簡易檢索 / 詳目顯示

研究生: 許麗琪
Yuliana - Tassia
論文名稱: 矽烷接枝二氧化矽奈米顆粒及蒙特納石黏土對不飽和聚酯、乙烯基酯、及環氧樹脂之体積收縮、內部可染色性、機械性質及微觀型態結構之影響研究
Effects of silane-grafted silica nanoparticles and montmorillonite clay on the volume shrinkage, internal pigmentability, mechanical properties and cured sample morphology for unsaturated polyester, vinyl ester, and epoxy resins
指導教授: 黃延吉
Yan-Jyi Huang
口試委員: 陳崇賢
Chorng-Shyan Chern
邱文英
Wen-Yen Chiu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 286
中文關鍵詞: silanesilica nanoparticlemontmorillonite (MMT)unsatured polyester (UP)vinyl ester resin (VER)interfacial adhesionvolume shrinkage
外文關鍵詞: silane, silica nanoparticle, montmorillonite (MMT), unsatured polyester (UP), vinyl ester resin (VER), interfacial adhesion, volume shrinkage
相關次數: 點閱:312下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • The synthesis of silane-grafted silica nanoparticles with different size (d = 15 and 30 nm) and montmorillonite clay (MMT) with the subsequent characterization of the grafting efficiency, grafting density, as well as the surface silanol groups conversion have been carried out. The silane coupling agents used for the treatment are γ-methacryloxy propyl trimethoxy silane (MPS) and γ-glycidyloxy propyl trimethoxy silane (GPS). The effects of those silane-modified silica nanoparticles and MMT on the volume shrinkage characteristics, internal pigmentability, mechanical properties, and cured sample morphology for styrene (St)/unsaturated polyester (or vinyl ester)/additive ternary systems have been carried out.
    The number of silane coupling agents grafted on the MMT or silica surface and their silanol groups conversion were characterized by Fourier Transform Infrared Spectroscopy (FTIR). The cured sample morphology was observed by Scanning Electron Microscope (SEM) and Transmission Electron Microscope (TEM). The volume shrinkage of the cured sample was measured by density method. Mechanical properties of the St/VER(n=2)/MPS-grafted silica (d = 30 nm) was investigated by using the universal testing machine and impact tester.
    The addition of silane-grafted MMT or silica nanoparticles reveals different results in the reduction of volume shrinkage for different UP or VER, each with different molecular weight, which is due to the incompatibility of the ternary system. Higher viscosity of the resin matrix, the characteristics of the silane-grafted MMT or silica nanoparticles, and the interfacial adhesion determine the sufficient incompatibility between the additive and the resin matrices. Therefore, an acceptable volume shrinkage and even a volume expansion could be achieved.


    The synthesis of silane-grafted silica nanoparticles with different size (d = 15 and 30 nm) and montmorillonite clay (MMT) with the subsequent characterization of the grafting efficiency, grafting density, as well as the surface silanol groups conversion have been carried out. The silane coupling agents used for the treatment are γ-methacryloxy propyl trimethoxy silane (MPS) and γ-glycidyloxy propyl trimethoxy silane (GPS). The effects of those silane-modified silica nanoparticles and MMT on the volume shrinkage characteristics, internal pigmentability, mechanical properties, and cured sample morphology for styrene (St)/unsaturated polyester (or vinyl ester)/additive ternary systems have been carried out.
    The number of silane coupling agents grafted on the MMT or silica surface and their silanol groups conversion were characterized by Fourier Transform Infrared Spectroscopy (FTIR). The cured sample morphology was observed by Scanning Electron Microscope (SEM) and Transmission Electron Microscope (TEM). The volume shrinkage of the cured sample was measured by density method. Mechanical properties of the St/VER(n=2)/MPS-grafted silica (d = 30 nm) was investigated by using the universal testing machine and impact tester.
    The addition of silane-grafted MMT or silica nanoparticles reveals different results in the reduction of volume shrinkage for different UP or VER, each with different molecular weight, which is due to the incompatibility of the ternary system. Higher viscosity of the resin matrix, the characteristics of the silane-grafted MMT or silica nanoparticles, and the interfacial adhesion determine the sufficient incompatibility between the additive and the resin matrices. Therefore, an acceptable volume shrinkage and even a volume expansion could be achieved.

    ACKNOWLEDGMENTS i TABLE OF CONTENTS ii LIST OF TABLES viii LIST OF FIGURES xi ABSTRACT xxiv CHAPTER I INTRODUCTION 1 I. 1. Inorganic/Organic Core-Shell Structure Using SiO2 as the Core 1 I. 2. Preparation of SiO2 Particles 2 I. 3. Montmorillonite (MMT) and MMT/Polymer Nanocomposites 2 I. 4. Unsaturated Polyester, Vinyl Ester, and Epoxy Resins 5 I. 5. Volume Shrinkage, Pigmentability, and Mechanical Properties for St/UP or VER/Additive Ternary Systems 6 I. 6. Objectives 8 CHAPTER II LITERATURE OVERVIEW 9 II. 1. Unsaturated Polyester (UP) Resin 9 II. 2. Vinyl Ester Resins (VER) 14 II. 3. Epoxy Resin 18 II. 4. Inorganic Nanofillers 22 II. 4. 1. Montmorillonite (MMT) nanoclay 23 II. 4. 2. Silica nanoparticle 26 II. 5. Silane Coupling Agents and Silane Modification 28 II. 6. Polymer Nanocomposites 31 II. 6. 1. Polymer/MMT nanocomposites 34 II. 6. 2. Polymer/silica nanocomposites 35 II. 7. Segregating Effect Mechanism 36 CHAPTER III EXPERIMENTAL 39 III. 1. Materials 39 III. 1. 1. Unsaturated Polyester (UP) Resin 39 III. 1. 2. Epoxy Resin (EPR) 39 III. 1. 3. Vinyl Ester Resin (VER) 39 III. 1. 4. Styrene, ACROS 43 III. 1. 5. 4,4’-diaminodiphenyl methane (DDM), ACROS 43 III. 1. 6. 4,4’-diaminodiphenylsulfone (DDS), ACROS 43 III. 1. 7. Tert-butyl peroxybenzoate (TBPB), ACROS 44 III. 1. 8. 1,4-Benzoquinone (BQ), ACROS 44 III. 1. 9. Montmorillonite Clay (MMT) PK-805, Pai Kong Tech Nanotechnology Co 44 III. 1. 10. Sodium Chloride (NaCl), ACROS 45 III. 1. 11. Silver nitrate (AgNO3), ACROS 45 III. 1. 12. Activated silica nanoparticles, self synthesized 45 III. 1. 13. γ-methacryloxy propyl trimethoxy silane (MPS), A-174, OSI Specialties 45 III. 1. 14. γ-glycidyloxy propyl trimethoxy silane (GPS), Sigma-Aldrich 46 III. 1. 15. Methanol (CH3OH), ACROS 46 III. 1. 16. Potassium Bromide (KBr, IR Grade), International Crystal Labs 46 III. 1. 17. Bordeaux R, ACROS 46 III. 1. 18. Dichloromethane (CH2Cl2), ACROS 47 III. 1. 19. 12-aminolauric acid (12-ALA), Sigma-Aldrich 47 III. 1. 20. Hydrochloric acid (HCl), ACROS 47 III. 1. 21. Deionized water 47 III. 1. 22. Acetone 47 III. 2. Instrumentation 48 III. 2. 1. Round bottom reaction vessels (1 L and 5 L), IWAKI, Asahi Techno Glass 48 III. 2. 2. High performance centrifuge system, Avanti J-25 48 III. 2. 3. Vacuum oven 48 III. 2. 4. Metal mortar and pestle 48 III. 2. 5. 200-mesh sieve, Bunsekifurui 48 III. 2. 6. Thermostated silicon oil bath and water bath 48 III. 2. 7. Digital hot plate stirrer, Cimarec, Barnstead/Thermolyne 48 III. 2. 8. Fourier Transform Infrared Spectroscopy (FTIR), Nicolet iS10, Thermo Scientific 49 III. 2. 9. Differential Scanning Calorimeter (DSC), Q20, TA Instruments 49 III. 2. 10. Pycnometer 49 III. 2. 11. Aluminum plate (50 × 50 × 2 mm) 49 III. 2. 12. Electronic densimeter, MD-200S, MIRAGE 49 III. 2. 13. Digital balance 49 III. 2. 14. Vacuum pump, G-50DA, ULVAC Company 49 III. 2. 15. Aluminum mold 50 III. 2. 16. Dumbbell type of mold 50 III. 2. 17. Universal testing machine, Testometric M500-25AT 50 III. 2. 18. Impact tester, BPI Basic Pendulum Impact Tester, Dynisco 50 III. 2. 19. Grinding machine 50 III. 2. 20. Field Emission Scanning Electron Microscope (FE-SEM), Hitachi S-800 50 III. 2. 21. Transmission Electron Microscope, TEM, Hitachi H-7100 50 III. 2. 22. Chromameter, CR-300, MINOLTA 51 III. 2. 23. Small-Angle X-ray Scattering (SAXS) system, Rigaku Innovative Technology, Inc., USA 51 III. 2. 24. Digital pH/MVmeter, TS-1, SUNTEX 51 III. 2. 25. Mechanical stirrer, Eurostar digital (EURO-ST D S1), IKA-WERKE 51 III. 2. 26. Microviscometer, Lovis 2000M, Anton Paar 51 III. 3. Procedure of Experiment 52 III. 3. 1. Sodium Activation of Neat MMT PK-805 (Na-MMT)26,57 52 III. 3. 2. Silane Treatment of MMT26,57 or Silica (Silane-grafted MMT or Silica) 52 III. 3. 3. Characterization of Silane-grafted MMT or Silica by using FTIR 52 III. 3. 4. DSC Experiment for St/UP(MA-PA-PG)AN~20 system with MR=2/1 54 III. 3. 5. Cured Sample Preparation for Volume Shrinkage Study 55 III. 3. 6. Cured Sample Preparation for Mechanical Properties Study 56 III. 3. 7. Cured Sample Preparation for Morphological Study by SEM 59 III. 3. 8. Cured Sample Preparation for WAXS 59 III. 3. 9. Cured Sample Preparation for Internal Pigmentability Study 59 III. 3. 10. Alkyl-ammonium Treatment of MMT (AMMT)57,133 60 III. 4. Experimental Calculation 61 III. 4. 1. Characterization of Silane-grafted MMT or Silica by using FTIR 61 III. 4. 2. Sample Composition 62 III. 4. 3. Volume Shrinkage of Cured Sample 63 CHAPTER IV RESULTS AND DISCUSSION 65 IV. 1. Characterization of MPS-grafted MMT by using FTIR 65 IV. 2. Characterization of MPS-grafted silica (d = 15 and 30 nm) by using FTIR 87 IV. 2. 1. MPS-grafted silica (d = 15 nm) 93 IV. 2. 2. MPS-grafted silica (d = 30 nm) 103 IV. 3. Characterization of GPS-grafted silica (d = 15 nm) by using FTIR 113 IV. 4. DSC Experiment for Neat St/UP(MA-PA-PG)AN~20 at MR = 2/1 133 IV. 5. Static Phase Separation Characteristics for St/UP (or VER)/Additive Ternary Systems Prior to Cure 136 IV. 6. Microstructure morphology of Cured Sample 140 IV. 6. 1. SEM Micrographs 140 IV. 6. 1. 1. Effects of Resin for St/VER and St/UP Binary System 140 IV. 6. 1. 2. Effects of MPS-grafted MMT Concentrations for VER(n=2) Ternary Systems 144 IV. 6. 1. 3. Effects of MPS-grafted silica (d = 15 nm) Concentrations for VER(n=2) Ternary Systems 151 IV. 6. 1. 4. Effects of MPS-grafted silica (d = 30 nm) Concentrations for VER(n=2) Ternary Systems 158 IV. 6. 1. 5. Effects of MPS-grafted MMT and MPS-grafted silica (d = 15 nm) for UP(MA-PG)AN~20 Ternary Systems 164 IV. 6. 1. 6. Effects of MPS-grafted MMT and MPS-grafted silica (d = 15 nm) for UP(MA-PA-PG)AN~20 Ternary Systems 172 IV. 6. 2. TEM Micrographs 180 IV. 6. 2. 1. St/VER(n=2) Binary Systems 180 IV. 6. 2. 2. Effects of MPS-grafted MMT Concentrations for VER(n=2) Ternary Systems 181 IV. 6. 2. 3. Effects of MPS-grafted silica (d = 15 nm) Concentrations for VER(n=2) Ternary Systems 187 IV. 6. 2. 4. Effects of MPS-grafted silica (d = 30 nm) Concentrations for VER(n=2) Ternary Systems 193 IV. 7. The Takayanagi Models 199 IV. 8. Volume Shrinkage of Cured Sample 201 IV. 8. 1. Effects of Resin for St/VER and St/UP Binary Systems 201 IV. 8. 2. Effects of MPS-grafted MMT Concentration and Resin Viscosity for VER Ternary Systems 206 IV. 8. 3. Effects of MPS-grafted Silica Particle Size and Concentration for VER(n=2) Ternary Systems 210 IV. 8. 4. Effects of MPS-grafted MMT Concentration and Resin Viscosity for UP(MA-PG) Ternary Systems 213 IV. 8. 5. Effects of MPS-grafted MMT Concentration and Resin Viscosity for UP(MA-PA-PG) Ternary Systems 217 IV. 9. Effects of MPS-grafted silica (d = 30 nm) Concentrations on Mechanical Properties of VER(n=2) Ternary Systems 221 IV. 10. WAXS Measurements for Neat MMT Systems 230 IV. 11. Radius of Gyration for UP and VER Resins by SAXS 236 CHAPTER V CONCLUSIONS 238 CHAPTER VI FUTURE WORK 240 CHAPTER VII REFERENCES 241 APPENDIX A-1

    1. Sanchez, C.; Julián, B.; Belleville, P.; Popall, M. J. Mater. Chem., 2005, 15, 3559.
    2. Sharp, K. G. Adv. Mater., 1998, 10, 1243.
    3. Wang, Q.; Luo, Y.; Feng, C.; Yi, Z.; Qiu, Q.; Kong, L. X.; Peng, Z. Journal of nanomaterials, 2012, 2012, 1.
    4. Save, M.; Granvorka, G.; Bernard, J.; Charleux, B. Boissiere, C.; Grosso, D.; Sanchez, C. Macromol. Rapid Commun., 2006, 27, 393.
    5. Iler, R. K. in The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties, and Biochemistry; Wiley: New York, 1979.
    6. Roberts, W. O.; Bergna, H. E., Eds. In Colloidal Silica, Fundamentals and Applications; Taylor & Francis: Boca Raton, FL, 2006.
    7. Zhao, Y. L.; Perrier, S. Macromolecules, 2006, 39, 8603.
    8. Titirici, M.-M.; Sellergren, B. Chem. Mater., 2006, 18, 1773.
    9. Li, C. Z.; Han, J.; Ryu, C. Y.; Benicewicz, B. C. Macromolecules, 2006, 39, 3175.
    10. Zhao, Y. L.; Perrier, S. Macromolecules, 2007, 40, 9116.
    11. Odian, G. in Principles of Polymerization, 4th Ed.; Wiley: New York, 2004.
    12. Radhakrishnan, B.; Ranjan, R.; J. Brittain, Soft Matter, 2006, 2, 386.
    13. Zhou, H.; Wu, S.; Shen, J. Chem. Rev., 2008, 108, 3893.
    14. Borase, T.; Iacono, M.; Ali, S. I.; Thornton, P. D.; Heise, A. Polym. Chem., 2012, 3, 1267.
    15. Stöber, W.; Fink, A.; Bohn, E. Journal of Colloid and Interface Science, 1968, 26 (1), 62.
    16. Guo, J.; Liu, X.; Cheng, Y.; Li, Y.; Xu, G.; Cui, P. J. Colloid Interface Sci., 2008, 326, 138.
    17. Ray, S. S.; Okamoto, M. Prog. Polym. Sci., 2003, 28, 1539.
    18. Vaia, R. A.; Price, G.; Ruth, P. N.; Nguyen, H. T.; Lichtenhan, J. Appl. Clay Sci., 1999, 15, 67.
    19. Biswas, M.; Ray, S. S. Adv. Polym. Sci., 2001, 155, 167.
    20. Giannelis, E. P. Appl. Organomet. Chem., 1998, 12, 675.
    21. Xu, R.; Manias, E.; Snyder, A. J.; Runt, J. Macromolecules, 2001, 34, 337.
    22. Bourbigot, S.; LeBras, M.; Dabrowski, F.; Gilman, J. W.; Kashiwagi, T. Fire Mater., 2000, 24, 201.
    23. Ray, S. S.; Yamada, K.; Okamoto, M.; Ueda, K.; Nano Lett., 2002, 1093.
    24. Okada, A.; Kawasumi, M. Kurauchi, T.; Kamigaito, O. Polym. Prepr., 1987, 28 (2), 447.
    25. Vaia, R. A.; Ishii, H.; Giannelis, E. P. Chem. Mater., 1993, 5, 1694.
    26. Kornmann, X.; Berglund, L. A.; Sterte, J. Polymer Engineering and Science, 1998, 38 (8), 1351.
    27. Wang, H.; Fang, P.; Chen, Z.; Wang, S.; Xu, Y.; Fang, Z. Polym. Int., 2008, 57, 50.
    28. Vaia, R. A.; Teukolsky, R. K.; Giannelis, E. P. Chem. Mater., 1994, 6, 1017.
    29. Park, S-J.; Kim, B-J.; Seo, D-I.; Rhee, K-Y.; Lyu, Y-Y. Mater. Sci. Eng. A, 2009, 526, 74.
    30. Hoai Nam, P.; Maiti, P.; Okamoto, M.; Kotaka, T.; Hasegawa, N.; Usuki, A. Polymer, 2001, 92, 9633.
    31. Ray, S. S.; Okamoto, K.; Okamoto, M. Macromolecules, 2003, 36, 2355.
    32. Miyatake, K.; Ohama, O.; Kawahara, Y.; Urano, A.; Kimura, A. SEI Technical Review, 2007, 54, 21.
    33. Zunjarrao, S. C.; Singh, R. P. Composites Sci. Technol., 2006, 66 (13), 2296.
    34. Andjelkovic, D. D.; Culkin, D. A.; Loza, R. Unsaturated Polyester Resins Derived from Renewable Resources in Composites & Polycon, American Composites Manufacturers Association, Tampa, Florida USA, January 15-17, 2009.
    35. Ellis, C. (to the Ellis-Foster Co.). U.S. Pat. 1,722,566, July 30, 1929; 1,897,977, Feb. 14, 1933; 2,000,937, May 14, 1935; and 2,195,362, Mar. 26, 1940.
    36. Dykstra, H. B. (to the E.I. du Pont de Nemours & Co.). U.S. Pat.1,945,307, Jan. 30, 1934.
    37. Fink, J. K. in Reactive Polymers Fundamentals and Applications; William Andrew Publishing: Norwich, NY, 2005.
    38. Malik, M.; Choudhary, V.; Varma, E. K. J. Macromol. Sci.-Rev. Macromol. Chem. Phys., 2000, C40 (2-3), 139.
    39. Yang, Y. S.; Lee, J. J. Polymer, 1988, 29, 1793.
    40. Yang, Y. S.; Lee, J. J. Polym. Process. Eng., 1987, 5, 327.
    41. Young, R. E. in Unsaturated Polyester Technology; P. E. Bruins, Ed.; Gordon and Breach: New York, 1976.
    42. Rosu, L.; Cascaval, C.; Rosu, D. Journal of Optoelectronics and Advanced Materials, 2006, 8 (2), 690.
    43. Karbhari, V. M. J. Compos. Constr., 2004, 8, 148.
    44. Fu, Z. L.; Sun, Y. S. Chinese Journal of Polymer Science, 1989, 7 (4), 367.
    45. May, C. A. in Epoxy Resins, Chemistry and Technology (2nd Ed.); Marcel Dekker: New York, 1988.
    46. Dixit, V.; Nagpal, A. K.; Singhal, R. Malaysian Polymer Journal, 2010, 5 (2), 69.
    47. Atkins, K. E. in Sheet Molding Compounds: Science and Technology; Kia, H. G., Ed.; Hanser Publishers: New York, 1993.
    48. Huang, Y. J.; Chen, T. S.; Huang, J. G.; Lee, F. H. J. Appl. Polym. Sci., 2003, 89, 3336.
    49. Penn, L. S.; Wang, H. in Handbook of Composites; Peters, S. T., Ed; Chapman and Hall: Tonbridge, 1998.
    50. Hussain, M.; Nakahira, A.; Nishijima, S.; Niihara, K. Materials Letters, 1996, 26, 299.
    51. Atsü, S.; Çatalbaş, B.; Gelgör, I. E. J. Appl. Oral Sci., 2011, 19 (3), 233.
    52. Kulkarni, R. D.; Goddard, E. D. Int. J. Adhesion and Adhesives, 1980, 73.
    53. Gleiter, H. Acta Materialia, 2000, 48 (1), 1.
    54. Golubeva, O. Y.; Yudin, V. E.; Didenko, A. L.; Svetlichnyi, V. M.; Gusarov, V. V. Russian Journal of Applied Chemistry, 2007, 80 (1), 106.
    55. Mahdavian, A. R.; Ashjari, M.; Makoo, A. B. Eur. Polym. J., 2007, 43, 336.
    56. Mitra, S. B.; Wu, D.; Holmes, B. N. J. Am. Dent. Assoc., 2003, 134, 1382.
    57. Oktavia, H. MS Thesis, National Taiwan University of Science and Technology, 2010.
    58. Marquis, D. M.; Guillaume, É.; Chivas-Joly, C. in Properties of Nanofillers in Polymer, Nanocomposites and Polymers with Analytical Methods; Dr. Cuppoletti, J., Ed; InTech: New York, 2011.
    59. Sun, Y.; Zhang, Z.; Wong, C. P. Journal of Colloid and Interface Science, 2005, 292 (1), 436.
    60. Suh, D.; Lim, Y.; Park, O. Polymer, 2000, 41, 8557.
    61. Plueddemann, E. P. in Silane Coupling Agents, 2nd Ed.; Plenum Press: New York and London, 1991.
    62. Mittal, K. L., Ed. in Silanes and other coupling agents (Volume 2); VSP: Utrecht, 2000.
    63. Yang, R.; Liu, Y.; Wang, K.; Yu, J. J. Anal. Appl. Pyrolysis, 2003, 70, 413.
    64. Plueddemann, E. P. J. Adhes., 1970, 2, 184.
    65. Wong, R. in Fundamental Aspects of Fiber Reinforced Plastic Composites; Schwartz, R. T., Ed.; Interscience: New York, 1968.
