簡易檢索 / 詳目顯示

研究生: 陳柏源
Bo-Yuan Chen
論文名稱: DLP型高速列印大面積樹脂回流之探討
Study on Large Area Resin Refilling in High Speed DLP 3D Printing
指導教授: 鄭逸琳
Yih-Lin Cheng
口試委員: 郭俊良
Chun-Liang Kuo
陳建樺
Chien-Hua Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 121
中文關鍵詞: 高速3D列印樹脂回流溝槽微結構成型平台旋轉模式
外文關鍵詞: High speed 3D printing, Resin refilling, Groove microstructure, Rotation of platform
相關次數: 點閱:262下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 下照式DLP型3D列印技術在高速列印較大截面積時,因樹脂的黏滯性與表面張力,若z軸抬升微小層厚則樹脂常無法順利回流至列印區域,導致列印成品表面產生缺陷與列印失敗。本研究擬透過提升列印中樹脂的流動之策略探討,改善高速列印大截面積樹脂回流之問題。
    本研究安裝荷重元儀器於z軸上,讀取列印過程中z軸受力之波形,觀察高速列印不同截面積時樹脂回流不完全所對應之波形,發現當截面積與層厚之比值大於700cm,易產生大截面積樹脂回流問題。將透過兩種策略來提高樹脂的流動速度以改善回流問題。一為抬升時結合成型平台旋轉的方式,探討四種組合之效果,透過荷重元之波形分析選擇出適合的模式為邊上升邊旋轉,並在此模式下觀察不同旋轉速度、角度之影響。另一策略為在樹脂槽底部設計漩渦狀溝槽微結構,引導樹脂以輔助回流,結果顯示樹脂能有效回流至列印區域。搭配適合的旋轉模式,可成功列印物件至截面積與層厚比值為2826cm之大截面積實心物件。


    In the DLP-type high speed 3D printing, due to the viscosity and surface tension of the resin, the resin often encountered refilling issue if large cross-sectional areas were printed with limited rise of z-axis, resulting in printing defects and at worst printing failure.
    In this study, a load cell instrument was installed on the z-axis to read the z-axis force during the printing process, and observe the waveforms corresponding to the incomplete resin refill during high-speed printing with different cross-sectional areas. It was found that when the ratio of cross-sectional area to layer thickness was greater than 700 cm, easy it tends to produce large cross-sectional area resin refill problem. Two strategies will be adopted to increase the flow rate of the resin to improve solve the problem. The first is to combine the rotation of the platform when lifting, and explore the effects of the four combinations. Through the waveform analysis, the appropriate viable mode is selected as the rotation while rising, and the effects of different rotation speeds and angles are observed in this mode. Another strategy is to design a spiral groove microstructure at the bottom of the resin tank to guide the resin to refill. The results show that with a suitable rotation mode, the object can be successfully printed to a large cross-sectional area with a cross-sectional area to layer thickness ratio of 2826 cm.

    摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VIII 表目錄 XIV 第1章 緒論 1 1.1 研究背景 1 1.2 研究動機與目的 2 1.3 研究方法 3 1.4 論文架構 4 第2章 文獻探討 5 2.1 光固化式積層製造技術 5 2.1.1 積層製造技術(Additive Manufacturing) 5 2.1.2 光聚合固化技術(Vat Photopolymerization) 7 2.1.3 立體光固化成型技術(Stereolithography) 8 2.1.4 數位光投影成型(Digital Light Processing) 9 2.2 光固化自由基聚合原理 11 2.2.1 自由基反應機制 11 2.2.2 影響自由基反應因素[5] 14 2.3 下照式成型技術降低分離力之方法 15 2.3.1 物理上降低分離力的方式 15 2.3.2 化學上降低分離力的方式 18 2.4 樹脂回流探討 25 2.4.1 回流分析 25 2.4.2 輔助回流方式 26 第3章 實驗設備與材料介紹 29 3.1 下照式DLP成型系統 29 3.1.1 下照式動態光罩成型系統 29 3.1.2 動態光罩產生器 31 3.1.3 成型平台旋轉系統 33 3.1.4 動態光罩控制軟體 35 3.1.5 S型荷重元(S type Load cell) 36 3.2 實驗材料 38 3.3 樹脂料槽 40 3.3.1 矽膠膜料槽 40 3.3.2 Teflon膜料槽 41 3.3.3 抑制膜料槽 42 3.3.4 不同料槽測試 42 3.4 高速列印不同截面積之回流探討 46 第4章 成型平台旋轉測試 54 4.1 成型平台旋轉模式選擇 54 4.1.1 旋轉模式流程 54 4.1.2 旋轉模式測試 57 4.1.3 結果與討論 62 4.2 成型平台旋轉參數測試 66 4.2.1 旋轉速度之影響 66 4.2.2 旋轉角度之影響 75 4.3 成型平台旋轉精度之影響 81 第5章 溝槽微結構輔助回流 85 5.1 微結構設計與製作 85 5.2 溝槽微結構測試 88 5.3 溝槽圖型比較 94 第6章 結論與未來研究方向 98 6.1 結論 98 6.2 未來研究方向 99 參考文獻 100

    [1] Gibson, I., Rosen, D. W., & Stucker, B. (2010). “Additive manufacturing technologies.” Vol. 238. New York: Springer.
    [2] 鄭正元,江卓培,林宗翰,林榮信,蘇威年,汪家昌,蔡明忠,賴維祥,鄭逸琳,洪基彬,鄭中緯,宋宜駿,陳怡文,賴信吉,吳貞興,許郁淞,陳宇恩,2017年, “3D列印積層製造技術與應用” 全華圖書出版社。
    [3] Kim, H.C., Yoon, H.R., Lee, I.H., Ko, T.J., (2012). “Exposure Time Variation Method Using DMD for Microstereolithography.” Journal of Advanced Mechanical Design, Systems, and Manufacturing 6(1):44-51.
    [4] 王建國,2004,“高分子合成新技術”,化學工業出版社,第二章,p.79-121。
    [5] 王德海,江櫺,2001,“紫外光固化材料:理論與應用”,科學出版社,第二章,p.68-102。
    [6] Zhou, C., Chen, Y., Yang, Z., Behrokh, K., (2019). “Digital Material Fabrication Using Mask-Image-Projectionbased Stereolithography.” Rapid Prototyping 19(3):65-153.
    [7] Syao, K.C. (2016). “Stereolithography apparatus.” US Patent No. 9,452,567 B2.
    [8] Huang, Y.M., Jiang, C.P., (2005). “On-line force monitoring of platform ascending rapid prototyping system.” Journal of materials processing technology 159(2):257-264.
    [9] Jina, J., Yang, J.F., Mao, H.C., Chen, Y., (2017) “A vibration-assisted method to reduce separation force for stereolithography.” Journal of Manufacturing Processes 34:793-801
    [10] Tumbleston, J.R., Shirvanyants, D., Ermoshkin, N., Janusziewicz, R., Johnson, A.R., Kelly, D., Samulski, E.T., (2015). “Continuous liquid interface production of 3D objects.” Science 347(6228):1349-1352.
    [11] Quintanilla, A.L., Mecham, S.J., Desimone, J.M., Tumbleston, J.R., Janusziewicz, R., (2016). “Layerless fabrication with continuous liquid interface production” Proceeding of the National Academy of Sciences of the United States of America 113(42): 11703–11708.
    [12] EnvisionTEC. https://envisiontec.com/
    [13] Lian, Q., Yang, F., Xin, H., Li, D.C., (2017). “ Oxygen-controlled bottom-up mask-projection stereolithography for ceramic 3D printing.” Ceramics International 43(17):14956-14961.
    [14] NewPro 3D. https://newpro3d.com/
    [15] Nexa 3D. https://nexa3d.com/
    [16] Sprybuild. http://www.sprybuild.com/
    [17] 黃冠騰,2018,“快速光固化懸浮式3D列印成型技術之研究” ,國立臺灣科技大學碩士論文。
    [18] Wang, Q., Sun, Y., Guo, B., Li, P., & Li, Y. (2019). CFD analysis and prediction of suction force during the pulling-up stage of the continuous liquid interface production process. AIP Advances, 9(1), 015225.
    [19] He, H., Xu, J., Yu, X., & Pan, Y. (2018). Effect of constrained surface texturing on separation force in projection stereolithography. Journal of Manufacturing Science and Engineering, 140(9).
    [20] Wang, L., Luo, Y., Yang, Z., Dai, W., Liu, X., Yang, J., . . . Chen, L. (2019). Accelerated refilling speed in rapid stereolithography based on nano-textured functional release film. Additive Manufacturing, 29, 100791.
    [21] 陳貞佑,2019,“下照式DLP高速3D列印失敗因子之探討”,國立臺灣科技大學碩士論文。
    [22] Jeng, J.-Y., Cheng, Y.-L., Chen, D.-S., & Chen, Z.-Y. (2020). Method for Reducing Drawing Force in Forming Process of Photocurable Material: Google Patents.
    [23] Carbon3D. https://www.carbon3d.com/process
    [24]Chen, Y., & Zhou, C. (2015). Digital mask-image-projection-based additive manufacturing that applies shearing force to detach each added layer: Google Patents.
    [25] DeSimone, J. M., Ermoshkin, A., Ermoshkin, N., & Samulski, E. T. (2015). Continuous liquid interphase printing: Google Patents.
    [26] Shkolnik, A., El-Siblani, A., & John, H. (2011). Continuous generative process for producing a three-dimensional object: Google Patents.
    [27] Medalsy, I., & Tringaly, L. (2018). Method and apparatus for photo-curing photo-sensitive materials for the formation of three-dimensional objects in a tank with a flexible, self-lubricating substratum: Google Patents.
    [28] Gritsenko, D., Yazdi, A. A., Lin, Y., Hovorka, V., Pan, Y., & Xu, J. (2017). On characterization of separation force for resin replenishment enhancement in 3D printing. Additive Manufacturing, 17, 151-156.
    [29] 鄭正元、鄭逸琳、陳定閒、陳貞佑, 降低光固化材料成型過程的拉拔力之方法, TWI660830.

    無法下載圖示 全文公開日期 2025/08/18 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE