簡易檢索 / 詳目顯示

研究生: 冉達夫
Raditya - Andy Kurniawan
論文名稱: 圓形鋼筋混凝土柱的塑鉸長度
Plastic Hinge Length of Circular Reinforced Concrete Columns
指導教授: 歐昱辰
Yu-Chen Ou
口試委員: 陳正誠
Cheng-Cheng Chen
黃世建
Shyh-Jiann Hwang
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 84
中文關鍵詞: 塑鉸長度圓形斷面混凝土柱有限元素法
外文關鍵詞: Plastic Hinge Length, Circular Section, RC Column, FEM
相關次數: 點閱:292下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本人只有英文摘要


    Based on experiment results, researchers have previously suggested various expressions to estimate the plastic hinge length of a reinforced concrete member. However, large differences exist among different expressions because of the differences in materials, shapes, and other parameters used in the experiment. In addition, existing expressions are not applicable to members with USD 685 reinforcing bars, a new type of rebar that has a yield strength of 100 ksi (685 MPa) and has gained increasing interest in recent years. This thesis presents a parametric study to investigate the plastic hinge length of circular reinforced concrete columns using a three-dimensional finite element analysis method. Parameters examined include the longitudinal reinforcement ratio, the shear span-to-depth ratio, the axial force ratio, and the concrete compressive strength. A wide range of values of the parameters are examined. Longitudinal reinforcement with specified yield strengths of 60 ksi (414 MPa) and 100 ksi (685 MPa) are considered. A special statistical method based on fractional factorial design referred to as Taguchi method is used to reduce experimental effort. Based on the results of the study, simplified expressions for the plastic hinge length of circular reinforced concrete columns are proposed.

    TABLE OF CONTENTS ABSTRACT ………………………………………………………………………….ii ACKNOWLEDMENTS ……………………………………………………….…...iii TABLE OF CONTENTS …………………………………………………….…….iv LIST OF TABLE ……………………………………………………………..…….vii TABLE OF FIGURE ………………………………………………………….…..viii CHAPTER 1 INTRODUCTION …………………………………………………..1 1.1. Background ……………………………………………………………......1 1.2. Problem Statement …………………………………………………………2 1.3. Objectives and Scope ………………………………………………………3 1.4. Outline ……………………………………………………………………..4 CHAPTER 2 PLASTIC HINGE LENGTH REVIEW …………………………..5 2.1. Previous Research …………………………………………………………6 2.1.1 Baker (1956) ………………………………………………………6 2.1.2 Mattock (1964) …………………………………………………….8 2.1.3 Corley (1966) ………………………………………………………8 2.1.4 Mattock (1967) …………………………………………………….9 2.1.5 Park, Priestley and Gill (1982) …………………………………….9 2.1.6 Sakai and Sheikh (1989) ………………………………………….10 2.1.7 Sheikh (1993, 1994 and 1998) ……………………………………11 2.1.8 Mendis (2001) …………………………………………………….11 2.1.9 Bae and Bayrak (2008) ……………………………………………11 2.2. Basic Knowledge of Plastic Hinge Length ………………………………..12 CHAPTER 3 ANALYTICAL MODEL ………………………………………….15 3.1. Concrete Model …………………………………………………………..15 3.1.1 Compression ……………………………………………………...15 3.1.2 Tension ……...……………………………………………………17 3.2. Reinforce Bar ……………………………………………………………...18 3.3. Numerical Integration ……………………………………………………21 3.4. Finite Element Method (FEM) ……………………………………………22 CHAPTER 4 FINITE ELEMENT VALIDATION …………………………….25 4.1. PEER Column Specimens …………...……………………………………25 4.2. Modeling Column in ABAQUS ………………………………………….26 4.3. Average Curvature and Shear along the Member ………………………..27 4.4. Comparison ……………………………………………………………….29 4.4.1 Base Shear Vs Displacement ……………………………………….30 4.4.2 Average Curvature along the Member ……………………………..31 4.4.3 Average Shear along the Member ………………………………….32 4.5. Slip Displacement …………………………………………………………33 4.6. Percentage Displacement ……………….…………………………………34 4.7. Full Node FEM Method …………..……………………………………….35 4.8. Spalling Region at Ultimate Condition ………….……………………….38 4.9. Conclusion …………………………………………………………………38 CHAPTER 5 FINITE ELEMENT VALIDATION ……………….…………….39 5.1. Taguchi Method ………………………………………………………….40 5.2. Concrete Strength (fc’) ……………………………………………………43 5.3. Transverse Reinforcement ………………………………………………..45 5.4. Reinforcement Ratio ……………………………………………………..46 5.5. Axial Load Ratio …………………………………………………………49 5.6. Shear span-to-depth Ratio ……………………………………………….51 5.7. Modeling General Column in ABAQUS …………………………………52 5.8. Taguchi Method ………………………..…………………………………53 5.9. Ultimate Condition ………………..…………………………………...…54 5.10. Elastic Curvature ………………………………………………………..…55 5.11. Ultimate Curvature ………………………………………………………..57 CHAPTER 6 RESULT and DISCUSSION ……………………………………..59 6.1. Obtaining Plastic Hinge Length ………………………………………….60 6.2. Exception Models ………………………………………………………..61 6.3. Plastic Hinge Length Result ……………………………………………...62 6.4. Plastic Hinge Length versus Drift ………………………………………..64 6.5. Proposed Formula for Plastic Hinge Length ……………………………..65 6.5.1 Longitudinal Reinforcement with a Yield Strength of 414 MPa ……65 6.5.2 Longitudinal Reinforcement with a Yield Strength of 685 MPa ……66 6.6. Effect of Axial Load Ratio (P/P0) ………………………………..………..68 6.7. Effect of Longitudinal Reinforcement Ratio (As/Ag) …………………….69 6.8. Effect of Shear span-to-depth ratio (L/h) ………………………………….71 6.9. Effect of Concrete Strength of Plastic Hinge Length ……………………73 CHAPTER 7 CONCLUSION ……………………………………………………79 REFERENCES ………………….…………………………………………………81

    1. Baker, A. L. L., Ultimate Load Theory Applied to the Design of Reinforced and Prestressed Concrete Frames, Concrete Publication Ltd, London, UK, 1956, 91 pp
    2. Baker, A. L. L., Amarakone, A. M. N., "Inelastic Hyperstatic Frame Analysis," Flexural Mechanics of Reinforced Cocnrete. SP-12, American Concrete Institute, Farmingtons Hill, MI, 1964, pp. 85-142.
    3. Mattock, A. H., "Rotational Capacity of Hinging Regions in Reinforced Concrete Beams," Flexural Mechanics of Reinforced Concrete , SP-12, American Concrete Institute, Farmington Hills, MI, 1964, pp. 143-181.
    4. Mattock, A. H., "dicussion of Rotational Capacity of Hinging Regions in Reinforced Concrete Beams," Journal of the Structural Division, ASCE, V. 93, No. ST2. Apr. 1967, pp. 519-522.
    5. Corley, W. G., "Rotational Capacity of Reinforced Concrete Beams," Journal of the Structural Division, ASCE, V. 91, No. ST5. Oct. 1966, pp. 121-146.
    6. Park, R., Paulay, T., Reinforced Concrete Structures, John Wiley and Sons, New York, 1975, 769 pp
    7. Park, R., Priestley, M. J. N., Gill, W. D., "Ductility of Square-Confined Concrete Columns," Journal of Structural Division, ASCE, V. 108, No. ST4. 1982, pp. 929-950.
    8. Priestley, M. J. N., Park, R., "Strength and Ductility of Concrete Bridge Columns Under Seismic Loading," ACI Structural Journal, V. 84, No. 1. Jan.-Feb. 1987, pp. 61-67.
    9. Paulay, T., Priestley, M. J. N., Seismic Design of Reinforced Concrete and Masonry Buildings, John Wiley and Sons, New York, 1992, 767 pp
    10. Sheikh, S. A., Khoury, S. S., "Confined Concrete Columns with Stubs," ACI Structural Journal, V. 90, No. 4. July Aug. 1993, pp. 414-431.
    11. Sheikh, S. A., Shah, D. V., Khoury, S. S., "Confinement of High-Strength Concrete Columns," ACI Structural Journal, V. 91, No. 1. Jan.-Feb. 1994, pp. 100-111.
    12. Bayrak, O., Sheikh, S. A., "Confinement Reinforcement Design Considerations for Ductile HSC Columns," Journal of Structural Division, ASCE, V. 124, No. 9. Sept. 1998, pp. 999-1010.
    13. Sakai, K., Sheikh, S. A., "What Do We Know about Confinement in Reinforced Concrete Columns? (A Critical Review of Previous Work and Code Provisions)," ACI Structural Journal, V. 86, No. 2. Mar.-Apr. 1989, pp. 192-207.
    14. Mendis, P., "Plastic Hinge Lengths of Normal and High-Strength Concrete in Flexure," Advance in Structural Engineering, V. 4, No. 4. Oct. 2001, pp. 189-195.
    15. Bae, S., Bayrak, O., "Plastic Hinge Length of Reinforced Concrete Columns," ACI Structural Journal, V. 105, No. 3. May-June 2008, pp. 290-300.
    16. UP/PEER, http://maximus.ce.washington.edu/~peera1/, UP/PEER Online Database, 2010.
    17. Mander, J. B., Priestley, M. J. N., Park, R., "Theoretical stress-strain model for confined concrete," Journal of Structural Division, ASCE, V. 114, No. 8. 1988, pp. 1804-1826.
    18. Collins, M. P., Mitchell, D., MacGregor, J. G., "Structural design consideration for high-strength concrete," ACI Structural Journal, V. 15, No. 5. 1993, pp. 27-34.
    19. Hsu, T. T. C., Zhang, L. X., "Tension stiffening in reinforced concrete membrane elements," ACI Structural Journal, V. 93, No. S11. Jan.-Feb. 1996, pp. 108-115.
    20. Caltrans, 1992, Standard Specifications, State of California Department of Transportation.
    21. A706M-09b, A. A., 2002, "Standard Specification for Low-Alloy Steel Deformed and Plain Bars for Concrete Reinforcement," ASTM International, West Conshohocken, Pa., 5 pp.
    22. Hsu, T. T. C., Unified Theory Of Reinforced Concrete, CRC Press, 1993, 300 pp
    23. HKS, ABAQUS User’s Manual Version 6.6, Hibbitt, Karlsson & Sorensen, Inc., Pawtucket, R.I, 2006, pp
    24. Lehman, D. E., Moehle, J. P., "Seismic performance of well-confined concrete bridge column," Pacific Earthquake Engineering Research Report. Dec. 2000.
    25. Fowlkes, W. Y., Creveling, C. M., Engineering Methods for Robust Product Design Using Taguchi Methods in Technology And Product Development Reading, Addison-Wesley, 1995, 403 pp
    26. Dar, F. H., Meakin, J. R., Aspden, R. M., "Statistical Methods in Finite Element Analysis," Journal of Biomech, V. 35. 2002, pp. 1155-1161.
    27. Chao, C. K., Hsu, C. C., Wang, J. L., Lin, J., "Increasing bending strength of tibial locking screws: Mechanical tests and finite element analyses," Clinical Biomechanics, V. 22, No. 1. Jan 2007, pp. 59-66.
    28. Ozbay, E., Oztas, A., Baykasoglu, A., Ozbebek, H., "Investigating Mix Proportions of High Strength Self Compacting Concrete by Using Taguchi method," Construction and Building Materials, V. 23, No. 2. 2009, pp. 694-702.
    29. ACI Committee 105, "Reinforced Concrete Column Investigation - Tentative Final Report," Journal of The American Concrete Institute, V. 29, No. 6. Feb. 1933, pp. 275-282.
    30. ACI 318-08, "Building Code Requirements for Structural Concrete (ACI 318-08) and Commentary," American Concrete Institute, Farmington Hills, MI. 2008, pp. 430.
    31. Atalay, M. B., Penzien, J., "The Seismic Behavior of Critical Regions of Reinforced Concrete Components as Influenced by Moment, Shear and Axial Force," Report No. EERC 75-19, University of California at Berkeley, Berkeley, CA, Dec. 1975, 226 pp.
    32. Tanaka, H., Rark, R., "Effect of Lateral Confining Reinforcement on the Ductile Behavior of Reinforced Concrete Columns," Research Report 90-2, Department of Civil Engineering, University of Canterbury, Christchurch, New Zealand, June 1990, 458 pp.
    33. Thomson, J. H., Wallace, J. W., "Lateral Load Behavior of Reinforced Concrete Columns Constructed using High-Strength Materials," ACI Structural Journal, V. 91, No. 5. Sept.-Oct 1994, pp. 605-615.
    34. Légeron, F., Paultre, P., "Behavior of High-Strength Concrete Columns under Cyclic Flexure and Constant Axial Load," ACI Structural Journal, V. 97, No. 4. July-Aug. 2000, pp. 591-601.

    QR CODE