簡易檢索 / 詳目顯示

研究生: 李禧俊
Hsi-chun Lee
論文名稱: 聚乳酸添加有機蒙脫土複合材料之射出成形對機械性質影響
Injection Molding of Polylactic Acid Composites with Organic Montmorillonite and Analysis on Mechanical Properties
指導教授: 陳炤彰
Chao-Chang Chen
口試委員: 楊申語
Sen-Yeu Yang
李世榮
Shah-Rong Lee
劉松柏
Sung-Po Liu
郭俞麟
Yu-Lin Kuo
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 200
中文關鍵詞: 生物可降解材料聚乳酸蒙脫土射出成形機械性質試驗
外文關鍵詞: Bio-degradable materials, Polylactic Acid, Montmorillonite, Injection molding, Mechanical properties
相關次數: 點閱:349下載:15
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討射出成形製程參數對聚乳酸(Polylactic Acid, PLA)和聚乳酸添加有機蒙脫土複材的機械性質影響,以及PLA分子配向性及密度與拉伸強度的關係,PLA複材以有機蒙脫土(Organic Montmorillonite, OMMT)作為填充材料,並利用矽烷偶合劑(Silane coupling agent),觀察不同含量的PLA複材(PLA/M)及添加矽烷偶合劑之(PLA/S/M)之機械性質變化,另利用模內熱退火方式提升PLA材料結晶度,並觀察退火前後機械性質與硬度的變化。研究方法首先利用熱重分析儀與熱示差掃描卡量計觀察材料耐熱性與熱性質變化,利用實驗設計找出對不同材料拉伸強度與衝擊強度影響最大的製程參數。從實驗結果得知PLA/M之耐熱性皆優於PLA/S/M。PLA拉伸強度受射出速度影響最大,且拉伸強度與核心層剪切應力隨著射出速度提升而增加,而塑料溫度為影響PLA楊氏模數最重要的因子,而目前測試各因子對PLA衝擊強度值的影響性皆不顯著,另PLA試片的拉伸強度及韌性隨著模內熱退火的時間增加而大幅地降低。PLA/S/M的拉伸性質則優於PLA/M,且含4wt%的OMMT(PLA/S/M4)有最佳之平均拉伸強度為84.85MPa,增幅較純PLA達8.0%,而PLA/M的衝擊強度皆優於PLA/S/M,且PLA/M4有最佳之平均抗衝擊強度0.625J/cm2,增幅較純PLA達54.3%。實驗結果顯示,PLA添加有機蒙脫土,以矽烷偶合劑進行改質,具有良好之分散效果,可調整拉伸強度或衝擊強度,未來研究成果可應用於醫療用之外部固定輔具產品製作。


    This study is devoted to investigate the influence of injection molding process and analysis on mechanical properties of Polylactic Acid (PLA) and PLA composites with Organic Montmorillonite (OMMT). The relation between molecular orientation, density and tensile strength of PLA have been studied and tested. The OMMT is used as a filler material, and silane is selected as a coupling agent for improving the interface between PLA and OMMT. Design of experiment is adopted to find the most significant factor for tensile strength and impact strength, and to observe effect of different mixing ratio of PLA/M and PLA/S/M of adding silane coupling agent OMMT for improving mechanical properties of specimens. The PLA specimens can increase crystallinity by in-mold annealing process, thus the mechanical properties and hardness change before and after annealing. The thermogravimetry analyzer (TGA) and differential scanning calorimetry (DSC) are used to measure the thermal properties of PLA and PLA composites. Results show that the degree of heat resistance of PLA/M are superior to that of PLA/S/M. From experimental results, injection velocity is the most significant factor for the tensile strength of PLA. Tensile strength and shear stress of core layer have increased as increasing injection velocity. The melt temperature is the most important parameter for Young’s modulus value of PLA. The impact strength of PLA is not found significantly related to current set-up of experiments. Tensile strength and toughness of PLA specimens are significantly reduced with longer in-mold annealing time. The tensile properties of PLA/S/M are superior to that of PLA/M, the PLA/S/M4 of 4wt% OMMT has the largest average tensile strength as 84.85MPa, it increases 8.0% higher than that of pure PLA. The impact strength of PLA/M are superior to that of PLA/S/M. The PLA/M4 has the highest average impact strength as 0.625J/cm2, it increases as 54.3% higher than that of pure PLA. Result of this study can be applied on in-vivo medical or scaffold products by injection molding of PLA composites.

    摘要 I Abstract II 誌謝 III 目錄 V 圖目錄 X 表目錄 XVII 第一章 導論 1 1.1 研究背景 1 1.2 研究目的與方法 6 1.3 論文架構 7 第二章 文獻回顧 9 2.1 聚乳酸與黏土複合材料機械性質文獻回顧 9 2.2 矽烷偶合劑二次表面改質蒙脫土文獻回顧 18 2.3 射出成形分子配向性文獻回顧 23 2.4 聚乳酸射出成形相關專利回顧 29 2.5 文獻回顧總結 32 第三章 實驗用材料製備和測試方式 34 3.1 聚乳酸 34 3.2 層狀有機蒙脫土 36 3.3 矽烷偶合劑 39 3.4 矽烷偶合劑改質有機蒙脫土 40 3.5 複合材料混煉 44 3.6 材料熱性質測試方法與分析 47 3.6.1 TGA實驗結果 47 3.6.2 DSC實驗結果 51 3.7 射出成形製程模式 56 第四章 實驗設備與實驗方法 61 4.1 實驗規劃 61 4.2 實驗材料與設備 63 4.2.1 實驗材料 63 4.2.2 複材混煉設備 64 4.2.3 射出成形設備 64 4.2.4 模溫控制設備 65 4.2.5 機械性質試驗設備 65 4.2.6 量測設備 66 4.3 量測方法與取樣方式 76 4.3.1 實驗參數設計 76 4.3.2 機械性質量測方式 78 4.3.3 模內熱退火實驗 78 4.3.4 分子配向性與密度檢測實驗 81 第五章 模具設計與模流分析 87 5.1 模具設計 87 5.2 模流分析 89 第六章 實驗結果與討論 102 6.1 不同製程參數對PLA機械強度的影響 102 6.1.1 PLA拉伸性質探討 102 6.1.2 拉伸強度與分子配向性探討 108 6.1.3 PLA材料衝擊強度探討 111 6.2 模內熱退火實驗 113 6.2.1 PLA退火前後拉伸性質探討 113 6.2.2 PLA退火前後拉曼光譜 117 6.2.3 PLA退火前後衝擊強度 125 6.2.4 PLA退火前後硬度結果 128 6.3 PLA黏土奈米複合材料機械性質 129 6.3.1 PLA/M及PLA/S/M黏土奈米複合材料拉伸性質 129 6.3.2 PLA黏土奈米複合材料衝擊強度 146 6.3.3 PLA與PLA黏土奈米複合材料硬度試驗 149 6.4 綜合結果與討論 150 第七章 結論與建議 154 7.1 結論 154 7.2 建議 156 參考文獻 157 附錄A 聚乳酸物性資料表 161 附錄B 有機蒙脫土物性資料表 162 附錄C 材料熱性質分析 163 附錄D 拉曼光譜儀原理 166 附錄E X光繞射分析原理 169 附錄F 變異數分析與迴歸分析 170 附錄G 拉伸與衝擊試片模具圖 174

    [1] 楊斌,"PLA聚乳酸環保塑膠",五南文化出版社,2010年。
    [2] 漆宗能,"聚合物/層狀矽酸鹽奈米複合材料",五南文化出版社,2004年。
    [3] L. Jiang, J. Zhang, and M. P. Wolcott, "Comparison of polylactide/nano-sized calcium carbonate and polylactide/montmorillonite composites: Reinforcing effects and toughening mechanisms," Polymer, vol. 48, pp. 7632-7644, 2007.
    [4] S.-S. Hwang, P. P. Hsu, J.-M. Yeh, K.-C. Chang, and Y.-Z. Lai, "The mechanical/thermal properties of microcellular injection-molded poly-lactic-acid nanocomposites," Polymer Composites, vol. 30, pp. 1625-1630, 2009.
    [5] M. Jollands and R. K. Gupta, "Effect of mixing conditions on mechanical properties of polylactide/montmorillonite clay nanocomposites," Journal of Applied Polymer Science, vol. 118, pp. 1489-1493, 2010.
    [6] E. Kontou, M. Niaounakis, and P. Georgiopoulos, "Comparative study of PLA nanocomposites reinforced with clay and silica nanofillers and their mixtures," Journal of Applied Polymer Science, vol. 122, pp. 1519-1529, 2011.
    [7] J. Gamez-Perez, L. Nascimento, J. J. Bou, E. Franco-Urquiza, O. O. Santana, F. Carrasco, et al., "Influence of crystallinity on the fracture toughness of poly(lactic acid)/montmorillonite nanocomposites prepared by twin-screw extrusion," Journal of Applied Polymer Science, vol. 120, pp. 896-905, 2011.
    [8] Y. Y. Leu, Z. A. Mohd Ishak, and W. S. Chow, "Mechanical, thermal, and morphological properties of injection molded poly(lactic acid)/SEBS-g-MAH/organo-montmorillonite nanocomposites," Journal of Applied Polymer Science, vol. 124, pp. 1200-1207, 2012.
    [9] P. Ma, X. Wang, B. Liu, Y. Li, S. Chen, Y. Zhang, et al., "Preparation and Foaming Extrusion Behavior of Polylactide Acid/Polybutylene Succinate/Montmorillonoid Nanocomposite," Journal of Cellular Plastics, vol. 48(2), pp. 191-205, 2012.
    [10] N. Najafi, M. C. Heuzey, and P. J. Carreau, "Polylactide (PLA)-clay nanocomposites prepared by melt compounding in the presence of a chain extender," Composites Science and Technology, vol. 72, pp. 608-615, 2012.
    [11] M. Yourdkhani, T. Mousavand, N. Chapleau, and P. Hubert, "Thermal, oxygen barrier and mechanical properties of polylactide–organoclay nanocomposites," Composites Science and Technology, vol. 82, pp. 47-53, 2013.
    [12] G.-X. Chen and J.-S. Yoon, "Thermal stability of poly(l-lactide)/poly(butylene succinate)/clay nanocomposites," Polymer Degradation and Stability, vol. 88, pp. 206-212, 2005.
    [13] Y. Zhao, K. Wang, F. Zhu, P. Xue, and M. Jia, "Properties of poly(vinyl chloride)/wood flour/montmorillonite composites: Effects of coupling agents and layered silicate," Polymer Degradation and Stability, vol. 91, pp. 2874-2883, 2006.
    [14] S.-J. Park, B.-J. Kim, D.-I. Seo, K.-Y. Rhee, and Y.-Y. Lyu, "Effects of a silane treatment on the mechanical interfacial properties of montmorillonite/epoxy nanocomposites," Materials Science and Engineering: A, vol. 526, pp. 74-78, 2009.
    [15] E. S. Kim, J. H. Shim, J. Y. Woo, K. S. Yoo, and J. S. Yoon, "Effect of the silane modification of clay on the tensile properties of nylon 6/clay nanocomposites," Journal of Applied Polymer Science, vol. 117, pp. 809-816, 2010.
    [16] S.-P. Liu and J.-F. Xu, "Characterization and mechanical properties of high density polyethylene/silane montmorillonite nanocomposites," International Communications in Heat and Mass Transfer, vol. 38, pp. 734-741, 2011.
    [17] O. Murakami, K. Yamada, M. Kotaki, and H. Hamada, "Evaluation of molecular orientation in injection molded parts with microscale features by Raman spectroscopy," Journal of Applied Polymer Science, vol. 112, pp. 1607-1614, 2009.
    [18] J. Martin, S. Margueron, M. Fontana, M. Cochez, and P. Bourson, "Study of the molecular orientation heterogeneity in polypropylene injection-molded parts by Raman spectroscopy," Polymer Engineering & Science, vol. 50, pp. 138-143, 2010.
    [19] 王晴遠,"高分子熔膠於彈臂搭接處之射出成形與分子配向性分析",國立台灣科技大學,機械工程系論文,2010年。(Ching-Yuan Wang, " Research on Residual Stress and Optical Quality in Hybrid Optical Elements by Vibratile Injection Compression Molding Process.")
    [20] 葉敬賢,"複合式光學元件於振動式射出壓縮成形之殘留應力及光學品質研究",國立台灣科技大學,機械工程系論文,2011年。(Jing-Sian Ye, " Research on Residual Stress and Optical Quality in Hybrid Optical Elements by Vibratile Injection Compression Molding Process.")
    [21] 郭家興,"生物可降解複合材料之分子配向性對機械性質之影響研究",國立台灣科技大學,機械工程系論文,2012年。(Chia-Hsing Kuo, " Research of Molecular Orientation on Mechanical Properties of Biodegradable PLA Composites by Injection Molding.")
    [22] 黃建銘,"耐熱性聚乳酸樹脂射出成型品之製造方法",中華民國發明專利編號200848244,2008年。
    [23] 吳進三,"具聚乳酸、澱粉及無機化合物的生物可分解性複合材",中華民國發明專利編號200909510,2009年。
    [24] 丁潤鎮,"衝擊性改質之聚硫酸酯-聚乳酸組成物",中華民國發明專利編號201016786,2010年。
    [25] 王明宇,"聚乳酸樹脂射出成型品之製造方法",中華民國發明專利編號201219189,2012年。
    [26] 吳宗明,"聚乳酸複合材料及其製造方法",中華民國發明專利編號201238997,2012年。
    [27] 陳炤彰,郭家興,楊榮森,"利用崁入式射出成形製作多層圓柱多孔組織支架",2011生物工程研討會,2011年。(Chao-Chang Chen, Chia-Hsing Kuo, Rong-Sen Yang, "Fabrication of a Multi-layer Porous Bone Scaffold by Insert Injection Molding.")
    [28] 王明光,"氧化物/層狀矽酸鹽之構造、特性、鑑定、反應、生成及用途",國立編譯館,2009年。
    [29] T. R. Vaia RA, Giannelis EP, "Interlayer structure and molecular rnviroment of alkylammonium layered silicates," Chem Master, vol. 6, pp. 1017-1022, 1994.
    [30] 楊明,"塑料添加劑應用手冊",2002年。
    [31] 拉奇股份有限公司,Silane A-174材料特性,2012年。
    [32] 林建中,"高分子材料性質與應用",高立圖書有限公司,2002年。
    [33] NatureWorks Co.,PLA 3001D Injection Molding Process Guide, 2005年。
    [34] Wesley Wm. Wendlandt,熱分析,渤海堂文化事業有限公司,1992年。
    [35] 博精儀器股份有限公司,熱分析技術簡介手冊,2002年。
    [36] 林麗娟,"X光繞射原理及其應用",X光材料分析技術應用專題,1994年。
    [37] 鄧建龍,姚潔宜,張茂男,"X光繞射分析在半導體工業上的應用",奈米通訊期刊,15卷,4期,2008年。

    QR CODE