儀器 36 3-5 實驗步驟 37 3-6 羧酸基接枝率染色測驗 39 3-7 胺基接枝率染色測驗 39 3-8 可見光特光率測定 39 3-9 接觸角測試 (Contact angle measurement) 40 3-10 透氧係數測定 41 3-11 強力試驗 42 3-12 平衡含水量(Equilibrium water content) 42 3-13 原子力顯微鏡AFM 43 3-14 蛋白質吸附實驗 44 3-15 細胞毒性 45 第 四 章 結果與討論 48 4-1 接枝密度的量測 48 4-2 接觸角 50 4-3 AFM 原子力學顯微鏡 53 4-4 透光率測試 55 4-5 含水量與透氧量測試 57 4-6 拉力測試 59 4-7 蛋白質吸附 60 4-8 細胞毒性 62 第 五 章 結論 65 第 六 章 文獻 66

    [1] 張朝凱, "近視雷射手術大揭密," 眼睛保健聖經, 2007.
    [2] 吳志凌, "隱形眼鏡自動光學檢測系統之設計與開發," 2007.
    [3] 許瓊文, "嬌生攻下五成眼鏡族市場的秘密," 今周刊, vol. 期518, pp. PP.112-113, 2006.
    [4] Bes, Laurence Huan, Kim Khoshdel, Ezat Lowe, Martin J. McConville, Christopher F. Haddleton, and D. M., "Poly(methylmethacrylate-dimethylsiloxane) triblock copolymers synthesized by transition metal mediated living radical polymerization: bulk and surface characterization," European Polymer Journal, vol. 39, pp. 5-13, 2003.
    [5] Y. Berdichevsky, J. Khandurina, A. Guttman, and Y. H. Lo, "UV/ozone modification of poly(dimethylsiloxane) microfluidic channels," Sensors and Actuators B: Chemical, vol. 97, pp. 402-408, 2004.
    [6] W. O. and L. D., "Hydrophilic Gels for Biological Use," nature, vol. 185, pp. 117-118, 1960.
    [7] Y. I. V., L. E., O. D. P., S. E. M., and M. G. F., "Synthesis and characterization of a model extracellular matrix that induces partial regeneration of adult mammalian skin," Sci., vol. 86, pp. 933-937, 1989.
    [8] S. A. Barenberg, "Abridged report of the committee to survey the needs and opportunities for the biomaterials industry," Journal of Biomedical Materials Research, vol. 22, pp. 1267-1291, 1988.
    [9] Hoffman and A. S., "Hydrogels for biomedical applications," Advanced Drug Delivery Reviews, vol. 54, pp. 3-12, 2002.
    [10] 陳進富, "淺談水膠在生醫之應用," 化工科技與商情, vol. 38期, pp. 38-43, 2002.
    [11] P. NA, M. HJ, and L. LM, "The structure of highly crosslinked poly(2-hydroxyethyl methacrylate) hydrogels.," J Biomed Mater Res., vol. 4, pp. 397-411, 1985.
    [12] H. J. Choi and M. Kunioka, "Preparation conditions and swelling equilibria of hydrogel prepared by γ-irradiation from microbial poly(γ-glutamic acid)," Radiation Physics and Chemistry, vol. 46, pp. 175-179, 1995.
    [13] W. R. Gombotz and S. F. Wee, "Protein release from alginate matrices," Advanced Drug Delivery Reviews, vol. 31, pp. 267-285, 1998.
    [14] F. Yokoyama, I. Masada, K. Shimamura, T. Ikawa, and K. Monobe, "Morphology and structure of highly elastic poly(vinyl alcohol) hydrogel prepared by repeated freezing-and-melting," Colloid and Polymer Science, vol. 264, pp. 595-601, 1986/07/01 1986.
    [15] D. W. Lim and T. G. Park, "Stereocomplex formation between enantiomeric PLA–PEG–PLA triblock copolymers: Characterization and use as protein-delivery microparticulate carriers," Journal of Applied Polymer Science, vol. 75, pp. 1615-1623, 2000.
    [16] Wichterle O. and L. D., "Hydrophilic Gels for Biological Use," Nature Biotechnology, vol. 185, pp. 117-118, 1960.
    [17] R. Bettini, P. Colombo, and N. A. Peppas, "Solubility effects on drug transport through pH-sensitive, swelling-controlled release systems: Transport of theophylline and metoclopramide monohydrochloride," Journal of Controlled Release, vol. 37, pp. 105-111, 1995.
    [18] H. Cicek and A. Tuncel, "Immobilization of α-chymotrypsin in thermally reversible isopropylacrylamide-hydroxyethylmethacrylate copolymer gel," Journal of Polymer Science Part A: Polymer Chemistry, vol. 36, pp. 543-552, 1998.
    [19] L. Hovgaard and H. Brondsted, "Dextran hydrogels for colon-specific drug delivery," Journal of Controlled Release, vol. 36, pp. 159-166, 1995.
    [20] T. Coviello, M. Grassi, G. Rambone, E. Santucci, M. Carafa, E. Murtas, F. M. Riccieri, and F. Alhaique, "Novel hydrogel system from scleroglucan: synthesis and characterization," Journal of Controlled Release, vol. 60, pp. 367-378, 1999.
    [21] A. J. Kuijpers, G. H. M. Engbers, T. K. L. Meyvis, S. S. C. de Smedt, J. Demeester, J. Krijgsveld, S. A. J. Zaat, J. Dankert, and J. Feijen, "Combined Gelatin−Chondroitin Sulfate Hydrogels for Controlled Release of Cationic Antibacterial Proteins," Macromolecules, vol. 33, pp. 3705-3713, 2000/05/01 2000.
    [22] N. A. Peppas and R. E. Berner Jr, "Proposed method of intracopdal injection and gelation of poly (vinyl alcohol) solution in vocal cords: polymer considerations," Biomaterials, vol. 1, pp. 158-162, 1980.
    [23] A. K. Bajpai, S. K. Shukla, S. Bhanu, and S. Kankane, "Responsive polymers in controlled drug delivery," Progress in Polymer Science, vol. 33, pp. 1088-1118, 2008.
    [24] Y. Qiu and K. Park, "Environment-sensitive hydrogels for drug delivery," Advanced Drug Delivery Reviews, vol. 53, pp. 321-339, 2001.
    [25] X. Zhou, L. Weng, Q. Chen, J. Zhang, D. Shen, Z. Li, M. Shao, and J. Xu, "Investigation of pH sensitivity of poly(acrylic acid-co-acrylamide) hydrogel," Polymer International, vol. 52, pp. 1153-1157, 2003.
    [26] A. Mamada, S. T. Tanaka, y. D. Kungwatchakun, and M. Irie, "Photoinduced Phase Transition of Gels," Macromolecules, vol. 23, pp. 1517-1519, 1990.
    [27] J.-i. Anzai, A. Uneo, H. Sasaki, K. Shimokawa, and T. Osa, "Photocontrolled Permeation of Alkali Cations through Poly(viny chloride)/Crown Ether Membrane," Markmol. Chem., vol. 4, pp. 731-734, 1983.
    [28] K. Ishihara and I. Shinoham, "Photoinduced Permeation Control of Proteins Using Amphiphilic Azoaromatic Polymer Membrane," Polymer Science, vol. 22, pp. 515-518, 1984.
    [29] M. G. Kodzwa, M. E. Staben, and D. G. Rethwisch, "Photoresponsive control of ion-exchange in leucohydroxide containing hydrogel membranes," Journal of Membrane Science, vol. 158, pp. 85-92, 1999.
    [30] I. C. Kwon, Y. H. Bae, and S. W. Kim, "Electrically erodible polymer gel for controlled release of drugs," Nature, vol. 354, pp. 291-293, 1991.
    [31] A. Khokhlov, S. Starodubtzev, and V. Vasilevskaya, "Conformational transitions in polymer gels: Theory and experiment," in Responsive Gels: Volume Transitions I. vol. 109, K. Dušek, Ed., ed: Springer Berlin Heidelberg, 1993, pp. 123-171.
    [32] C. Dong-June, I. Yoshihiro, and I. Yukio, "An insulin-releasing membrane system on the basis of oxidation reaction of glucose," Journal of Controlled Release, vol. 18, pp. 45-53, 1992.
    [33] T. A. Horbett, B. D. Ratner, J. Kost, and M. Singh, "A Bioresponsive Membrane for Insulin Delivery," in Recent Advances in Drug Delivery Systems, J. Anderson and S. Kim, Eds., ed: Springer US, 1984, pp. 209-220.
    [34] 齐备, 隐形眼镜手册: 上海科学技术出版社, 1998.
    [35] R. E. B. 原著 Richard P. Franz, ,主譯瞿佳, 隐形眼镜基础: 上海科学技术出版社, 1994.
    [36] 瞿佳 and 呂帆, 隐形眼镜学: 上海科学技术出版社, 1997.
    [37] J. M. Goddard and J. H. Hotchkiss, "Polymer surface modification for the attachment of bioactive compounds," Progress in Polymer Science, vol. 32, pp. 698-725, 2007.
    [38] D. S. Bag, V. P. Kumar, and S. Maiti, "Chemical modification of LDPE film," Journal of Applied Polymer Science, vol. 71, pp. 1041-1048, 1999.
    [39] Y. Wang, J.-H. Kim, K.-H. Choo, Y.-S. Lee, and C.-H. Lee, "Hydrophilic modification of polypropylene microfiltration membranes by ozone-induced graft polymerization," Membrane Science, vol. 169, pp. 269-276, 2000.
    [40] I. L. J. Dogue, R. Forch, and N. Mermilliod, "Plasma-induced hydrogel grafting of vinyl monomers on polypropylene," Journal of Adhesion Science and Technology, vol. 9, pp. 1531-1545, 1995/01/01 1995.
    [41] D. L. Angst and G. W. Simmons, "Moisture absorption characteristics of organosiloxane self-assembled monolayers," Langmuir, vol. 7, pp. 2236-2242, 1991/10/01 1991.
    [42] D. G., H. J. D., and S. J., "Buildup of ultrathin multilayer films by a self-assembly process: III. Consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces " Thin Solid Films, vol. 210/211, pp. 831-835, 1992.
    [43] A. F. Xie and S. Granick, "Local Electrostatics within a Polyelectrolyte Multilayer with Embedded Weak Polyelectrolyte," Macromolecules, vol. 35, pp. 1805-1813, 2002/02/01 2002.
    [44] S. L. Cooper, T. A. Speckhard, K. K. S. Hwang, C. Z. Yang, and W. R. Laupan, "Properties of segmented polyurethane zwitterionomer elastomers," Journal of Macromolecular Science, Part B, vol. 23, pp. 175-199, 1984/04/01 1984.
    [45] T. A. Speckhard and S. L. Cooper, "Ultimate Tensile Properties of Segmented Polyurethane Elastomers: Factors Leading to Reduced Properties for Polyurethanes Based on Nonpolar Soft Segments," Rubber Chemistry and Technology, vol. 59, pp. 405-431, 1986/07/01 1986.
    [46] C. Li, X. Yu, T. A. Speckhard, and S. L. Cooper, "Synthesis and properties of polycyanoethylmethylsiloxane polyurea urethane elastomers: A study of segmental compatibility," Journal of Polymer Science Part B: Polymer Physics, vol. 26, pp. 315-337, 1988.
    [47] Y. Camberlin and J. P. Pascault, "Quantitative DSC evaluation of phase segregation rate in linear segmented polyurethanes and polyurethaneureas," Journal of Polymer Science: Polymer Chemistry Edition, vol. 21, pp. 415-423, 1983.
    [48] 王朝陽, 趙耀明, 王浚, and 李雄武, "異佛爾酮二異氰酸酯溶液擴鏈合成聚乳酸類藥物緩試劑," 精細化工, vol. 23, p. 913, 2006.
    [49] A. Pizzi, B. Mtsweni, and W. Parsons, "Wood-induced catalytic activation of PF adhesives autopolymerization vs. PF/wood covalent bonding," Journal of Applied Polymer Science, vol. 52, pp. 1847-1856, 1994.
    [50] K. V.Y., B. V.A., L. E.P., and Y. T.E., Plastic Massy:Chemical Abstracts, vol. 27, 1981.
    [51] I. Sava, M. Bruma, B. Schulz, F. Mercer, V. N. Reddy, and N. Belomoina, "Synthesis and properties of silicon-containing polyamides," Journal of Applied Polymer Science, vol. 65, pp. 1533-1538, 1997.
    [52] 蔡濟懋, "以具耐鹼性且可與反應性染料結合之水性聚氨基甲酸酯形成人造皮-探討其減量與染色性," 2003.
    [53] J.-S. Yang, Y.-J. Xie, and W. He, "Research progress on chemical modification of alginate: A review," Carbohydrate Polymers, vol. 84, pp. 33-39, 2011.
    [54] D. L. French and K. J. A.-M. Himmelstein, John W., "Physicochemical aspects of controlled release of substituted benzoic and naphthoic acids from CarbopolR gels Journal of Controlled Release," Controlled Release, vol. 37, pp. 281-289.
    [55] W. R. Gombotz and S. Wee, "Protein release from alginate matrices," Advanced Drug Delivery Reviews, vol. 31, pp. 267-285, 1998.
    [56] A. D. Augst, H. J. Kong, and D. J. Mooney, "Alginate Hydrogels as Biomaterials," Macromolecular Bioscience, vol. 6, pp. 623-633, 2006.
    [57] M. Van Beek, L. Jones, and H. Sheardown, "Hyaluronic acid containing hydrogels for the reduction of protein adsorption," Biomaterials, vol. 29, pp. 780-9, Mar 2008.
    [58] B. Thierry, F. M. Winnik, Y. Merhi, and M. Tabrizian, "Nanocoatings onto Arteries via Layer-by-Layer Deposition:  Toward the in Vivo Repair of Damaged Blood Vessels," Journal of the American Chemical Society, vol. 125, pp. 7494-7495, 2003/06/01 2003.
    [59] M. B. Huglin and M. B. Zakaria, "Observations on the homogeneity of crosslinked copolymers prepared by γ-irradiation," Polymer, vol. 25, pp. 797-802, 1984.
    [60] D. Luensmann and L. Jones, "Protein deposition on contact lenses: the past, the present, and the future," Cont Lens Anterior Eye, vol. 35, pp. 53-64, Apr 2012.
    [61] A. M. Zamore, "Process foe producing an implantable apparatus comprising a biomedical device coated with crosslinled TPU," USP 6,558,732, 2003.

    無法下載圖示 全文公開日期 2019/07/01 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE