簡易檢索 / 詳目顯示

研究生: 陳楷文
Kai-Wen Chen
論文名稱: 表面改質對矽水膠之物理性質及生物相容性的影響
The effect of surface modification on the physical properties and biocompatibility of silicone hydrogel
指導教授: 楊銘乾
Ming-Chien Yang
口試委員: 劉定宇
Ting-Yu Liu
鄭詠馨
Yung-Hsin Cheng
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 66
中文關鍵詞: 矽水膠濕潤性化學接枝表面改質臭氧處理
外文關鍵詞: silicone hydrogel, wettability, surface modification, chemical grafting, ozone treatment
相關次數: 點閱:493下載:15
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究將矽水膠鏡片進行表面改質,改善其表面的濕潤特性。實驗製備矽水膠鏡片,其成分包含3-甲基丙烯醯氧丙基三(三甲基矽氧基)矽烷(TRIS)、聚乙烯吡咯烷酮(NVP)和甲基丙烯酸-2-羥基乙酯(HEMA),並加入交聯劑乙二醇二甲基丙烯酸酯(EGDMA)及光起始劑2-羥基-2-甲基-1-苯基-1-丙酮(PI-1173),再以紫外光照射。使用臭氧儀釋放臭氧,將鏡片進行表面前處理,再浸潤於聚乙烯吡咯烷酮(NVP)或聚乙二醇甲基丙烯酸酯(PEGMA)化合物接枝於表面,並控制改質條件包含濃度、溫度和時間,探討機械性質和生物相容性的變化。實驗結果證明,無論使用NVP或PEGMA進行表面接枝,都能將表面變得更親水,此外,PEGMA在親水和抗蛋白的表現都優於NVP。


    This study aimed to modify the surface of silicone hydrogel lenses to improve their wettability. These silicone hydrogel lenses were polymerized from 3-methacryloxypropyltrimethoxysilane (TRIS), N-vinylpyrrolidone (NVP), and 2-hydroxyethyl methacrylate (HEMA) with ethylene glycol dimethacrylate (EGDMA) as crosslinking agent and PI-1173 as photoinitiator under ultraviolet light. The lenses were then treated with ozone using an ozone generator, followed by soaking in NVP or poly(ethylene glycol) methacrylate (PEGMA) to graft onto the surface. The modification conditions were controlled, including concentration, temperature, and time, to investigate effects on mechanical properties and biocompatibility. The experimental results showed that regardless of whether NVP or PEGMA was used for surface grafting, the surface became more hydrophilic. In addition, PEGMA performed better than NVP in terms of hydrophilicity and protein resistance.

    誌謝 I 摘要 II Abstract III 目錄 IV 圖索引 VIII 表索引 X 第壹章 緒論 1 1.1研究背景 1 1.2研究動機 2 第貳章 文獻回顧 3 2.1水膠介紹 3 2.1.1軟式隱形眼鏡 4 2.1.2矽水膠隱形眼鏡 5 2.2水膠的重要物理特性 6 2.2.1含水量性質 6 2.2.1透氧率性質 7 2.3潤濕對隱形眼鏡的重要性 8 2.3.1潤濕性定義 8 2.3.2潤濕性的測量 8 2.3.3潤濕性質對眼部的重要性 9 2.4蛋白質對眼部影響 10 2.4.1淚液中的成分 10 2.4.2蛋白質對隱形眼鏡的吸附與影響 11 2.4.3抗蛋白化合物 11 2.5電漿處理及其應用於矽水膠隱形眼鏡 12 2.5.1電漿介紹 12 2.5.2氧電漿(Oxygen plasma) 12 2.5.3電漿於矽水膠隱形眼鏡的應用 13 2.6 表面改質法 15 2.6.1 化學接枝介紹 15 2.6.2紫外線/臭氧處理 15 第參章 實驗材料與方法 16 3.1實驗材料 16 3.2實驗設備 17 3.3實驗流程圖 19 3.4實驗原理及方法 20 3.4.1實驗原理 20 3.4.2實驗步驟 21 3.5物性分析 22 3.5.1 自由基測定 22 3.5.2 X射線光電子能譜 (XPS) 23 3.5.3可見光透光率測定 24 3.5.4平衡含水量 (Equilibrium Water Content, WEC) 24 3.5.5 接觸角測試 (Contact Angle) 25 3.5.6透氧率測定 26 3.5.7介達電位 (Zeta Potential) 26 3.6生物相容性 27 3.6.1蛋白質吸附 (Protein Adsorption) 27 3.6.2細胞培養(Cell Culture) 30 第肆章 結果與討論 33 4.1 DPPH Assay 33 4.2 X射線光電子能譜(XPS) 34 4.3接觸角測定 38 4.4 紫外光-可見光透光率測定 44 4.5 平衡含水量測定 46 4.6 透氧係數測定 48 4.7介達電位測試 (Zeta potential) 50 4.8 蛋白質吸附 52 4.9 細胞毒性測試 54 第陸章結論 59 第柒章未來展望 61 參考文獻 62

