簡易檢索 / 詳目顯示

研究生: 陳冠穎
Guan-Ying Chen
論文名稱: 常壓電漿處理3D列印PLA材料以提升機械性質之研究
Study on the improved mechanical properties of 3D printed PLA materials by Atmospheric Pressure Plasma
指導教授: 郭俞麟
Yu-Lin Kuo
口試委員: 魏大欽
Da-Qin Wei
廖淑娟
Shu-Juan Liao
王朝正
Chaur-Jeng Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 115
中文關鍵詞: 常壓電漿技術3D列印PLA材料
外文關鍵詞: Atmospheric Pressure Plasma Jet, 3D Printing, PLA material
相關次數: 點閱:405下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • 目錄 第一章 緒論.............................................................................................................................. 1 1.1 前言....................................................................................................................... 1 1.2 3D 列印的應用...................................................................................................... 3 1.3 研究動機............................................................................................................... 4 第二章 文獻回顧...................................................................................................................... 5 2.1 3D 列印.................................................................................................................. 5 2.1.1 3D 列印起源................................................................................................ 6 2.1.2 常見的 3D 列印製程................................................................................... 7 2.1.2.1 光固化製程(Stereolithography, SLA)............................................. 9 2.1.2.2 雷射粉末燒結(Selective Laser Sintering, SLS) ............................. 9 2.1.2.3 三維印刷成型(3D Printing and Gluing, 3DPG)........................... 11 2.1.2.4 材料噴塗成型(Material Jetting, MJ)............................................ 12 2.1.2.5 疊層製造成型(Laminated Object Manufacturing, LOM)............ 13 2.1.2.6 熔融層積成型(Fused Deposition Modelling, FDM).................... 14 2.1.2.7 指向性能量沉積技術(Directed Energy Deposition, DED) ......... 14 2.2 FDM 積層製造.................................................................................................... 16 2.2.1 FDM 的應用.............................................................................................. 17 2.2.1.1 醫療器材 ....................................................................................... 17 VII 2.2.1.2 建築 ............................................................................................... 18 2.2.1.3 家用 ............................................................................................... 18 2.2.2 常見的 FDM 材料.................................................................................... 20 2.2.2.1 丙烯烴-丁二烯-苯乙烯共聚物..................................................... 20 2.2.2.2 聚碳酸酯(Polycarbonat, PC)......................................................... 20 2.2.2.3 丙烯腈-苯乙烯-丙烯酸酯聚合物................................................. 21 2.2.2.4 熱塑性聚氨酯彈性體(Thermoplastic Polyurethane, TPU).......... 21 2.3 PLA 材料製造 ..................................................................................................... 22 2.3.1 PLA 材料性質........................................................................................... 23 2.3.2 PLA 表面自由能....................................................................................... 23 2.3.3 PLA 機械性質........................................................................................... 25 2.3.4 PLA 材料改質........................................................................................... 26 2.3.4.1 非加熱處理 ................................................................................... 26 2.3.4.1.1 無氧列印 ....................................................................... 27 2.3.4.1.2 化學氣相處理 ............................................................... 28 2.3.4.1.3 複合塗層 ....................................................................... 30 2.3.4.2 加熱處理 ....................................................................................... 33 2.3.4.2.1 輻射加熱列印 ............................................................... 34 2.3.4.2.2 雷射加熱列印 ............................................................... 36 2.3.4.2.3 熱膨脹微球添加列印 ................................................... 38 VIII 2.3.4.3 常壓電漿處理 3D 列印製程 ....................................................... 40 2.4 常壓電漿............................................................................................................. 41 2.4.1 常壓電漿反應機制................................................................................... 41 2.4.2 常壓電漿系統分類與工作型態分類....................................................... 44 2.4.3 噴射式常壓電漿激發分類....................................................................... 48 2.4.4 電漿氣體效應........................................................................................... 51 2.4.5 常壓電漿於表面改質應用....................................................................... 52 2.5 表面接觸角介紹................................................................................................. 53 2.6 拉伸強度定義與介紹......................................................................................... 55 第三章 實驗設計與方法........................................................................................................ 56 3.1 實驗總覽............................................................................................................. 56 3.2 實驗設備............................................................................................................. 57 3.2.1 電漿設備................................................................................................... 57 3.2.2 3D 列印機設備.......................................................................................... 57 3.3 實驗製程............................................................................................................. 59 3.3.1 電漿親水化試片處理............................................................................... 59 3.3.2 電漿拉伸試片處理................................................................................... 59 3.4 檢測儀器............................................................................................................. 61 3.4.1 光學發射光譜儀(Optical Emission Spectroscopy, OES) ........................ 61 3.4.2 水滴接觸角量測儀(Water Contact Angle Meter, WCA)......................... 61 IX 3.4.3 熱電偶傳感器........................................................................................... 63 3.4.4 紅外線熱像測溫儀................................................................................... 63 3.4.5 萬能材料試驗機....................................................................................... 64 3.4.6 光學顯微鏡(Optical microscopy, OM) .................................................... 65 3.4.7 場發射掃描式電子顯微鏡....................................................................... 65 3.4.8 X 射線光電子能譜儀(X-ray photoelectron spectroscopy, XPS).............. 66 第四章 結果與討論................................................................................................................ 67 4.1 電漿設計過程..................................................................................................... 67 4.1.1 初代電漿概念設計................................................................................... 67 4.1.2 電漿概念設計過程................................................................................... 67 4.1.3 電漿設備與 3D 列印機之裝配................................................................ 69 4.1.4 以電暈放電方式概念之電漿設備過程................................................... 70 4.2 電漿物種檢測分析............................................................................................. 71 4.3 3D 列印電漿溫度測試........................................................................................ 72 4.4 經 3D 列印電漿處理後之親水性及表面自由能分析...................................... 74 4.5 經 3D 列印電漿噴塗後之 PLA 聚乳酸試片 XPS 測試................................... 77 4.6 經 3D 列印電漿處理 ASTM638 拉伸試片之拉伸試驗分析........................... 79 4.7 拉伸試片斷裂面 OM 分析 ................................................................................ 84 4.8 拉伸試片斷裂面 SEM 分析 .............................................................................. 86 4.9 電漿處理 3D 列印 PLA 聚乳酸材料流程機制 ................................................ 88 X 第五章 結論............................................................................................................................ 90 第六章 未來展望.................................................................................................................... 91

    [1] 行政院環境保護署, Available: https://www.epa.gov.tw/
    [2] B. Wittbrodt, J.M. Pearce, The effects of PLA color on material properties of 3-D printed components, Addit. Manuf. 8 (2015) 110–116.
    [3] T.D. Ngo, A. Kashani, G. Imbalzano, K.T.Q. Nguyen, D. Hui, Additive manufacturing (3D printing): A review of materials, methods, applications and challenges, Compos. Part B Eng. 143 (2018) 172–196.
    [4] 台灣天馬科技股份有限公司,Available: https://www.taiwanteama.com.tw/data_2289
    [5] N. Shahrubudin, T.C. Lee, R. Ramlan, An Overview on 3D Printing Technology: Technological, Materials, and Applications, Procedia Manuf. 35 (2019) 1286–1296.
    [6] 愛福利食品有限公司,Available: https://www.facebook.com/afreego/photos
    [7] 3D列印大全,Available: https://kknews.cc/zh-tw/news/vkon6aq.html
    [8] M. Sarobe, M.P. Ginebra, 3D printing for medical applications: information extraction from abstracts and patents, Adv. Mater. Sci. Eng. 2010 .
    [9] L. Hitzler, F. Alifui-Segbaya, P. Williams, B. Heine, M. Heitzmann, W. Hall, M. Merkel, A. Öchsner, Additive manufacturing of cobalt-based dental alloys: Analysis of microstructure and physicomechanical properties, Adv. Mater. Sci. Eng. 2018.
    [10] L.E. Murr, Frontiers of 3D Printing/Additive Manufacturing: from Human Organs to Aircraft Fabrication, J. Mater. Sci. Technol. 32 (2016) 987–995.
    [11] L. Jiao, Z.Y. Chua, S.K. Moon, J. Song, G. Bi, H. Zheng, Femtosecond laser produced hydrophobic hierarchical structures on additive manufacturing parts, Nanomaterials. 8 (2018).
    [12] P. Bosetti, S. Bruschi, Enhancing positioning accuracy of CNC machine tools by means of direct measurement of deformation, Int. J. Adv. Manuf. Technol. 58 (2012) 651–662.
    [13] J.P. Moore, C.B. Williams, Fatigue properties of parts printed by PolyJet material jetting, Rapid Prototyp. J. 21 (2015) 675–685.
    [14] 德芮達科技股份有限公司,Available: https://www.detekt.com.tw/network/detail/88
    [15] M. Feygin, B. Hsieh, LAMINAlED OBJECf MANUFACTURING (LOM): A SIMPLER PROCESS, Mater. Today. 19 (2010) 22–37.
    [16] P. Dudek, FDM 3D printing technology in manufacturing composite elements, Arch. Metall. Mater. 58 (2013) 1415--1418.
    [17] L. Novakova-Marcincinova, J. Novak-Marcincin, J. Barna, J. Torok, Special materials used in FDM rapid prototyping technology application, INES 2012 - IEEE 16th Int. Conf. Intell. Eng. Syst. Proc. (2012) 73–76.
    [18] P. Dudek, FDM 3D printing technology in manufacturing composite elements, Arch. Metall. Mater. 58 (2013) 1415--1418.
    [19] S.A.M. Tofail, E.P. Koumoulos, A. Bandyopadhyay, S. Bose, L. O’Donoghue, C. Charitidis, Additive manufacturing: scientific and technological challenges, market uptake and opportunities, Mater. Today. 21 (2018) 22–37.
    [20] U.M. Dilberoglu, B. Gharehpapagh, U. Yaman, M. Dolen, The Role of Additive Manufacturing in the Era of Industry 4.0, Procedia Manuf. 11 (2017) 545–554.
    [21] M. Heidari-Rarani, M. Rafiee-Afarani, A.M. Zahedi, Mechanical characterization of FDM 3D printing of continuous carbon fiber reinforced PLA composites, Compos. Part B Eng. 175 (2019) 107147.
    [22] W. Ahmed, H. Alabdouli, H. Alqaydi, A. Mansour, H. Al Khawaja, H. Al Jassmi, Open Source 3D Printer: A Case Study, IEEE Robot. Autom. Mag. 8 (2001) 33–42.
    [23] J.Y. Wong, 3D printing applications for space missions, Aerosp. Med. Hum. Perform. 87 (2016) 580–582.
    [24] BBC News, Available: https://www.bbc.com/news/technology-18677627
    [25] Invetech Delivers Organovo’s First Commercial 3D BioPrinter, Available: https://www.invetechgroup.com/news/2009/12/invetech-delivers-organovos-first- 100 commercial-3d-bioprinter
    [26] 3D Bioprinting, Available: https://www.advancedsolutions.com
    [27] YXLON, Available: https://www.yxlon.com
    [28] B. Khoshnevis, R. Russell, H. Kwon, S. Bukkapatnam, Crafting large prototypes, IEEE Robot. Autom. Mag. 8 (2001) 33–42.
    [29] B. Khoshnevis, R. Russell, H. Kwon, S. Bukkapatnam, Crafting large prototypes, IEEE Robot. Autom. Mag. 8 (2001) 33–42.
    [30] J.F. Rodríguez, J.P. Thomas, J.E. Renaud, Mechanical behavior of acrylonitrile butadiene styrene (ABS) fused deposition materials. Experimental investigation, Rapid Prototyp. J. 7 (2001) 148–158.
    [31] Mechanical, thermo-mechanical and morphological characterization of ABS based composites loaded with perlite mineral, Available: https://doi.org/10.1088/2053- 1591/ab551b.
    [32] B. Schartel, K.H. Pawlowski, R.E. Lyon, Pyrolysis combustion flow calorimeter: A tool to assess flame retarded PC/ABS materials?, Thermochim. Acta. 462 (2007) 1–14.
    [33] S. Raam Kumar, S. Sridhar, R. Venkatraman, M. Venkatesan, Polymer additive manufacturing of ASA structure: Influence of printing parameters on mechanical properties, Mater. Today Proc. 39 (2021) 1316–1319.
    [34] L. Amat, R. Carbó-Dorca, Use of promolecular ASA density functions as a general algorithm to obtain starting MO in SCF calculations, Int. J. Quantum Chem. 87 (2002) 59–67.
    [35] A. Frick, A. Rochman, Characterization of TPU-elastomers by thermal analysis (DSC), Polym. Test. 23 (2004) 413–417.
    [36] I. Sánchez-Calderón, V. Bernardo, M. Santiago-Calvo, H. Naji, A. Saiani, M.Á. Rodríguez-Pérez, Effect of the Molecular Structure of TPU on the Cellular Structure of Nanocellular Polymers Based on PMMA/TPU Blends, Polym. 2021, Vol. 13, Page 3055. 13 (2021) 3055.
    [37] D. Garlotta, A Literature Review of Poly(Lactic Acid), J. Polym. Environ. 2001 92. 9 (2001) 63–84.
    [38] A.J.F. Carvalho, Starch: Major Sources, Properties and Applications as Thermoplastic Materials. Major Sources, Properties and Applications as Thermoplastic Materials., Handb. Biopolym. Biodegrad. Plast. Prop. Process. Appl. (2012) 129–152.
    [39] J. Izdebska-Podsiadły, E. Dörsam, Storage stability of the oxygen plasma-modified PLA film, Bull. Mater. Sci. 44 (2021) 1–9.
    [40] Standard Test Method for Tensile Properties of Plastics, Available: https://www.astm.org/d0638-14.html
    [41] F. Lederle, F. Meyer, G.P. Brunotte, C. Kaldun, E.G. Hübner, Improved mechanical properties of 3D-printed parts by fused deposition modeling processed under the exclusion of oxygen, Prog. Addit. Manuf. 1 (2016) 3–7.
    [42] A. Garg, A. Bhattacharya, A. Batish, Chemical vapor treatment of ABS parts built by FDM: Analysis of surface finish and mechanical strength, Int. J. Adv. Manuf. Technol. 2016 895. 89 (2016) 2175–2191.
    [43] H. Koçak, Surface Modification of a Model Part Produced with 3D Printing from PLA Material by Means of Composite Coating, J. Mater. Eng. Perform. 30 (2021) 3903–3910.
    [44] S. Shaffer, K. Yang, J. Vargas, M.A. Di Prima, W. Voit, On reducing anisotropy in 3D printed polymers via ionizing radiation, Polymer (Guildf). 55 (2014) 5969–5979.
    [45] J. Du, Z. Wei, X. Wang, J. Wang, Z. Chen, An improved fused deposition modeling process for forming large-size thin-walled parts, J. Mater. Process. Technol. 234 (2016) 332–341.
    [46] J. Wang, H. Xie, Z. Weng, T. Senthil, L. Wu, A novel approach to improve mechanical properties of parts fabricated by fused deposition modeling, Mater. Des. 105 (2016) 152–159.
    [47] A. Armillotta, M. Bellotti, M. Cavallaro, Warpage of FDM parts: Experimental tests and analytic model, Robot. Comput. Integr. Manuf. 50 (2018) 140–152.
    [48] E. Bormashenko, G. Whyman, V. Multanen, E. Shulzinger, G. Chaniel, Physical mechanisms of interaction of cold plasma with polymer surfaces., J. Colloid Interface Sci. 448 (2015) 175–179.
    [49] L. Bárdos, H. Baránková, Cold atmospheric plasma: Sources, processes, and applications, Thin Solid Films. 518 (2010) 6705–6713.
    [50] Effects of Cold Plasma Treatment on Interlayer Bonding Strength in Fused Filament Fabrication Process, Available: https://oaktrust.library.tamu.edu/handle/1969.1/185071
    [51] H. Conrads, M. Schmidt, Plasma generation and plasma sources, Plasma Sources Sci. Technol. 9 (2000)
    [52] 楊士賢, 以脈衝式電漿輔助化學氣相沉積法製備氟化非晶碳膜之研究," 碩士, 化學工程研究所, 中原大學, 桃園縣, 2005.
    [53] 劉志宏 "以大氣電漿進行材料表面微米級圖案化之加工技術" 機械工業雜誌, 306,66, 2008.
    [54] 郭福升, "大面積常壓電漿技術之研究" 碩士, 化學系碩博士班, 國立成功大學, 台南市, 2003.
    [55] C. Tendero, C. Tixier, P. Tristant, J. Desmaison, P. Leprince, Atmospheric pressure plasmas: A review, Spectrochim. Acta Part B At. Spectrosc. 61 (2006) 2–30.
    [56] Mechanical Booster, Available: https://www.mechanicalbooster.com/2018/06/plasma-arc-machining.html
    [57] X. Xu, Dielectric barrier discharge — properties and applications, Thin Solid Films. 390 (2001) 237–242.
    [58] U. Kogelschatz, Atmospheric-pressure plasma technology, Plasma Phys. Control. Fusion. 46 (2004) B63.
    [59] J.S. Chang, P.A. Lawless, T. Yamamoto, Corona Discharge Processes, IEEE Trans. Plasma Sci. 19 (1991) 1152–1166.
    [60] S. Bekeschus, A. Schmidt, K.D. Weltmann, T. von Woedtke, The plasma jet kINPen – A powerful tool for wound healing, Clin. Plasma Med. 4 (2016) 19–28.
    [61] H. Koinuma, H. Ohkubo, T. Hashimoto, K. Inomata, T. Shiraishi, A. Miyanaga, S. Ihayashi, Development and application of a microbeam plasma generator, Appl. Phys. Lett. 60 (1998) 816.
    [62] H. Xu, G. Ouyang, al -, H. Gao, G. Wang, B. Chen, J. Jin, Z. Wang, X. Dai, X. Lu, M. Laroussi, V. Puech, Plasma Sources Science and Technology On atmospheric-pressure non-equilibrium plasma jets and plasma bullets You may also like Defect engineering on the electronic and transport properties of one-dimensional armchair phosphorene nanoribbons Atmospheric-pressure non-equilibrium plasmas for effective abatement of pathogenic biological aerosols The electronic and transport properties of the phosphorene nanoribbons On atmospheric-pressure non-equilibrium plasma jets and plasma bullets, Plasma Sources Sci. Technol. 21 (2012) 17.
    [63] A.I. Al-Shamma’a, S.R. Wylie, J. Lucas, R.A. Stuart, Microwave plasma jet for material processing at 2.45 GHz, J. Mater. Process. Technol. 121 (2002) 143–147.
    [64] A. Dato, Graphene synthesized in atmospheric plasmas—A review, J. Mater. Res. 34 (2019) 214–230.
    [65] A. Bogaerts, E. Neyts, R. Gijbels, J. Van der Mullen, Gas discharge plasmas and their applications, Spectrochim. Acta Part B At. Spectrosc. 57 (2002) 609–658.
    [66] J.S. Park, J.K. Jeong, Y.G. Mo, H.D. Kim, S. Il Kim, Improvements in the device characteristics of amorphous indium gallium zinc oxide thin-film transistors by Ar plasma treatment, Appl. Phys. Lett. 90 (2007) 262106.
    [67] T. Takamatsu, K. Uehara, Y. Sasaki, H. Miyahara, Y. Matsumura, A. Iwasawa, N. Ito, T. Azuma, M. Kohno, A. Okino, Investigation of reactive species using various gas plasmas, RSC Adv. 4 (2014) 39901–39905.
    [68] D.P. Dowling, F.T. O’Neill, S.J. Langlais, V.J. Law, Influence of dc Pulsed Atmospheric Pressure Plasma Jet Processing Conditions on Polymer Activation, Plasma Process. Polym. 8 (2011) 718–727.
    [69] K. Shimizu, H. Fukunaga, S. Tatematsu, M. Blajan, Atmospheric microplasma application for surface modification of biomaterials, Jpn. J. Appl. Phys. 51 (2012) 11PJ01.
    [70] D. Quéré, Rough ideas on wetting, Phys. A Stat. Mech. Its Appl. 313 (2002) 32–46.
    [71] X. Wang, Y. Zhang, Young’s equation revisited, J. Phys. Condens. Matter. 28 (2016) 135001.
    [72] V. Švorčík, V. Rybka, P. Seidl, V. Hnatowicz, J. Kvítek, K. Geryk, Ion implantation enhanced adhesion of polypropylene, Mater. Lett. 12 (1992) 434–436.
    [73] F. Awaja, M. Gilbert, G. Kelly, B. Fox, P.J. Pigram, Adhesion of polymers, Prog. Polym. Sci. 34 (2009) 948–968.
    [74] E.W. Hart, Theory of the tensile test, Acta Metall. 15 (1967) 351–355. https://doi.org/10.1016/0001-6160(67)90211-8.
    [75] J.S. Park, J.K. Jeong, Y.G. Mo, H.D. Kim, S. Il Kim, Improvements in the device characteristics of amorphous indium gallium zinc oxide thin-film transistors by Ar plasma treatment, Appl. Phys. Lett. 90 (2007) 262106.
    [76] Y.S. Seo, A.A.H. Mohamed, K.C. Woo, H.W. Lee, J.K. Lee, K.T. Kim, Comparative studies of atmospheric pressure plasma characteristics between He and Ar working gases for sterilization, IEEE Trans. Plasma Sci. 38 (2010) 2954–2962.
    [77] J.B. Boffard, R.O. Jung, C.C. Lin, A.E. Wendt, Measurement of metastable and resonance level densities in rare-gas plasmas by optical emission spectroscopy, Plasma Sources Sci. Technol. 18 (2009) 035017.
    [78] G. Crolly, H. Oechsner, Comparative determination of the electron temperature in Ar- and N2-plasmas with electrostatic probes, optical emission spectroscopy OES and energy dispersive mass spectrometry EDMS, Eur. Phys. J. - Appl. Phys. 15 (2001) 49–56.
    [79] A. Sarani, A.Y. Nikiforov, C. Leys, Atmospheric pressure plasma jet in Ar and Ar/H2O mixtures: Optical emission spectroscopy and temperature measurements, Phys. Plasmas. 17 (2010) 063504.
    [80] A. Döpp, E. Guillaume, C. Thaury, J. Gautier, K. Ta Phuoc, V. Malka, 3D printing of gas jet nozzles for laser-plasma accelerators, Rev. Sci. Instrum. 87 (2016) 073505.
    [81] S. Martínez-Jarquín, A. Moreno-Pedraza, H. Guillén-Alonso, R. Winkler, Template for 3D Printing a Low-Temperature Plasma Probe, Anal. Chem. 88 (2016) 6976–6980.
    [82] E. Álvarez-Castillo, S. Oliveira, C. Bengoechea, I. Sousa, A. Raymundo, A. Guerrero, A rheological approach to 3D printing of plasma protein based doughs, J. Food Eng. 288 (2021) 110255.
    [83] M. Râpă, M. Stefan, P.A. Popa, D. Toloman, C. Leostean, G. Borodi, D.C. Vodnar, M. Wrona, J. Salafranca, C. Nerín, D.G. Barta, M. Suciu, C. Predescu, E. Matei, Electrospun nanosystems based on PHBV and ZnO for ecological food packaging, Polymers (Basel). 13 (2021).
    [84] O.A. Laput, D.A. Zuza, I. V. Vasenina, Effect of Carbon-Ion Implantation on the Surface Physical and Chemical Properties of Polylactic Acid, Hydroxyapatite and a Composite Based on Them, J. Surf. Investig. X-Ray, Synchrotron Neutron Tech. 2020 143. 14 (2020) 516–524.
    [85] P. Sauerbier, R. Köhler, G. Renner, H. Militz, Surface activation of polylactic acid-based wood-plastic composite by atmospheric pressure plasma treatment, Materials (Basel). 13 (2020) 1–13.
    [86] A. Jordá-Vilaplana, V. Fombuena, D. García-García, M.D. Samper, L. Sánchez-Nácher, Surface modification of polylactic acid (PLA) by air atmospheric plasma treatment, Eur. Polym. J. 58 (2014) 23–33.
    [87] F. Renò, D. D’Angelo, G. Gottardi, M. Rizzi, D. Aragno, G. Piacenza, F. Cartasegna, M. Biasizzo, F. Trotta, M. Cannas, Atmospheric pressure plasma surface modification of poly(D, L -lactic acid) increases fibroblast, osteoblast and keratinocyte adhesion and proliferation, Plasma Process. Polym. 9 (2012) 491–502.
    [88] B. Hergelová, A. Zahoranová, D. Kováčik, M. Stupavská, M. Černák, Polylactic acid surface activation by atmospheric pressure dielectric barrier discharge plasma, Open Chem. 13 (2015) 564–569.
    [89] W. Pornwannachai, A. Richard Horrocks, B.K. Kandola, Surface Modification of Commingled Flax/PP and Flax/PLA Fibres by Silane or Atmospheric Argon Plasma Exposure to Improve Fibre–Matrix Adhesion in Composites, Fibers. 10 (2022) 2.

    無法下載圖示 全文公開日期 2027/08/23 (校內網路)
    全文公開日期 2027/08/23 (校外網路)
    全文公開日期 2027/08/23 (國家圖書館:臺灣博碩士論文系統)
    QR CODE