    66. Erickson, P. W. J. Adhes., 1970, 2, 131.
    67. Valore, R. C.; Naus, D. J. in Polymers in Concrete; The Construction Press: Lancaster, 1976; p. 216
    68. Liu, H.; Song, W.; Chen, F.; Guo, L.; Zhang, J. Macromolecules, 2011, 44, 1513.
    69. Nogueira, C. L.; de Paiva, J. M. F.; Rezende, M. C. 2005, Materials Research, 8 (1), 81.
    70. Alkadasi, N. A. N.; Hundiwale, D. G.; Kapadi, U. R. Journal of Scientific & Industrial Research, 2004, 63, 603.
    71. Liu, S-P.; Tu, L-C. International Communications in Heat and Mass Transfer, 2011, 38, 879.
    72. Zhao, C.; Feng, M.; Gong, F.; Qin, H.; Yang, M. J. Appl. Polym. Sci., 2004, 93, 676.
    73. Zulfli, N. H. M.; Shyang, C. W. Journal of Physical Science, 2010, 21 (2), 41.
    74. Chow, W. S.; Neoh, S. S. J. Appl. Polym. Sci., 2009, 114, 3967.
    75. Şen, S. Polymer Composites, 2010, 31 (3), 482.
    76. Nakamura, Y.; Honda, H.; Harada, A.; Fujii, S.; Nagata, K. J. Appl. Polym. Sci., 2009, 113, 1507.
    77. Lin, O. H.; Akil, H. M.; Ishak, M. Polymer Composites, 2011, 32 (10), 1568.
    78. Chen, M. H. J. Dent. Res., 2010, 89 (6), 549.
    79. Weinmann, W.; Thalacker, C.; Guggenberger, R. Dent. Mater., 2005, 21, 68.
    80. Ishida, H.; Koenig, J. L. Journal of Colloid and Interface Science, 1978, 64 (3), 555.
    81. Matynia, T.; Worzakowska, M.; Tarnawski, W. J. Appl. Polym. Sci., 2006, 101, 3143.
    82. Zaske, O. C.; Goodman, S. H.; in Handbook of Thermoset Plastics, 2nd Ed.; Goodman, S. H., Ed.; Noyes Publication: Westwood, 1998.
    83. Braun, E.; Levin, B. C. Fire and Materials, 1986, 10, 107.
    84. Waigaonkar, S.; Babu, B. J. C.; Rajput, A. Indian Journal of Engineering & Materials Sciences, 2011, 18, 31.
    85. Fradet, A.; Aralud, P.; in Comprehensive Polymer Science; Allen, G.; Bevington, J. C., Eds.; Pergamon Press: Oxford, 1989.
    86. Hunt, T. in: Developments in Reinforced Plastics 1 (Volume 1); Pritchard, G., Ed.; Applied Science: London, 1982.
    87. Makhlouf, J. in Encyclopedia of Chemical Technology (Volume 18); Mark, H. F.; Othmer, D. F.; Overberger, C. G.; Seaborg, G. T., Eds.; John Wiley & Sons: New York, 1982.
    88. Selley, J. in Encyclopedia of Polymer Science and Engineering (Volume 12); Mark, H. F.; Bikales, N. M.; Overberger, C. G.; Menges, G., Eds.; John Wiley & Sons: New York, 1988.
    89. Pepper, T. in ASM Handbook Volume 21 Composites, ASM International; Material Park: Ohio, 2001.
    90. Pielichowski, J.; Puszyński, A. In The Technology of the Synthetic Materials; WNT: Warsaw, 1998.
    91. Kosar, V.; Gomzi, Z. Chem. Biochem. Eng. Q., 2001, 15 (3), 101.
    92. Skrifvars, M. Academic Dissertation, University of Helsinki, 2000.
    93. Schwartz, S. S.; Goodman, S. H.; in Plastic Materials and Processes; Van Nostrand Reinhold Company: New York, 1982.
    94. Cao, X.; Lee, J. Polymer, 2003, 44, 1893.
    95. Czauderna, B. Ger. Offen. DE3, 1987, 528, 461.
    96. Launikitis, M. B. in Handbook of Composities; Luben, G., Ed.; Van Nostrand Reinhold Company: New York, 1982.
    97. Scott, T. F.; Cook, W. D.; Forsythe, J. S. Eur. Polym. J., 2002, 38, 705.
    98. Bruins, P. F. in Unsaturated Polyester Technology; Polytechnic Institute of New York: Brooklyn, 1976.
    99. Martin, J. S.; Laza, J. M.; Morrás, M. L.; Rodríguez, M.; León, L. M. Polymer, 2000, 41, 4203.
    100. Behera, D.; Satapathy, H.; Banthia, A. K. Pigment & Resin Technology, 2007, 36 (5), 271.
    101. Hamedani, G. H.; Ebrahimi, M.; Ghaffarian, S. R. Iranian Polymer Journal, 2006, 15 (11), 871.
    102. Verma, I. K.; Rao, B. S.; Choudhary, M. S.; Verma, D. S. DieAngewandte Macromolecular Chemie, 2003, 1, 191.
    103. Yilgor, E.; Yilgor, I.; Banthia, A. K.; Wilkes, G. L.; MaGrath, J. E. Polymer Composites, 1983, 4 (2), 120.
    104. Oldring, P. in Waterborne and solvent based epoxies and their end user applications; John Wiley: London, 1997.
    105. Blank, W. J.; He, Z. A.; Picci, M. J. Coat. Technol., 2002, 74, 33.
    106. Brill, R. P.; Palmese, G. P. J. Appl. Polym. Sci., 2000, 76, 1572.
    107. Bhatnagar, R.; Varma, I. K. J. Thermal Anal., 1989, 35, 1241.
    108. Skrtic, D.; Antonuci, J. M.; Eanes, E. D. J. Res. Natl. Inst. Stand. Technol., 2003, 108, 167.
    109. Rosu, D.; Cascaval, C. N.; Rosu, L. Polym. Past. Technol. Eng., 2000, 39, 553.
    110. Cascaval, C. N.; Rosu, D.; Simionescu, C. I. Synthetic Polymer J., 1996, III (1-2), 70.
    111. Li, L.; Sun, X.; Lee, L. J. Polym. Eng. Sci., 1999, 39 (4), 646.
    112. Chiu, S-W. MS Thesis, National Taiwan University of Science and Technology, 2011.
    113. Jayakumar, R.; Balaji, R.; Nanjundan, S. Eur. Polym. J., 2000, 36, 1659.
    114. Chae, K. H.; Jang, J. H. J. Polym. Sci., 2002, 8 (40), 1200.
    115. Lee, H.; Neville, K. in Handbook of Epoxy Resins; McGraw-Hill: New York, 1967.
    116. Goodman, S. H. in Handbook of Thermoset Plastics; Noyes: Minnesota, 1986.
    117. Brydson, J. A. in Pastics Materials; Van Nostrand Reinhold Company: New York, 1966.
    118. Boyle, M. A.; Martin, C. J.; Neuner, J. D. in ASM Handbook Volume 21 Composites, ASM International; Material Park: Ohio, 2001.
    119. Bhatnagar, M. S.in The Polymeric Materials Encyclopedia; CRC Press, Inc.: California, 1996.
    120. Muskopf, J. W.; McCollister, S. B. in Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH: Weinheim, 2002.
    121. Gaw, K.; Kikei, M.; Kakimoto, M.; Imai, Y. Polymer, 1997, 38, 4413.
    122. Ashcroft, W. R. in Chemistry and Technology of Epoxy Resin; Ellis, B., Ed.; Chapmann and Hall: London, 1993.
    123. Bucknall, C. B. in Toughened plastics; John Wiley & Sons: New York, 1977.
    124. Becker, L.; Lenoir, D.; Matuschek, G.; Kettrup, A. J. Anal. Appl. Pyrol., 2001, 60, 55.
    125. Durga, G.; Singh, D.; Kukreja, P.; Narula, A. K. Indian Journal of Engineering & Materials Sciences, 2009, 16, 133.
    126. Pan, G.; Du, Z.; Zhang, C.; Li, C.; Yang, X.; Li, H. Polymer, 2007, 48, 3686.
    127. Isik, I.; Yilmazer, U.; Bayram, G. Polymer, 2003, 44 (20), 6371.
    128. Rong, M. Z.; Zhang, M. Q.; Ruan, W. H. Mater. Sci. Technol., 2006, 22, 787.
    129. Hiemenz, P.; Rajagopalan, R. in Principles of Colloid and Surface Chemistry; Marcel Dekker Inc.: New York, NY, USA, 1997.
    130. Suryanarayana, C.; Froes, F. H. Metall. Trans. A., 1992, 23, 1071.
    131. ISO/TS27687. in Nanotechnologies – Terminology and definitions for nano-objects – Nanoparticle, nanofibre and nanoplate, 2008.
    132. Olphen, H. V.; in An Introduction to Clay Colloid Chemistry; Interscience Publishers: New York, 1962.
    133. Al-Khanbashi, A.; El-Gamal, M.; Moet, A. J. Appl. Polym. Sci., 2005, 98, 767.
    134. Grim, R. E. in Clay Mineralogy, Second Edition; McGraw Hill Book Company: New York, 1968.
    135. Juma, N. G. in The Pedosphere and Its Dynamics: A systems Approach in Soil Science, Volume 1; Salman Productions Inc.: Canada, 2001.
    136. Tsai, T. Y.; Lu, S. T.; Huang, C. J.; Liu, J. X.; Li, C. H.; Chen, L. C.; Ray, U. Polym. Eng. Sci., 2008, 48, 468.
    137. Radian, A.; Michaeli, D.; Serban, C.; Nechushtai, R.; Mishael, Y. G. Journal of Materials Chemistry, 2010, 20, 4361.
    138. Piscitelli, F.; Posocco, P.; Toth, R.; Fermeglia, M.; Pricl, S.; Mensitieri, G.; Lavorgna, M. Journal of Colloid and Interface Science, 2010, 351, 108.
    139. Gianni, A. D.; Amerio, E.; Monticelli, O.; Bongiovanni, R. Appl. Clay Sci., 2008, 42, 116.
    140. Shanmugharaj, A. M.; Rhee, K. Y.; Ryu, S. H.; J. Colloid Interface Sci., 2006, 298, 854.
    141. Rahman, I. A.; Padavettan, V. Journal of Nanomaterials, 2012, 2012, 1.
    142. Chen, G.; Zhou, S.; Gu, G.; Yang, H.; Wu, L. Journal of Colloid and Interface Science, 2005, 281 (2), 339.
    143. Jesionowski, T.; Krysztafkiewicz, A. Appl. Surf. Sci., 2001, 172 (1-3), 18.
    144. Strle, M.; Kurbus, B.; Pejovnik, S. Advanced Powder Technol., 1993, 4 (1), 49.
    145. Jiang, Z. X.; Meng, L. H.; Huang, Y. D.; Liu, L.; Lu, C. Appl. Surf. Sci., 2007, 253 (9), 4338.
    146. Zou, H.; Wu, S.; Shen, J. Chem. Rev., 2008, 108, 3893.
    147. Kang, J-S.; Yu, C-L.; Zhang, F-A. Iranian Polymer Journal, 2009, 18 (12), 927.
    148. Qian, X. J.; Liu, X. H.; Lu, L. D.; Chen, W. J.; Wang, X. Chin. J. Inorg. Chem, 2004, 20, 335.
    149. Fuji, M.; Takei, T.; Watanabe, T.; Chikazawa, M.; Colloid Surface A, 1999, 154, 13.
    150. Gao, J. C.; Zou, J.; Tan, X. W.; Wang, Y. Trans. Nonferrous Met. Soc. Chin., 2006, 16, 1252.
    151. Li, Y. P.; Wang, Y. Q.; He, W. W.; Chen, Z. Q.; Zhang, R. Y.; Huang, L. Acta Polym. Sin., 2006, 953.
    152. Li, X. H.; Cao, Z.; Zhang, Z. J.; Dang, H. X. Appl. Surf. Sci., 2006, 252, 7856.
    153. Zhang, L.; Zhang, D. F. Russ. J. Inorg. Chem., 2005, 50, 925.
    154. Lee, Y. L.; Du, Z. C.; Lin, W. X.; Yang, Y. M. J. Colloid Interface Sci., 2006, 296, 233.
    155. Yoshinaga, K.; Kondo, K.; Kondo, A. Colloid Polym. Sci., 19997, 275, 220.
    156. Yoshinaga, K. Bull. Chem. Soc. Jpn., 2002, 75, 2349.
    157. Bauer, F.; Sauerland, V.; Glasel, H. J.; Ernst, H.; Findeisen, M.; Hartmann, E.; Langguth, H.; Marquardt, B.; Mehnert, R. Macromol. Mater. Eng., 2002, 287, 546.
    158. Yao, L.; Yang, T. L.; Cheng, S. Y. Acta Polym. Sin., 2008, 221.
    159. Wang, H. L.; Shi, T. J.; Zhai, L. F. J. Appl. Polym. Sci., 2006, 102, 1729.
    160. Zhang, J. M.; Gao, J. G.; Sun, X. G.; Peng, Z.; Diao, J. Z. Iran Polym. J., 2007, 16, 39.
    161. Witucki, G. L. J. Coat. Technol., 1993, 65 (822), 57.
    162. Plueddemann, E. P. in Silanes and Other Coupling Agents; Mittal, K. L., Ed.; VSP: Utrecht, Netherlands, 1992.
    163. Mealey, S. K.; Bryan, T. Rubber World, 2006, 32.
    164. de Buyl, F. in Inorganic Polymers; de Jaeger, R. and Gleria, M., Ed.; Nova Science Publishers: New York, 2007, Chapter 2.
    165. Pape, P. G. in Applied Engineering Handbook; Elsevier: New York, 2011; Chapter 29.
    166. Rosen, S. L. in Fundamental Principles of Polymeric Materials, Second Edition; Wiley: New York, 1993.
    167. Hair, M. L.; Hertl, W. Journal of Physical Chemistry, 1969, 73, 2372.
    168. Hair, M. L. Journal of Colloid Interface Science, 1977, 60, 154.
    169. Wieczorek, M.; Krysztafkiewics, A.; Jesionowski, T. Journal of Physics and Chemistry of Solids, 2004, 65 (2-3), 447.
    170. Iijima, M.; Tsukada, M.; Kamiya, H. Journal of Colloid and Interface Science, 2007, 307 (4), 418.
    171. Guo, Y. K.; Wang, M. Y.; Zhang, H. Q.; Liu, G. D.; Zhang, L. Q.; Qu, X. W. J. Appl. Polym. Sci., 2008, 107, 2671.
    172. Mora-Barrantes, I.; Rodrígez, A.; Ibarra, L.; Gonzáles, L.; Valentín, J. L. J. Mater. Chem., 2011, 21, 7381.
    173. Berger, G. Chem. Weekblat, 1941, 38, 42.
    174. Deuel, H.; Huber, G.; Iberg, R. Helvetica Chimica Acta, 1950, 33, 1229.
    175. Gieseking, J. E. Advances in Agronomy, 1949, 1, 59.
    176. Ruiz-Hitzky, E.; Fripiat, J. J. Clays Clay Miner, 1975, 24, 25.
    177. Park, K. W.; Jeong, S. Y.; Kwon, O. Y. Appl. Clay. Sci., 2004, 27, 21.
    178. Herrera N. N.; Letoffe, J. M.; Putaux, J. L.; David, L.; Bourgeat-Lami, E. Langmuir, 2004, 20, 1564.
    179. Park, M.; Shim, I. K.; Jung, E. Y.; Choy, J. H. J. Phys. Chem. Solids, 2004, 65, 499.
    180. Isoda, K.; Kuroda, K. Chem. Mat., 2000, 12, 1702.
    181. Mark, H. F. in Encyclopedia of Polymer Science and Technology (Volume 3); Wiley: USA, 2003.
    182. Mensitieri, G.; Lavorgna, M. Journal of Colloid and Interface Science, 2010, 351, 108.
    183. Rausell-Colom, J. A.; Serratosa, J. M. in Chemistry of Clays and Clay Minerals, Newman, A. C. D., Ed.; Wiley-Interscience: New York, 1987.
    184. Lan, T.; Kaviratna, P.; Pinnavia, T. Chemistry of Materials, 1995, 7 (11), 2144.
    185. Lan, T.; Pinnavaia, T. Chemistry of Materials, 1994, 6, 2216.
    186. Giannelis, E. P. Adv. Mater., 1996, 8 (1), 29.
    187. Ajayan, P. M.; Schadler, L. S.; Braun, P. V. in Nanocomposite Science and Technology; Wiley: New York, NY, USA, 2003.
    188. Jeon, I-Y.; Baek, J-B. Materials, 2010, 3, 3654.
    189. Wei, L.; Hu, N.; Zhang, Y. Materials, 2010, 3, 4066.
    190. Zou, H.; Wu, S. S.; Shen, J. Chem. Rev., 2008, 108, 3893.
    191. Kojima, Y.; Usuki, A.; Kawasumi, M.; Okada, A.; Fukushima, Y.; Kurauchi, T.; Kamigaito, O. J. J. Mater. Res., 1993, 8 (5), 1185.
    192. Okada, A.; Usuki, A. Materials Science and Engineering C, 1995, 3, 109.
    193. Alexandre, M.; Dubois, P. Mater. Sci. Eng. R., 2000, 28 (1-2), 1.
    194. Garces, J. M.; Moll, D. J.; Bicerano, J.; Fibiger, R.; McLeod, D. G. Adv. Mater., 2000, 12 (23), 1835.
    195. Xu, X.; Ding, Y.; Qian, Z.; Wang, F.; Wen, B.; Zhou, H.; Zhang, S.; Yang, M. Polymer Degradation and Stability, 2009, 94, 113.
    196. Shen, W.; He, H. P.; Zhu, J. X.; Yuang, P.; Ma, Y. H.; Liang, X. L. Chinese Science Bulletin, 2009, 54 (2), 265.
    197. Abdalla, M. O.; Dean, D. D.; Campbell, S. Polymer, 2002, 43, 5887.
    198. Wang, Z. M.; Chung, T. C.; Gilman, J. W.; Manias, E. J. Polym. Sci., 2002, 41, 3173.
    199. Manias, E.; Touny, L.; Strawhecker, K.; Lu, B.; Chung, T. C. Chem. Mater., 2001, 13, 3516.
    200. Strawhecker, K. E.; Manias, E. Chem. Mater., 2000, 12, 2943.
    201. Huang, J. Zhu, Z.; Yin, J.; Qian, X. F.; Sun, Y. Y. Polymer, 2001, 43, 873.
    202. Brune, D.; Bicerano, J. Polymer, 2002, 43, 369.
    203. Zhang, J.; Gupta, R. K.; Wilkie, C. A. Polymer, 2006, 47, 4537.
    204. Shi, H.; Lan, T.; Pinnavaia, T. J. Chem. Mater., 1996, 8, 1584.
    205. Yariv, S.; Cross, H. in Clays and Clay Minerals; Marcel Dekker Inc.: New York, 2002.
    206. Pinnavaia, T.; Lan, T.; Kaviratna, P. D.; Wang, Z.; Shi, H. Polym. Mater. Sci. Eng., 1995, 73, 117.
    207. Rahman, I. A.; Padavetta, V. Journal of Nanomaterials, 2012, 2012, 1.
    208. Bracho, D.; Dougnac, V. N.; Palza, H.; Quijada, R. Journal of Nanomaterials, 2012, 2012, 1.
    209. Tsagaropoulos, G.; Eisenberg, A. Macromolecules, 1995, 28, 6067.
    210. Tsagaropoulos, G.; Eisenberg, A. Macromolecules, 1995, 28. 396.
    211. Huang, S. L.; Chin, W. K.; Yang, W. P. Polymer, 2005, 46, 1865.
    212. Fragiadakisa, D.; Pissisa, P.; Bokobzab, L. Polymer, 2005, 46, 6001.
    213. Kickelbick, G.; Progress in Polymer Science, 2003, 28 (1), 83.
    214. Kang, S.; Hong, S. I.; Choe, C. R.; Park, M.; Rim, S.; Kim, J. Polymer, 2001, 42 (3), 879.
    215. Shu, H.; Li, X.; Zhang, Z. Progress in Chemistry, 2008, 20 (10), 1509.
    216. Pham, K. N.; Fullston, D.; Crentsil, K. S. Journal of Colloid and Interface Science, 2007, 315 (1), 123.
    217. Bailly, M.; Kontopoulou, M.; Mabrouk, K. E. Polymer, 2010, 51 (23), 5506.
    218. Huang, Y. J.; Su, C. C. J. App. Polym. Sci., 1995, 55, 323.
    219. Hsu, S-Y. MS Thesis, National Taiwan University of Science and Technology, 2012.
    220. Huang, Y. J.; Chiang, W. C. Polymer, 1998, 39, 631.
    221. Ziagee, S.; Palmese, G. R. J. Polym. Sci. Part B: Polym. Phys., 1999, 37, 725.
    222. Yosephine, A., MS Thesis, National Taiwan University of Science and Technology, 2007.
    223. Chen, Y-T., MS Thesis, National Taiwan University of Science and Technology, 2012.
    224. Djiuardi, A. S., MS Thesis, National Taiwan University of Science and Technology, 2008.
    225. Madejová, J. Vibrational Spectroscopy, 2003, 31, 1.
    226. Coates, J. in Encyclopedia of Analytical Chemistry; John Wiley & Sons Ltd.: Chichester, 2000.
    227. Anderson, D. R. in Analysis of Silicones; Wiley-Interscience: New York, 1974.
    228. Lee, S. H.; Kim, D. S. Polym. Adv. Technol., 2012, 23, 414.
    229. Lin, J.; Siddiqui, J. A.; Ottenbrite, R. M. Polym. Adv. Technol., 2001, 12, 285.
    230. Xue, G.; Ishida, H.; Koenig, J. L. Die Angewandte Makromolekulare Chemie, 1986, 140, 127.
    231. Chakkalakal, G. L.; Alexandre, M.; Abetz, C.; Boschetti-de-Fierro, A.; Abetz, V. Macromolecular Chemistry and Physics, 2012, 213, 513.
    232. Draoui, K.; Denoyel, R.; Chgoura, M.; Rouguerol, J.; Journal of Thermal Analysis and Calorimetry, 1999, 58, 597.
    233. Huang, Y. J.; Chen, L. D. Polymer, 1998, 39 (26), 7049.
    234. Nikolic, G.; Zlatkovic, S.; Cakic, M.; Cakic, S.; Lacnjevac, C.; Rajic, Z. Sensors, 2010, 10, 684.
    235. Sevgi, K., PhD Dissertation, University of Pittsburgh, 2003.
    236. Pal, R. in Rheology of Particulate Dispersions and Composites; CRC Press Inc.: Bosa Roca, USA, 2006.
    237. Bae, S.; Inyang, H. I. Soil Sediment. Contam., 2001, 10 (6), 675.
    238. Singh, P.; Kaushik, A.; Kirandeep, A. J. Reinforced Plastics & Composites, 2006, 25 (2), 119.
    239. Lin, W. S., MS Thesis, National Taiwan University of Science and Technology, 2008.
    240. Wang, Z.; Pinnavia, T. J. Chem. Mater., 1988, 10, 3769.
    241. Jan, I. N.; Lee, T. M.; Chiou, K. C.; Lin, J. J. Ind. Eng. Chem. Res., 2005, 44, 2086.
    242. Lin, J. J.; Cheng, I. J.; Wang, R.; Lee, R. J. Macromolecules, 2001, 34, 8832.
    243. Chang, H. W., MS Thesis, National Taiwan University of Science and Technology, 2009.

    無法下載圖示
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE