簡易檢索 / 詳目顯示

研究生: 黃亦釩
Yi-Fan Huang
論文名稱: 藉由相分離調整微結構以控制3D列印手術仿體的超音波性質
Controlling Ultrasonic Properties of 3D-Printed Phantoms through the Adjustment of Microstructures via Phase Separation
指導教授: 何明樺
Ming-Hua Ho
口試委員: 何明樺
Ming-Hua Ho
葉樹開
Shu-Kai Yeh
洪維松
Wei-Song Hung
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 112
語文別: 中文
論文頁數: 103
中文關鍵詞: 3D列印交聯密度誘導相分離多官能基單體超音波
外文關鍵詞: 3D printing (3DP), crosslinking density, induced phase separation, multi-functional monomers, ultrasonic
相關次數: 點閱:269下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在這項研究中,我們將多種官能基單體和致孔劑與寡聚體結合,藉由調節交聯密度和利用非溶劑-聚合誘導相分離 (nonsolvent-polymerization induced phase separation, N-PIPS) 技術控制3D列印 (3D printing, 3DP) 產品的密度、機械性質與聲學性質 (acoustic property)。N-PIPS已被證實可以生成微米至次微米級的孔隙,成功克服了3DP在列印尺寸和列印時間的限制。
    實驗結果表明,固化樹脂的密度會隨著引入多官能基單體所造成的交聯密度增加而增加,此外,光固化樹脂的楊氏模數和玻璃轉移溫度 (glass transition temperature, Tg) 也隨著樹脂密度的增加而增加,從而影響聲學性質,密度越高,聲速 (speed of sound, SoS) 越高。
    這項研究所使用的 N-PIPS 在 3DP中能誘導出微觀結構,結果表明,當致孔劑和寡聚體之間的親和力 (affinity) 增加時,相分離速率降低,形成雙連續多孔結構 (bi-continuous structure)。反之,致孔劑和寡聚體相互作用較弱時,可能導致快速相分離並產生格狀孔洞 (cellular pores)。最終所得結構的孔隙率範圍為8.3-34.4%,孔徑範圍約為0.2-367.0 μm,總孔隙面積為21.8-28.4 m2/g。
    本研究探究多孔結構對聲學性質的影響,孔隙率的增加會導致聲速降低和衰減係數 (attenuation coefficient, AC) 增加。研究結果表明,在製造具有複雜多孔結構的組織複製品時,將N-PIPS和3DP整合在一起有巨大的潛力。這些製造出來的體模具有理想的聲學特性,可以應用於臨床訓練中。


    In this study, we formulated a resin by combining oligomers with various functional monomers and a porogen. This allowed for the adjustment of the crosslinking density and the utilization of N-PIPS, thereby enabling control over the density, mechanical strength, and acoustic properties of 3D-printed (3DP) products. The N-PIPS method proved to be effective in generating micrometer to sub-micrometer pores, overcoming the limitations of multi-scales in 3DP.
    The experimental results indicated that the density of the cured resin increased with the crosslinking density achieved by incorporating multi-functional monomers. The Young's modulus and Tg (glass transition temperature) of the photo-cured resin also increased with resin density, thereby influencing the acoustic properties. Higher density led to higher acoustic speed.
    This research induced microstructures in 3DP using N-PIPS. The results showed that when the affinity between the porogen and oligomers increased, the phase separation rate decreased, resulting in bi-continuous porous structures. Conversely, low porogen-oligomer interaction caused fast phase separation and resulted in cellular pores. The obtained structure exhibited a porosity range of 8.3-34.4%, a pore size range of approximately 0.2-367.0 μm, and a total pore area of 21.8-28.4 m2/g.
    The influence of porous structures on acoustic properties was investigated. Increased porosity led to a decrease in acoustic speed and an increase in the attenuation coefficient. This study demonstrated the potential of integrating N-PIPS and 3DP in the fabrication of tissue replicates with complicated porous structures. These phantoms with ideal ultrasonic properties could be applied in clinical training.

