簡易檢索 / 詳目顯示

研究生: 蔡云槐
Yun-Huai Tsai
論文名稱: 3D列印光固化樹脂結合二氧化矽奈米粒子應用於被動日間輻射散熱
3D Printing Photocurable Resin with Silicon Dioxide Nanoparticles for Passive Daytime Radiative Cooling Application
指導教授: 鄭逸琳
Yih-Lin Cheng
口試委員: 鄭逸琳
曾修暘
周育任
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 105
中文關鍵詞: 3D列印光固化被動日間輻射冷卻奈米粒子散熱器
外文關鍵詞: 3D printing, DLP, passive daytime radiative cooling, nanoparticle radiator
相關次數: 點閱:178下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,全球暖化和氣候變遷已經成為全球關注的焦點議題。被動日間輻射冷卻作為不用外部能量輸入的散熱技術,正受到越來越多的關注。然而目前的散熱器中,仍然存在如高成本、製造與應用困難、製程複雜等問題。本研究旨在使用具有低設備門檻,製程簡易且材料製備容易的光固化3D列印製造散熱器,易於控制成品幾何形狀且能夠透過搭配各類PDRC效應填料提升散熱效應。
    本研究開發了一種基於非晶矽氧化物(SiO2)奈米粒子混合光固化高分子材料的材料配方,並使用DLP 3D列印技術製造散熱器。透過FTIR實驗,選擇了在大氣窗口具有良好紅外輻射能力的丙烯酸酯基寡聚物與單體作為高分子材料。漿料製備中,改良了傳統製程並使粉末有效分散於樹脂中。針對散熱效應的評估,日照結果發現,樣品的溫度與降溫幅度成正相關;而在大氣溫度為33-36攝氏度,控制組的未貼附散熱器之鋼板溫度為74.6攝氏度的條件下,這種輻射冷卻器能夠產生比控制組低18.5攝氏度的表面冷卻效果。此外,還進行了連續7天的日照實驗,驗證了每日均有相當的冷卻效果。實際應用方面,在GoPro之使用上有實質的冷卻效果,升溫幅度由5.8攝氏度改善至1.1攝氏度,有效解決戶外小型機械的過熱問題。


    In recent years, global warming and climate change have become the focal point of global concern. Passive Daytime Radiative Cooling (PDRC) technology, as a passive and environmentally friendly cooling strategy, has attracted increasing attention due to its lower energy consumption compared to traditional cooling methods. However, various radiative cooling devices still face some challenges, such as the high cost and manufacturing difficulties of multi-layer thin-film and patterned surface radiative coolers, as well as the continuous questioning of the cooling effectiveness in polymer thin-film and coating radiators due to material aging.
    DLP 3D printing offers rapid and cost-effective manufacturing with low equipment requirements, addressing the limitations of widespread adoption of multi-layer thin-film and patterned surface radiative coolers. By incorporating various PDRC-effect fillers, this technology enhances the cooling performance and provides high geometric customization capabilities, showcasing substantial potential for development in the PDRC field.
    Therefore, this study developed a manufacturing method for radiative coolers using a combination of amorphous silicon oxide (SiO2) nanoparticles and light-curable high polymer materials, 3D printed using DLP technology. Acrylate-based oligomers and monomers with infrared emissivity were selected as the high polymer materials. The evaluation of cooling effectiveness revealed promising results. Under atmospheric temperatures of 33-36 degrees Celsius, the radiative cooler demonstrated a surface cooling effect of 18.5 degrees Celsius lower than the control group's steel plate temperature of 74.6 degrees Celsius, validating its cooling capabilities. Additionally, a continuous 7-day sunlight exposure experiment confirmed the stability of the cooling effect. In practical applications, the radiative cooler exhibited substantial cooling effectiveness in the use of GoPro, reducing the temperature increase from 5.8 degrees Celsius to 1.1 degrees Celsius, effectively addressing overheating issues in outdoor small machinery.

    摘要 i Abstract ii 致謝 iv 目錄 v 圖目錄 viii 表目錄 xiii 第1章、 緒論 1 1.1 前言 1 1.2 研究動機與目的 2 1.3 研究方法 3 1.4 論文架構 4 第2章、 文獻探討 5 2.1 積層製造技術- Vat Photopolymerization 5 2.2 被動式日間輻射冷卻 (Passive Daytime Radiative Cooling) 8 2.2.1 聚合物薄膜與塗料散熱系統 10 2.2.2 多層薄膜散熱器 14 2.2.3 奈米粒子散熱系統 16 2.2.4 圖案化表面散熱系統 20 2.3 現階段散熱器之研究總結 22 第3章、 實驗設備與材料製備 25 3.1 樹脂材料與填料 25 3.1.1 Kirchhoff熱輻射定律 26 3.1.2 紅外光譜吸收表 27 3.1.3 Oligomer(寡聚物)與 Monomer (單體)之選用 28 3.1.4 樹脂材料介紹 30 3.1.5 PDRC效應之填料選用 34 3.1.6 樹脂比例 37 3.2 漿料製備 38 3.2.1 漿料配方 39 3.2.2 漿料列印成品 40 3.2.3 漿料製備製程改善 41 3.3 儀器設備 43 3.4 下照式DLP型3D列印機 43 3.4.1 動態光罩產生器 44 3.4.2 移動滑台(主軸) 46 3.4.3 控制軟體 46 3.5 量測儀器 47 3.5.1 光學顯微鏡 47 3.5.2 分厘卡 47 3.5.3 黏度計 48 3.5.4 FTIR 傅立葉轉換紅外線光譜儀 49 3.5.5 無線溫度計 50 3.5.6 紅外線熱成像儀 50 第4章、 PDRC效應測試與探討 52 4.1 傅立葉轉換紅外線光譜儀分析 52 4.1.1 FTIR result of PUA/PEGDA 53 4.1.2 FTIR result of mixed resin 54 4.1.3 FTIR result of mixed slurry 55 4.1.4 Transmittance spectra of cured sample 56 4.2 測試系統設計 56 4.3 不同樹脂成分散熱效應比較 60 4.3.1 不同純樹脂成分之散熱效應比較 60 4.3.2 是否添加二氧化矽之同樹脂成分之散熱效應比較 62 4.3.3 含二氧化矽之不同樹脂成分散熱效應比較 63 4.4 日照7日之散熱效應觀察 66 4.4.1 7日曝曬之降溫曲線 67 4.4.2 連續7日曝曬之平均最大降溫效果 71 4.4.3 無貼覆薄片之鋼板溫度區間之降溫效果比較 73 4.4.4 連續7日曝曬之散熱效果保持 74 4.5 PDRC效應實驗總結 76 第5章、 光固化散熱薄片之應用 77 5.1 GoPro散熱上蓋設計 77 5.1.1 GoPro過熱當機問題 77 5.1.2 上蓋尺寸與防滑圖案 78 5.1.3 GoPro散熱上蓋成品 79 5.1.4 GoPro散熱上蓋效果實測 80 第6章、 結論與未來研究展望 83 6.1 結論 83 6.2 未來研究方向 84 第7章、 參考文獻 85

    Gibson, I., Rosen, D. W., Stucker, B., Khorasani, M., Rosen, D., Stucker, B., & Khorasani, M.., Additive manufacturing technologies. Vol. 17. 2021: Springer.
    [2] Berman, B., 3-D printing: The new industrial revolution. Business horizons, 2012. 55(2): p. 155-162.
    [3] Santoliquido, O., P. Colombo, and A. Ortona, Additive Manufacturing of ceramic components by Digital Light Processing: A comparison between the “bottom-up” and the “top-down” approaches. Journal of the European Ceramic Society, 2019. 39(6): p. 2140-2148.
    [4] Greguric, L. WEVOLVER-Digital Light Processing 3D printing explained. Available from: https://www.wevolver.com/article/digital.light.processing.3d.printing.explained.
    [5] Li, Z., Chen, Q., Song, Y., Zhu, B., & Zhu, J., Fundamentals, materials, and applications for daytime radiative cooling. Advanced Materials Technologies, 2020. 5(5): p. 1901007.
    [6] Bhatia, B., Leroy, A., Shen, Y., Zhao, L., Gianello, M., Li, D., & Wang, E. N., Passive directional sub-ambient daytime radiative cooling. Nature communications, 2018. 9(1): p. 5001.
    [7] Granqvist, C. and A. Hjortsberg, Radiative cooling to low temperatures: General considerations and application to selectively emitting SiO films. Journal of Applied Physics, 1981. 52(6): p. 4205-4220.
    [8] Trombe, F., Perspectives sur l'utilisation des rayonnements solaires et terrestres dans certaines régions du monde. 1975.
    [9] Catalanotti, S., Leroy, A., Shen, Y., Zhao, L., Gianello, M., Li, D., Wang, E. N., The radiative cooling of selective surfaces. Solar Energy, 1975. 17(2): p. 83-89.
    [10] Landro, B. and P. McCormick, Effect of surface characteristics and atmospheric conditions on radiative heat loss to a clear sky. International Journal of Heat and Mass Transfer, 1980. 23(5): p. 613-620.
    [11] Czapla, B., Srinivasan, A., Yin, Q., & Narayanaswamy. Potential for passive radiative cooling by PDMS selective emitters. in Heat Transfer Summer Conference. 2017. American Society of Mechanical Engineers.
    [12] Hu, M., Pei, G., Wang, Q., Li, J., Wang, Y., & Ji, J., Field test and preliminary analysis of a combined diurnal solar heating and nocturnal radiative cooling system. Applied energy, 2016. 179: p. 899-908.
    [13] Orel, B., M.K. Gunde, and A. Krainer, Radiative cooling efficiency of white pigmented paints. Solar energy, 1993. 50(6): p. 477-482.
    [14] Michell, D. and K. Biggs, Radiation cooling of buildings at night. Applied Energy, 1979. 5(4): p. 263-275.
    [15] Granqvist, C., Radiative heating and cooling with spectrally selective surfaces. Applied Optics, 1981. 20(15): p. 2606-2615.
    [16] Palik, E.D., Handbook of optical constants of solids. Vol. 3. 1998: Academic press.
    [17] Mandal, J., Fu, Y., Overvig, A. C., Jia, M., Sun, K., Shi, N. N., Yang, Y., Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling. Science, 2018. 362(6412): p. 315-319.
    [18] Raman, A.P., Anoma, M. A., Zhu, L., Rephaeli, E., & Fan, S., Passive radiative cooling below ambient air temperature under direct sunlight. Nature, 2014. 515(7528): p. 540-544.
    [19] Kecebas, M.A., et al., Passive radiative cooling design with broadband optical thin-film filters. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017. 198: p. 179-186.
    [20] Gentle, A.R. and G.B. Smith, A subambient open roof surface under the Mid‐Summer sun. Advanced Science, 2015. 2(9).
    [21] Huang, Y., Pu, M., Zhao, Z., Li, X., Ma, X., & Luo, X., Broadband metamaterial as an “invisible” radiative cooling coat. Optics Communications, 2018. 407: p. 204-207.
    [22] Kou, J.-l., L., Jurado, Z., Chen, Z., Fan, S., & Minnich, A. J., Daytime radiative cooling using near-black infrared emitters. Acs Photonics, 2017. 4(3): p. 626-630.
    [23] Bao, H., Yan, C., Wang, B., Fang, X., Zhao, C. Y., & Ruan, X., Double-layer nanoparticle-based coatings for efficient terrestrial radiative cooling. Solar Energy Materials and Solar Cells, 2017. 168: p. 78-84.
    [24] Gentle, A.R. and G.B. Smith, Radiative heat pumping from the earth using surface phonon resonant nanoparticles. Nano letters, 2010. 10(2): p. 373-379.
    [25] Zhai, Y., Ma, Y., David, S. N., Zhao, D., Lou, R., Tan, G., & Yin, X., Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling. Science, 2017. 355(6329): p. 1062-1066.
    [26] Huang, Z. and X. Ruan, Nanoparticle embedded double-layer coating for daytime radiative cooling. International journal of heat and mass transfer, 2017. 104: p. 890-896.
    [27] Suichi, T., Ishikawa, A., Tanaka, T., Hayashi, Y., & Tsuruta, K., Whitish daytime radiative cooling using diffuse reflection of non-resonant silica nanoshells. Scientific reports, 2020. 10(1): p. 6486.
    [28] Zou, C., Ren, G., Hossain, M. M., Nirantar, S., Withayachumnankul, W., Ahmed, T., & Fumeaux, C., Metal‐Loaded dielectric resonator metasurfaces for radiative cooling. Advanced Optical Materials, 2017. 5(20): p. 1700460.
    [29] Zhu, L., A. Raman, and S. Fan, Color-preserving daytime radiative cooling. Applied Physics Letters, 2013. 103(22): p. 223902.
    [30] Li, W., Shi, Y., Chen, Z., & Fan, S., Photonic thermal management of coloured objects. Nature communications, 2018. 9(1): p. 4240.
    [31] Rephaeli, E., A. Raman, and S. Fan, Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling. Nano letters, 2013. 13(4): p. 1457-1461.
    [32] Hossain, M.M., B. Jia, and M. Gu, A metamaterial emitter for highly efficient radiative cooling. Adv. Opt. Mater, 2015. 3(8): p. 1047-1051.
    [33] Robitaille, P.-M., Kirchhoff’s law of thermal emission: 150 years. Progr. Phys, 2009. 4: p. 3-13.
    [34] Socrates, G., Infrared and Raman characteristic group frequencies: tables and charts. 2004: John Wiley & Sons.
    [35] Boyd, I. and J.I. Wilson, A study of thin silicon dioxide films using infrared absorption techniques. Journal of Applied Physics, 1982. 53(6): p. 4166-4172.
    [36] Jeong, S.Y., Tso, C. Y., Ha, J., Wong, Y. M., Chao, C. Y., Huang, B., & Qiu, H., Field investigation of a photonic multi-layered TiO2 passive radiative cooler in sub-tropical climate. Renewable Energy, 2020. 146: p. 44-55.
    [37] Zhao, B., Hu, M., Ao, X., & Pei, G., Conceptual development of a building-integrated photovoltaic–radiative cooling system and preliminary performance analysis in Eastern China. Applied energy, 2017. 205: p. 626-634.
    [38] Jeong, S., Tso, C. Y., Wong, Y. M., Chao, C. Y., & Huang, B., Daytime passive radiative cooling by ultra emissive bio-inspired polymeric surface. Solar Energy Materials and Solar Cells, 2020. 206: p. 110296.
    [39] Takahashi, T., Fournier, A., Nakamura, F., Wang, L. H., Murakami, Y., Kalb, R. G., ... & Strittmatter, S. M., Plexin-neuropilin-1 complexes form functional semaphorin-3A receptors. Cell, 1999. 99(1): p. 59-69.
    [40] Larkin, J.M. and A.J. McGaughey, Thermal conductivity accumulation in amorphous silica and amorphous silicon. Physical Review B, 2014. 89(14): p. 144303.
    [41] Salisbury, J.W. and D.M. D'Aria, Emissivity of terrestrial materials in the 8–14 μm atmospheric window. Remote sensing of Environment, 1992. 42(2): p. 83-106.
    [42] Lord, S.D., A new software tool for computing Earth's atmospheric transmission of near-and far-infrared radiation. Vol. 103957. 1992: Ames Research Center.

    無法下載圖示
    全文公開日期 2025/08/25 (校外網路)
    全文公開日期 2025/08/25 (國家圖書館:臺灣博碩士論文系統)
    QR CODE