    [1] Nichols JJ & Fisher D. (2021). Despite COVID-19 restrictions and shutdowns, the contact lens industry experienced less downturn than expected. Contact Lens Spectrum. 36(1), 24-29.
    [2] Garin M. (2015, October). Silicone Hydrogel Contact Lenses: A Consumer Guide. Eye Health Web. (https://www.eyehealthweb.com/silicone-hydrogel-contact-lenses/).
    [3] Xenon market size, share & COVID-19 impact analysis, by type (N3, N4.5, and N5), by application (Imaging & Lighting, satellite, Electronics & Semiconductors, medical, and others), and Regional Forecast, 2022-2029. Xenon Market Size, Growth | Industry Share & Forecast [2029]. (https://www. fortunebusinessinsights. com/xenon-market-101965).
    [4] Long B, Schweizer H, Bleshoy H & Zeri F. (2009). Expanding your use of silicone hydrogel contact lenses: using lotrafilcon A for daily wear. Eye & Contact Lens, 35(2), 59-64.
    [5] Dillehay SM & Miller MB. (2007). Performance of Lotrafilcon B silicone hydrogel contact lenses in experienced low-Dk/t daily lens wearers. Eye & contact lens, 33(6 Part 1 of 2), 272-277.
    [6] Nicolson PC & Vogt J. (2001). Soft contact lens polymers: an evolution. Biomaterials, 22(24), 3273-3283.
    [7] Wang Y, Kankala RK, Ou C, Chen A & Yang Z. (2022). Advances in hydrogel-based vascularized tissues for tissue repair and drug screening. Bioactive materials, 9, 198-220.
    [8] Santos L, Rodrigues D, Lira M, Oliveira MR, Oliveira R, Vilar EP & Azeredo J. (2007). The influence of surface treatment on hydrophobicity, protein adsorption and microbial colonisation of silicone hydrogel contact lenses. Contact Lens and Anterior Eye, 30(3), 183-188.
    [9] Whiting MN, Raynor MK, Morgan PB, Galloway P, Tole DM & Tullo A. (2004). Continuous wear silicone hydrogel contact lenses and microbial keratitis. Eye, 18(9), 935-937.
    [10] Tighe B. (2000). Silicone hydrogel materials-how do they work? in Silicone hydrogels: the rebirth of continuous wear contact lenses, Ed. D. F. Sweeney, Butterworth Heinemann.
    [11] Musgrave CA & Fang F. (2019). Contact lens materials: a materials science perspective. Materials, 12(2), 261.
    [12] Tighe BJ, & Mann A. (2016). The development of biomaterials for contact lens applications: Effects of wear modality on materials design. In Biomaterials and Regenerative Medicine in Ophthalmology (pp. 369-399). Woodhead Publishing.
    [13] Petrucci RH, Harwood WS & Herring FG. (2002). General chemistry: principles and modern applications (Vol. 1). Prentice Hall.
    [14] Fatt I. (1984). Prentice Medal lecture: contact lens wettability--myths, mysteries, and realities. American Journal of Optometry and Physiological Optics, 61(7), 419-430.
    [15] Rolando M & Zierhut M. (2001). The ocular surface and tear film and their dysfunction in dry eye disease. Survey of Ophthalmology, 45, S203-S210.
    [16] Selinger DS, Selinger RC & Reed WP. (1979). Resistance to infection of the external eye: the role of tears. Survey of Ophthalmology, 24(1), 33-38.
    [17] Zhou L, Huang LQ, Beuerman RW, Grigg ME, Li SY, Chew FT, Ang L, Stern ME & Tan D. (2004). Proteomic analysis of human tears: defensin expression after ocular surface surgery. Journal of Proteome Research, 3(3), 410-416.
    [18] Lin MC & Yeh TN. (2013). Mechanical complications induced by silicone hydrogel contact lenses. Eye & Contact Lens, 39(1), 115-124.
    [19] de Souza GA, Godoy LM, Mann M. (2006). Identification of 491 proteins in the tear fluid proteome reveals a large number of proteases and protease inhibitors. Genome biology, 7(8), 1-11.
    [20] Lundh RL, Liotet S & Pouliquen Y. (1984). Study of the human blood-tear barrier and the biochemical changes in the tears of 30 contact lens wearers (50 eyes). Ophthalmologica, 188(2), 100-105.
    [21] Carney FP, Morris CA, & Willcox MP. (1997). Effect of hydrogel lens wear on the major tear proteins during extended wear. Australian and New Zealand journal of ophthalmology, 25(4), 36-38.
    [22] Dijt JC, Stuart MC, Hofman JE, & Fleer GJ. (1990). Kinetics of polymer adsorption in stagnation point flow. Colloids and surfaces, 51, 141-158.
    [23] Taylor RL, Willcox MD, Williams TJ & Verran J. (1998). Modulation of bacterial adhesion to hydrogel contact lenses by albumin. Optometry and vision science, 75(1), 23-29.
    [24] Puleo DA & Bizios R. (Eds.). (2009). Biological interactions on materials surfaces: understanding and controlling protein, cell, and tissue responses (pp. 1-17). New York, NY, USA:: Springer.
    [25] Jee JP & Kim HJ. (2015). Development of Hydrogel Lenses with Surface‐immobilized PEG Layers to Reduce Protein Adsorption. Bulletin of the Korean Chemical Society, 36(11), 2682-2687.
    [26] Desmet T, Morent R, De Geyter N, Leys C, Schacht E & Dubruel P. (2009). Nonthermal plasma technology as a versatile strategy for polymeric biomaterials surface modification: a review. Biomacromolecules, 10(9), 2351-2378.
    [27] Morent R, De Geyter N, Trentesaux M, Gengembre L, Dubruel P, Leys C & Payen E. (2010). Influence of discharge atmosphere on the ageing behaviour of plasma-treated polylactic acid. Plasma Chemistry and Plasma Processing, 30, 525-536.
    [28] Vasilets VN., Hermel G, König U, Werner C, Müller M, Simon F & Jacobasch HJ. (1997). Microwave CO2 plasma-initiated vapour phase graft polymerization of acrylic acid onto polytetrafluoroethylene for immobilization of human thrombomodulin. Biomaterials, 18(17), 1139-1145.
    [29] Huang YW, Yu QF, Li M, Sun SN, Zhao H, Jin SX & Wang JG. (2021). An overview of low‐temperature plasma surface modification of carbon materials for removal of pollutants from liquid and gas phases. Plasma Processes and Polymers, 18(3), 2000171.
    [30] McCabe K, Molock F, Hill G, Alli A, Steffen RB, Vanderlaan DG, Young KA & Ford J (2003): Biomedical devices containing internal wetting agents. Johnson & Johnson, US Patent # 20030125498.
    [31] Nicole C. (2008, May). 3rd generation silicone hydrogel lenses. Official Site of Silicone Hydrogel Lenses. (http://www.siliconehydrogels.org/editorials/08_may.asp.)
    [32] Lin TY, Pfeiffer TT & Lillehoj PB. (2017). Stability of UV/ozone-treated thermoplastics under different storage conditions for microfluidic analytical devices. RSC advances, 7(59), 37374-37379.
    [33] van Midwoud PM, Janse A, Merema MT, Groothuis GM & Verpoorte E. (2012). Comparison of biocompatibility and adsorption properties of different plastics for advanced microfluidic cell and tissue culture models. Analytical chemistry, 84(9), 3938-3944.
    [34] Occhiello E, Morra M, Cinquina P & Garbassi F. (1992). Hydrophobic recovery of oxygen-plasma-treated polystyrene. Polymer, 33(14), 3007-3015.
    [35] Ionita P. (2021). The chemistry of DPPH· free radical and congeners. International Journal of Molecular Sciences, 22(4), 1545.
    [36] Tranoudis I & Efron N. (2004). Parameter stability of soft contact lenses made from different materials. Contact Lens and Anterior Eye, 27(3), 115-131.
    [37] Jones L, May C, Nazar L & Simpson T. (2002). In vitro evaluation of the dehydration characteristics of silicone hydrogel and conventional hydrogel contact lens materials. Contact Lens and Anterior Eye, 25(3), 147-156.
    [38] Lai CF, Li JS, Fang YT, Chien CJ & Lee CH. (2018). UV and blue-light anti-reflective structurally colored contact lenses based on a copolymer hydrogel with amorphous array nanostructures. RSC advances, 8(8), 4006-4013.
    [39] Pethica BA. (1961). The physical chemistry of cell adhesion. Experimental cell research, 8, 123-140.
    [40] Cheng L, Muller SJ & Radke CJ. (2004). Wettability of silicone-hydrogel contact lenses in the presence of tear-film components. Current eye research, 28(2), 93-108.
    [41] Carlson JJ & Kawatra SK. (2013). Factors affecting zeta potential of iron oxides. Mineral Processing and Extractive Metallurgy Review, 34(5), 269-303.
    [42] Segeritz CP & Vallier L. (2017). Cell culture: Growing cells as model systems in vitro. In Basic science methods for clinical researchers (pp. 151-172). Academic Press.
    [43] Swain SK and Sarkar D. (2014) Fabrication, bioactivity, in vitro cytotoxicity and cell viability of cryo-treated nano-hydroxyapatite–gelatin–polyvinyl alcohol microporous scaffold. J Asian Ceramic Societies, 2: 241–247
    [44] Sipahi H, Reis RN, Dinc O, Kavaz T, Dimoglo A & Aydın A. (2019). In vitro biocompatibility study approaches to evaluate the safety profile of electrolyzed water for skin and eye. Human & Experimental Toxicology, 38(11), 1314-1326.
    [45] Hayat U, Tinsley AM, Calder MR & Clarke DJ. (1992). ESCA investigation of low-temperature ammonia plasma-treated polyethylene substrate for immobilization of protein. Biomaterials, 13(11), 801-806.
    [46] Shard AG, Davies MC, Tendler SB, Nicholas CV, Purbrick MD & Watts JF. (1995). Surface Characterization of Methyl Methacrylate-Polyethylene Glycol Methacrylate Copolymers by Secondary Ion Mass Spectrometry and X-ray Photoelectron Spectroscopy. Macromolecules, 28(23), 7855-7859.

    QR CODE