    目錄 摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VIII 表目錄 XII 方程式目錄 XIII 專有名詞與縮寫 XIV 第一章 緒論 1 第二章 文獻回顧 2 2.1 超音波簡介 2 2.1.1 仿體之應用及重要性 2 2.1.2 組織模擬材料 3 2.1.3 傳統製成的仿體調控 5 2.2 積層製造 6 2.2.1 光聚合固化技術 7 2.2.2 單體之官能基影響 8 2.3 相分離 10 2.3.1 非溶劑誘導相分離 11 2.3.2 聚合誘導相分離 15 第三章 實驗材料與方法 17 3.1 實驗藥品 17 3.2 實驗儀器 18 3.3 光固化樹脂基材製備 19 3.3.1 光固化樹脂製備 19 3.3.2 光固化樹脂列印參數 20 3.4 光固化基材性質分析 22 3.4.1 黏度檢測 22 3.4.2 多功能固體密度測試 22 3.4.3 接觸角測量儀分析 22 3.4.4 壓縮試驗 23 3.4.5 衰減全反射式傅立葉轉紅外光光譜儀 (ATR FTIR) 24 3.4.6 熱重分析 (TGA) 檢測 24 3.4.7 差示掃描量熱法分析 25 3.5 相分離材料鑑定 25 3.5.1 紫外可/見光光譜分析 (UV/VIS) 25 3.5.2 水銀孔隙法 (MICP) 26 3.5.3 電子顯微鏡 (SEM) 樣品製備 27 3.6 非破壞性檢測分析 28 3.6.1 聲速的檢測 28 3.6.2 衰退係數分析 29 第四章 結果與討論 30 4.1 光固化樹脂配方之單體對物理性質的影響 30 4.1.1 流變性之影響 32 4.1.2 轉化率和交聯密度之影響 34 4.1.3 機械性質分析 39 4.1.4 熱分析 41 4.1.5 親疏水之分析 44 4.2 致孔劑之影響 46 4.2.1 1-Decanol/DMSO ratio 58 4.3 超音波定量化分析聲速與衰退係數 65 4.3.1 單體對聲速與衰退係數之影響 66 4.3.2 相分離結構對聲速與衰退係數之影響 69 第五章 結論 71 參考文獻 72

    1. Dong, Z., Cui, H., Zhang, H., Wang, F., Zhan, X., Mayer, F., Nestler, B., Wegener, M., and Levkin, P.A. (2021). 3D printing of inherently nanoporous polymers via polymerization-induced phase separation. Nature Communications. 12: 247-258.
    2. Miller, D.L., Smith, N.B., Bailey, M.R., Czarnota, G.J., Hynynen, K., Makin, I.R.S., Amer Inst Ultrasound, M., and Bioeffects, C. (2012). Overview of Therapeutic Ultrasound Applications and Safety Considerations. Journal of Ultrasound in Medicine. 31: 623-634.
    3. Nwawka, O.K. (2016). Update in Musculoskeletal Ultrasound Research. Sports Health-A Multidisciplinary Approach. 8: 429-437.
    4. Prada, F., Kalani, M.Y.S., Yagmurlu, K., Norat, P., Del Bene, M., DiMeco, F., and Kassell, N.F. (2019). Applications of Focused Ultrasound in Cerebrovascular Diseases and Brain Tumors. Neurotherapeutics. 16: 67-87.
    5. Fischer, C., Krix, M., Weber, M.A., Loizides, A., Gruber, H., Jung, E.M., Klauser, A., Radzina, M., and Dietrich, C.F. (2020). Contrast-Enhanced Ultrasound for Musculoskeletal Applications: A World Federation for Ultrasound in Medicine and Biology Position Paper. Ultrasound in Medicine & Biology. 46: 1279-1295.
    6. Roseti, L., Parisi, V., Petretta, M., Cavallo, C., Desando, G., Bartolotti, I., and Grigolo, B. (2017). Scaffolds for Bone Tissue Engineering: State of the art and new perspectives. Materials Science and Engineering: C. 78: 1246-1262.
    7. Kiss, M.Z., Varghese, T., and Kliewer, M.A. (2011). Ex vivo ultrasound attenuation coefficient for human cervical and uterine tissue from 5 to 10 MHz. Ultrasonics. 51: 467-471.
    8. Leighton, T.G. (2007). What is ultrasound? Progress in Biophysics & Molecular Biology. 93: 3-83.
    9. Meinzer, A., Alkatout, I., Krebs, T.F., Baastrup, J., Reischig, K., Meiksans, R., and Bergholz, R. (2020). Advances and Trends in Pediatric Minimally Invasive Surgery. Journal of Clinical Medicine. 9: 3999-4020.
    10. Runciman, M., Darzi, A., and Mylonas, G.P. (2019). Soft Robotics in Minimally Invasive Surgery. Soft Robotics. 6: 423-443.
    11. Beyer Berjot, L., Maggiori, L., Loiseau, D., De Korwin, J.D., Bongiovanni, J.P., Lesprit, P., Salles, N., Rousset, P., Lescot, T., Henriot, A., Lefrancois, M., Cotte, E., and Parc, Y. (2020). Emergency Surgery in Acute Diverticulitis: A Systematic Review. Diseases of The Colon & Rectum. 63: 397-405.
    12. Ceresoli, M., Pisano, M., Abu Zidan, F., Allievi, N., Gurusamy, K., Biffl, W.L., Tebala, G.D., Catena, F., Ansaloni, L., Sartelli, M., Kluger, Y., Baiocchi, G., Fette, A., Hecker, A., Litvin, A., Forgione, A., Leppaniemi, A., De Simone, B., Sakakushev, B., Palmatier, C.R., Bendinelli, C., Damaskos, D., Picetti, E., Tan, E., Poiasina, E., Pikoulis, E., Cicuttin, E., Moore, E.E., Velmahos, G., Fraga, G., Van Goor, H., Civil, I., Wani, I., Di Carlo, I., Galante, J., Søreide, K., Degrate, L., Zorcolo, L., De Moya, M., Braga, M., Cereda, M., Sugrue, M., Chirica, M., De Angelis, N., Stahel, P.F., Ivatury, R., Ten Broek, R., Di Saverio, S., Beka, S.G., Magnone, S., Cui, Y., Balogh, Z.J., Kelly, M.D., Inaba, K., Coccolini, F., group, W.M.w., and consortia, W.M. (2022). Minimally invasive surgery in emergency surgery: a WSES survey. World Journal of Emergency Surgery. 17: 18-26.
    13. Mandrioli, M., Inaba, K., Piccinini, A., Biscardi, A., Sartelli, M., Agresta, F., Catena, F., Cirocchi, R., Jovine, E., Tugnoli, G., and Di Saverio, S. (2016). Advances in laparoscopy for acute care surgery and trauma. World J Gastroenterol. 22: 668-680.
    14. Damoli, I., Butturini, G., Ramera, M., Paiella, S., Marchegiani, G., and Bassi, C. (2015). Minimally invasive pancreatic surgery. A review. Videosurgery and Other Miniinvasive Techniques. 10: 141-149.
    15. Forte, A.E., Galvan, S., Manieri, F., Rodriguez y Baena, F., and Dini, D. (2016). A composite hydrogel for brain tissue phantoms. Materials & Design. 112: 227-238.
    16. Madsen, E.L., Frank, G.R., and Dong, F. (1998). Liquid or Solid Ultrasonically Tissue-Mimicking Materials with Very Low Scatter. Ultrasound in Medicine & Biology. 24: 535-542.
    17. Brewin, M.P., Pike, L.C., Rowland, D.E., and Birch, M.J. (2008). The Acoustic Properties, Centered on 20 MHZ, of an IEC Agar-Based Tissue-Mimicking Material and its Temperature, Frequency and Age Dependence. Ultrasound in Medicine & Biology. 34: 1292-1306.
    18. Demitri, C., Sannino, A., Conversano, F., Casciaro, S., Distante, A., and Maffezzoli, A. (2008). Hydrogel Based Tissue Mimicking Phantom for In-Vitro Ultrasound Contrast Agents Studies. Journal of biomedical materials research. Part B, Applied biomaterials. 87: 338-345.
    19. Monteiro Souza, R., de Assis, M.K.M., Pereira Barretto da Costa Félix, R., and Victor Alvarenga, A. (2022). Speed of sound in the IEC tissue-mimicking material and its maintenance solution as a function of temperature. Ultrasonics. 118: 106564-106570.
    20. Józefczak, A., Kaczmarek, K., Kubovčíková, M., Rozynek, Z., and Hornowski, T. (2017). The effect of magnetic nanoparticles on the acoustic properties of tissue-mimicking agar-gel phantoms. Journal of Magnetism and Magnetic Materials. 431: 172-175.
    21. Wang, S., Noh, Y., Brown, J., Roujol, S., Li, Y., Wang, S., Housden, R., Ester, M.C., Al-Hamadani, M., Rajani, R., and Rhode, K. (2020). Development and Testing of an Ultrasound-Compatible Cardiac Phantom for Interventional Procedure Simulation Using Direct Three-Dimensional Printing. 3D Printing and Additive Manufacturing. 7: 269-278.
    22. Bush, N.L. and Hill, C.R. (1983). Gelatine-alginate complex gel: a new acoustically tissue-equivalent material. Ultrasound Med Biol. 9: 479-484.
    23. Wojcik, G., Szabo, T., Mould, J., Carcione, L., and Clougherty, F. Nonlinear pulse calculations and data in water and a tissue mimic. In 1999 IEEE Ultrasonics Symposium. Proceedings. International Symposium (Cat. No.99CH37027). 1999; 2: 1521-1526.
    24. Kumar, M., Ghosh, S., Kumar, V., Sharma, V., and Roy, P. (2022). Tribo-mechanical and biological characterization of PEGDA/bioceramics composites fabricated using stereolithography. Journal of Manufacturing Processes. 77: 301-312.
    25. Culjat, M.O., Goldenberg, D., Tewari, P., and Singh, R.S. (2010). A Review of Tissue Substitutes for Ultrasound Imaging. Ultrasound in Medicine & Biology. 36: 861-873.
    26. Chen, P., Pollet, A.M.A.O., Panfilova, A., Zhou, M., Turco, S., den Toonder, J.M.J., and Mischi, M. (2022). Acoustic characterization of tissue-mimicking materials for ultrasound perfusion imaging research. Ultrasound in Medicine & Biology. 48: 124-142.
    27. Dabbagh, A., Abdullah, B.J.J., Ramasindarum, C., and Abu Kasim, N.H. (2014). Tissue-Mimicking Gel Phantoms for Thermal Therapy Studies. Ultrasonic Imaging. 36: 291-316.
    28. Strelitzki, R., Evans, J.A., and Clarke, A.J. (1997). The influence of porosity and pore size on the ultrasonic properties of bone investigated using a phantom material. Osteoporosis International. 7: 370-375.
    29. Wydra, A. and Maev, R.G. (2013). A novel composite material specifically developed for ultrasound bone phantoms: cortical, trabecular and skull. Physics in Medicine & Biology. 58: N303-N319.
    30. Mohammed, B., Bialkowski, K., Hill, S., Stancombe, A., Alqadami, A., Heitzmann, M.T., and Abbosh, A. (2021). Stable and Lifelong Head Phantoms Using Polymer Composition Mimicking Materials to Test Electromagnetic Medical Imaging Systems. IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology. 5: 322-328.
    31. Kondo, T., Kitatuji, M., and Kanda, H. New tissue mimicking materials for ultrasound phantoms. In IEEE Ultrasonics Symposium, 2005. 2005; 3: 1664-1667.
    32. Dawson, A., Harris, P., and Gouws, G. (2010). Anisotropic microstructured poly(vinyl alcohol) tissue-mimicking phantoms. IEEE Trans Ultrason Ferroelectr Freq Control. 57: 1494-1496.
    33. Wróbel, M.S., Popov, A.P., Bykov, A.V., Tuchin, V.V., and Jędrzejewska-Szczerska, M. (2016). Nanoparticle-free tissue-mimicking phantoms with intrinsic scattering. Biomedical Optics Express. 7: 2088-2094.
    34. Lötters, J.C., Olthuis, W., Veltink, P.H., and Bergveld, P. (1997). The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications. Journal of Micromechanics and Microengineering. 7: 145-148.
    35. Goldfain, A.M., Lemaillet, P., Allen, D.W., Briggman, K.A., and Hwang, J. (2022). Polydimethylsiloxane tissue-mimicking phantoms with tunable optical properties. Journal of Biomedical Optics. 27: 074706-074718.
    36. Liang, X., Oldenburg, A.L., Crecea, V., Chaney, E.J., and Boppart, S.A. (2008). Optical micro-scale mapping of dynamic biomechanical tissue properties. Optics Express. 16: 11052-11065.
    37. Grech Sollars, M., Zhou, F.L., Waldman, A.D., Parker, G.J.M., and Hubbard Cristinacce, P.L. (2018). Stability and reproducibility of co-electrospun brain-mimicking phantoms for quality assurance of diffusion MRI sequences. NeuroImage. 181: 395-402.
    38. Öhman Mägi, C., Holub, O., Wu, D., Hall, R.M., and Persson, C. (2021). Density and mechanical properties of vertebral trabecular bone—A review. Jor Spine. 4: e1176-e1190.
    39. Wen Chun, Y., Yung Ming, J., Hey Chi, H., Po Ling, K., Meng Lin, L., Pei Ming, Y., Po Huang, L., and Pai Chi, L. Young's modulus measurements of human liver and correlation with pathological findings. In 2001 IEEE Ultrasonics Symposium. Proceedings. An International Symposium 2001; 2: 1233-1236.
    40. Li, S., Demirci, E., and Silberschmidt, V.V. (2013). Variability and anisotropy of mechanical behavior of cortical bone in tension and compression. Journal of the Mechanical Behavior of Biomedical Materials. 21: 109-120.
    41. Ruschin, M., Davidson, S.R.H., Phounsy, W., Yoo, T.S., Chin, L., Pignol, J.-P., Ravi, A., and McCann, C. (2016). Technical Note: Multipurpose CT, ultrasound, and MRI breast phantom for use in radiotherapy and minimally invasive interventions. Medical Physics. 43: 2508-2514.
    42. Mathur, A.B., Collinsworth, A.M., Reichert, W.M., Kraus, W.E., and Truskey, G.A. (2001). Endothelial, cardiac muscle and skeletal muscle exhibit different viscous and elastic properties as determined by atomic force microscopy. Journal of Biomechanics. 34: 1545-1553.
    43. Nightingale, K., McAleavey, S., and Trahey, G. (2003). Shear-wave generation using acoustic radiation force: in vivo and ex vivo results. Ultrasound in Medicine & Biology. 29: 1715-1723.
    44. Snedeker, J.G., Barbezat, M., Niederer, P., Schmidlin, F.R., and Farshad, M. (2005). Strain energy density as a rupture criterion for the kidney: impact tests on porcine organs, finite element simulation, and a baseline comparison between human and porcine tissues. Journal of Biomechanics. 38: 993-1001.
    45. McGarry, C.K., Grattan, L.J., Ivory, A.M., Leek, F., Liney, G.P., Liu, Y., Miloro, P., Rai, R., Robinson, A.P., Shih, A.J., Zeqiri, B., and Clark, C.H. (2020). Tissue mimicking materials for imaging and therapy phantoms: a review. Phys Med Biol. 65: 1-43.
    46. Johnson, B., Campbell, S., and Campbell Kyureghyan, N. (2020). The differences in measured prostate material properties between probing and unconfined compression testing methods. Medical Engineering & Physics. 80: 44-51.
    47. King, R.L., Liu, Y., Maruvada, S., Herman, B.A., Wear, K.A., and Harris, G.R. (2011). Development and characterization of a tissue-mimicking material for high-intensity focused ultrasound. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 58: 1397-1405.
    48. de Bruin, D.M., Bremmer, R.H., Kodach, V.M., de Kinkelder, R., van Marle, J., van Leeuwen, T.G., and Faber, D.J. (2010). Optical phantoms of varying geometry based on thin building blocks with controlled optical properties. Journal of biomedical optics. 15: 025001-025010.
    49. Bagheri, A. and Jin, J. (2019). Photopolymerization in 3D Printing. ACS Applied Polymer Materials. 1: 593-611.
    50. Wang, M.O., Vorwald, C.E., Dreher, M.L., Mott, E.J., Cheng, M.-H., Cinar, A., Mehdizadeh, H., Somo, S., Dean, D., Brey, E.M., and Fisher, J.P. (2015). Evaluating 3D-Printed Biomaterials as Scaffolds for Vascularized Bone Tissue Engineering. Advanced Materials. 27: 138-144.
    51. Zhang, J., Hu, Q., Wang, S., Tao, J., and Gou, M. (2020). Digital Light Processing Based Three-dimensional Printing for Medical Applications. Int J Bioprint. 6: 242-257.
    52. Geng, Q., Wang, D., Chen, P., and Chen, S.C. (2019). Ultrafast multi-focus 3-D nano-fabrication based on two-photon polymerization. Nature Communications. 10: 2179-2185.
    53. Magnoni, F., Rannée, A., Marasinghe, L., El Fouhaili, B., Allonas, X., and Croutxé Barghorn, C. (2018). Correlation between the scratch resistance of UV-cured PUA-based coatings and the structure and functionality of reactive diluents. Progress in Organic Coatings. 124: 193-199.
    54. Xu, X., Zhou, S., Wu, J., Liu, Y., Wang, Y., and Chen, Z. (2021). Relationship between the adhesion properties of UV-curable alumina suspensions and the functionalities and structures of UV-curable acrylate monomers for DLP-based ceramic stereolithography. Ceramics International. 47: 32699-32709.
    55. Kilambi, H., Reddy, S.K., Schneidewind, L., Lee, T.Y., Stansbury, J.W., and Bowman, C.N. (2007). Design, Development, and Evaluation of Monovinyl Acrylates Characterized by Secondary Functionalities as Reactive Diluents to Diacrylates. Macromolecules. 40: 6112-6118.
    56. Krongauz, V.V. (2010). Diffusion in polymers dependence on crosslink density. Journal of Thermal Analysis and Calorimetry. 102: 435-445.
    57. Fang, C., Wu, C., and Zhao, X. (2023). Preparation and characterization of high solid content acrylate latex pressure sensitive adhesives with difunctional cross-linker EGDMA. International Journal of Adhesion and Adhesives. 125: 103403-103410.
    58. Wang, Y., Ma, M., Wang, J., Zhang, W., Lu, W., Gao, Y., Zhang, B., and Guo, Y. (2018). Development of a Photo-Crosslinking, Biodegradable GelMA/PEGDA Hydrogel for Guided Bone Regeneration Materials. Materials (Basel). 11: 1345-1356.
    59. Wang, K.M., Guan, J.Y., Mi, F., Chen, J.J., Yin, H., Wang, J., and Yu, Q. (2015). A novel method for preparation of cross-linked PEGDA microfibers by low-temperature photopolymerization. Materials Letters. 161: 317-320.
    60. Eshel Green, T., Eliyahu, S., Avidan Shlomovich, S., and Bianco Peled, H. (2016). PEGDA hydrogels as a replacement for animal tissues in mucoadhesion testing. International Journal of Pharmaceutics. 506: 25-34.
    61. Sarwar, M.S., Simon, U., and Dimartino, S. (2021). Experimental investigation and mass transfer modelling of 3D printed monolithic cation exchangers. Journal of Chromatography A. 1646: 462125-462136.
    62. Chang, F.L., Hu, B., Huang, W.T., Chen, L., Yin, X.C., Cao, X.W., and He, G.J. (2022). Improvement of rheology and mechanical properties of PLA/PBS blends by in-situ UV-induced reactive extrusion. Polymer. 259: 125336-125346.
    63. Mulder, M. (1996) Preparation of Synthetic Membranes. In (Eds.), Basic Principles of Membrane Technology.(chap. 71-156, 187Springer Netherlands.
    64. Kim, J.H., Min, B.R., Won, J., Park, H.C., and Kang, Y.S. (2001). Phase behavior and mechanism of membrane formation for polyimide/DMSO/water system. Journal of Membrane Science. 187: 47-55.
    65. Wang, D.M. and Lai, J.Y. (2013). Recent advances in preparation and morphology control of polymeric membranes formed by nonsolvent induced phase separation. Current Opinion in Chemical Engineering. 2: 229-237.
    66. Guillen, G.R., Pan, Y., Li, M., and Hoek, E.M.V. (2011). Preparation and Characterization of Membranes Formed by Nonsolvent Induced Phase Separation: A Review. Industrial & Engineering Chemistry Research. 50: 3798-3817.
    67. Boucher, D.S. (2020). Solubility parameters and solvent affinities for polycaprolactone: A comparison of methods. Journal of Applied Polymer Science. 137: 48908-489020.
    68. Smolders, C.A., Reuvers, A.J., Boom, R.M., and Wienk, I.M. (1992). Microstructures in phase-inversion membranes. Part 1. Formation of macrovoids. Journal of Membrane Science. 73: 259-275.
    69. Young, T.H. and Chen, L.W. (1995). Pore formation mechanism of membranes from phase inversion process. Desalination. 103: 233-247.
    70. Li, J.F., Xu, Z.L., and Yang, H. (2008). Microporous polyethersulfone membranes prepared under the combined precipitation conditions with non-solvent additives. Polymers for Advanced Technologies. 19: 251-257.
    71. Idris, A., Man, Z., Maulud, A.S., and Khan, M.S. (2017). Effects of Phase Separation Behavior on Morphology and Performance of Polycarbonate Membranes. Membranes, 7: 21-38.
    72. Zheng, Q.Z., Wang, P., and Yang, Y.N. (2006). Rheological and thermodynamic variation in polysulfone solution by PEG introduction and its effect on kinetics of membrane formation via phase-inversion process. Journal of Membrane Science. 279: 230-237.
    73. Mazinani, S., Darvishmanesh, S., Ehsanzadeh, A., and Van der Bruggen, B. (2017). Phase separation analysis of Extem/solvent/non-solvent systems and relation with membrane morphology. Journal of Membrane Science. 526: 301-314.
    74. AbdulKadir, W.A.F.W., Yunos, K.F.M., Hassan, A.R., Amin, N.A.M., and Baharuddin, A.S. (2019). Fabrication and performance of PSf/CA ultrafiltration membranes: Effect of additives for fouling resistance and selective polyphenol removal from apple juice. BioResources. 14: 737-754.
    75. Mansourizadeh, A. and Ismail, A.F. (2010). Effect of LiCl concentration in the polymer dope on the structure and performance of hydrophobic PVDF hollow fiber membranes for CO2 absorption. Chemical Engineering Journal. 165: 980-988.
    76. Lee, H.J., Won, J., Lee, H., and Kang, Y.S. (2002). Solution properties of poly (amic acid)–NMP containing LiCl and their effects on membrane morphologies. Journal of Membrane Science. 196: 267-277.
    77. Lee, K.W., Seo, B.K., Nam, S.T., and Han, M.J. (2003). Trade-off between thermodynamic enhancement and kinetic hindrance during phase inversion in the preparation of polysulfone membranes. Desalination. 159: 289-296.
    78. Sudhakar, Y.N., Selvakumar, M., and Bhat, D.K. (2018). Biopolymer electrolytes: fundamentals and applications in energy storage. Elsevier.
    79. Lindvig, T., Michelsen, M.L., and Kontogeorgis, G.M. (2002). A Flory–Huggins model based on the Hansen solubility parameters. Fluid Phase Equilibria. 203: 247-260.
    80. Durkee, J. (2013). Cleaning with solvents: science and technology. William Andrew.
    81. Liu, Y. (2013). Polymerization-induced phase separation and resulting thermomechanical properties of thermosetting/reactive nonlinear polymer blends: A review. Journal of Applied Polymer Science. 127: 3279-3292.
    82. Tsujioka, N., Ishizuka, N., Tanaka, N., Kubo, T., and Hosoya, K. (2008). Well-controlled 3D skeletal epoxy-based monoliths obtained by polymerization induced phase separation. Journal of Polymer Science Part A: Polymer Chemistry. 46: 3272-3281.
    83. Kwok, A.Y., Prime, E.L., Qiao, G.G., and Solomon, D.H. (2003). Synthetic hydrogels 2. Polymerization induced phase separation in acrylamide systems. Polymer. 44: 7335-7344.
    84. Kunz Douglass, S., Beaumont, P.W.R., and Ashby, M.F. (1980). A model for the toughness of epoxy-rubber particulate composites. Journal of Materials Science. 15: 1109-1123.
    85. Bucknall, C.B. and Gilbert, A.H. (1989). Toughening tetrafunctional epoxy resins using polyetherimide. Polymer. 30: 213-217.
    86. Oyanguren, P.A., Frontini, P.M., Williams, R.J.J., Vigier, G., and Pascault, J.P. (1996). Reaction-induced phase separation in poly(butylene terephthalate)-epoxy systems: 2. Morphologies generated and resulting properties. Polymer. 37: 3087-3092.
    87. Ron, E.Z. and Rosenberg, E. (2014). Enhanced bioremediation of oil spills in the sea. Current Opinion in Biotechnology. 27: 191-194.
    88. Szczepanski, C.R. and Stansbury, J.W. (2015). Modification of linear prepolymers to tailor heterogeneous network formation through photo-initiated polymerization-induced phase separation. Polymer. 70: 8-18.
    89. Palacios, J.K., Michell, R.M., and Müller, A.J. (2023). Crystallization, morphology and self-assembly of double, triple and tetra crystalline block polymers. Polymer Testing. 121: 107995-108026.
    90. Bhamidi, V., Kenis, P.J.A., and Zukoski, C.F. (2017). Probability of Nucleation in a Metastable Zone: Induction Supersaturation and Implications. Crystal Growth & Design. 17: 1132-1145.
    91. Williams, R.J.J., Hoppe, C.E., Zucchi, I.A., Romeo, H.E., dell’Erba, I.E., Gómez, M.L., Puig, J., and Leonardi, A.B. (2014). Self-assembly of nanoparticles employing polymerization-induced phase separation. Journal of Colloid and Interface Science. 431: 223-232.
    92. Zuo, S., Feng, W., Liu, F., Xu, X., Tao, X., Wang, L., Liu, H., and Lin, S. (2023). Polymerization-induced self-assembly of side-chain liquid crystalline copolymers by dissipative particle dynamics simulation. Polymer. 264: 125530-125537.
    93. Wu, Y., Xue, S., Yang, H., Zhang, H., Zhang, T., and Gou, S. (2017). Polymerization-induced phase separation for the fabrication of magnetic sponges for oil spill reclamation. Chemical Engineering Journal. 328: 639-644.
    94. Yu, B., Huang, Z., Fang, D., Yu, S., Fu, T., Tang, Y., and Li, Z. (2022). Biomimetic Porous Fluoropolymer Films with Brilliant Whiteness by Using Polymerization-Induced Phase Separation. Advanced Materials Interfaces. 9: 2101485-2101492.
    95. Zhang, J., Zhang, H., Yan, D., Zhou, H., and Yang, Y. (1997). Reaction-induced phase separation in rubber-modified epoxy resin. Science in China Series B: Chemistry. 40: 15-23.
    96. Dong, Z., Vuckovac, M., Cui, W., Zhou, Q., Ras, R.H.A., and Levkin, P.A. (2021). 3D Printing of Superhydrophobic Objects with Bulk Nanostructure. Advanced Materials. 33: 2106068-2106077.
    97. Bickham, A.V., Pang, C., George, B.Q., Topham, D.J., Nielsen, J.B., Nordin, G.P., and Woolley, A.T. (2020). 3D Printed Microfluidic Devices for Solid-Phase Extraction and On-Chip Fluorescent Labeling of Preterm Birth Risk Biomarkers. Analytical Chemistry. 92: 12322-12329.
    98. Zhao, S., Arnold, M., Ma, S., Abel, R.L., Cobb, J.P., Hansen, U., and Boughton, O. (2018). Standardizing compression testing for measuring the stiffness of human bone. Bone & Joint Research. 7: 524-538.
    99. Song, S.W. and Torkelson, J.M. (1995). Coarsening effects on the formation of microporous membranes produced via thermally induced phase separation of polystyrene-cyclohexanol solutions. Journal of Membrane Science. 98: 209-222.
    100. Nam, Y.S. and Park, T.G. (1999). Biodegradable polymeric microcellular foams by modified thermally induced phase separation method. Biomaterials. 20: 1783-1790.
    101. Ritter, H.L. and Drake, L.C. (1945). Pressure Porosimeter and Determination of Complete Macropore-Size Distributions. Pressure Porosimeter and Determination of Complete Macropore-Size Distributions. Industrial & Engineering Chemistry Analytical Edition. 17: 782-786.
    102. Sojahrood, A.J., Haghi, H., Karshfian, R., and Kolios, M.C. (2023). Probing the pressure dependence of sound speed and attenuation in bubbly media: Experimental observations, a theoretical model and numerical calculations. Ultrasonics Sonochemistry. 95: 106319-106349.
    103. Krainer, S., Smit, C., and Hirn, U. (2019). The effect of viscosity and surface tension on inkjet printed picoliter dots. RSC advances. 9: 31708-31719.
    104. Alesadi, A., Cao, Z., Li, Z., Zhang, S., Zhao, H., Gu, X., and Xia, W. (2022). Machine learning prediction of glass transition temperature of conjugated polymers from chemical structure. Cell Reports Physical Science. 3: 100911-100919.
    105. Sideridou, I., Tserki, V., and Papanastasiou, G. (2002). Effect of chemical structure on degree of conversion in light-cured dimethacrylate-based dental resins. Biomaterials. 23: 1819-1829.
    106. He, J., Li, L., Zhou, J., Tian, J., Chen, Y., Zou, H., and Liang, M. (2023). Ultra-high modulus epoxy resin reinforced by intensive hydrogen bond network: From design, synthesis, mechanism to applications. Composites Science and Technology. 231: 109815-109825.
    107. Boucher, D.S. (2020). Solubility parameters and solvent affinities for polycaprolactone: A comparison of methods. Journal of Applied Polymer Science. 137: 48908-48920.
    108. Abbott, S. (2017). Solubility science: principles and practice. University of Leeds: Leeds, UK. 61-91.
    109. PÜTZ, B.T.d., 22527 Hamburg (DE). and KRETZMER, R.D., 16, 22391 Hamburg (DE). (2019). Chemical-resistant polyacrylate and pressure-sensitive adhesive based thereon. Retrived from https://patentscope.wipo.int/search/en/detail.jsf?docId=DE244000878
    110. Aggarwal, P., Lawson, J.S., Tolley, H.D., and Lee, M.L. (2014). High efficiency polyethylene glycol diacrylate monoliths for reversed-phase capillary liquid chromatography of small molecules. Journal of Chromatography A. 1364: 96-106.
    111. Zhu, X.l., Zhang, L.n., Jiang, X.b., and Kong, X. (2013). Requirement on Hansen solubility parameters for the formation of uniform polymer microspheres in precipitation polymerization of TMPTA-styrene in water-ethanol mixed solvents. Acta Polym. Sin. 8: 1099-1107.
    112. 王予均(2020)。開發具生物相容性、高彈性與壓電性之3D列印光固化樹脂。(碩士論文。國立臺灣科技大學)臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/b4da4j。
    113. Furuya, T. and Koga, T. (2023). Molecular simulation of polymer gels synthesized by free radical copolymerization: Effects of concentrations and reaction rates on structure and mechanical properties. Polymer. 279: 126012-126021.
    114. Herrera Kao, W.A., Loría Bastarrachea, M.I., Pérez Padilla, Y., Cauich Rodríguez, J.V., Vázquez Torres, H., and Cervantes Uc, J.M. (2018). Thermal degradation of poly(caprolactone), poly(lactic acid), and poly(hydroxybutyrate) studied by TGA/FTIR and other analytical techniques. Polymer Bulletin. 75: 4191-4205.
    115. Liu, S., Zhang, X., Bu, M., and Lei, C. (2022). Properties tailoring of biobased epoxy resins by regulating the degree of polymerization of oligomers. European Polymer Journal. 173: 111253-111264.
    116. Wang, Y., Wang, S., Bian, C., Zhong, Y., and Jing, X. (2015). Effect of chemical structure and cross-link density on the heat resistance of phenolic resin. Polymer Degradation and Stability. 111: 239-246.
    117. Chuang, W.T., Shih, K.S., and Hong, P.D. (2005). Kinetics of Phase Separation in Poly(ɛ-caprolactone)/Poly(ethylene glycol) Blends. Journal of Polymer Research. 12: 197-204.
    118. Hernandez, E., Diaz, M., and Perez, K. (2021). Determination of Hansen solubility parameters for sugarcane oil. Use of ethanol in sugarcane wax refining. Grasas Y Aceites. 72: e408-e417.
    119. Deleuzel, H., Schultze, X., and Sherrington, D.C. (2000). Porosity analysis of some poly(styrene/divinylbenzene)beads by nitrogen sorption and mercury intrusion porosimetry. Polymer Bulletin. 44: 179-189.
    120. Zakrzewski, L., Kim, Y., Song, Y., Ryu, C.Y., Bae, C., and Picu, C.R. (2023). Interplay of photopolymerization and phase separation kinetics and the resulting structure-property relationship of photocurable resins. Polymer. 280: 126032-126041.
    121. 美雪(2023)。以光固化3D列印製備超音波引導微創手術之仿體,並具有自發性次微米至奈米多孔結構。(碩士論文。國立臺灣科技大學)臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/gd94y5。
    122. Morokov, E., Yabbarov, N., Sedush, N., Bogachenkov, A., Malykhin, A., Demina, V., Azarkevich, P., Nikolskaya, E., Chirkina, M., and Sokol, M. (2023). Observation of discrepancy between the degradation of polymer scaffolds in vitro and in vivo according to high-resolution ultrasound technique. European Polymer Journal. 195: 112248-112254.
    123. Li, X., Xing, S., Yang, J., Yin, C., and Ju, S. (2019). Mechanical and Underwater Acoustic Properties of the Polyurethane Elastomers with Different Hard Segment Contents. IOP Conference Series: Materials Science and Engineering. 490: 022060-022068.
    124. Fu, Y., Kabir, I.I., Yeoh, G.H., and Peng, Z. (2021). A review on polymer-based materials for underwater sound absorption. Polymer Testing. 96: 107115-107134.

    無法下載圖示 全文公開日期 2033/09/28 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE