簡易檢索 / 詳目顯示

研究生: 吳明宗
Wu-Ming-Tsung
論文名稱: 耐酸鹼改性β-殼聚醣吸附劑對反應性染料的等溫吸附性質之研究
Isothermal Adsorption Properties of Reactive Blue 221 Dye from Aqueous Solutions by Modified β-Chitosan as Acid–Alkali Resistance Adsorbent
指導教授: 邱智瑋
Chih-Wei Chiu
口試委員: 游進陽
Chin-Yang Yu
邱智瑋
Chih-Wei Chiu
邱顯堂
Shen-Tarng Chiou
鄭智嘉
Chih-Chia Cheng
劉定宇
Ting-Yu Liu
鄭如忠
Ru-Jong Jeng
蔡燕鈴
Yen-Ling Tsai
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 149
中文關鍵詞: 殼聚醣氧化石墨烯吸附活性藍221染料耐酸鹼性能廢水處理
外文關鍵詞: chitosan, graphene oxide, adsorption, reactive blue 221, dye, acid–alkali resistance property, wastewater treatment
相關次數: 點閱:432下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • 摘要 I Abstract III 誌謝 V 目錄 VI 圖目錄 X 表目錄 XIII 第一章 緒論 1 1.1 前言 1 1.2 研究動機及目的 4 第二章 文獻回顧 5 2.1 染整工業簡介 5 2.1.1 染整製程 7 2.1.2 染料簡介 9 2.1.3 染料廢水危害 18 2.1.4 染整廢水特點 20 2.1.5 台灣染整業放流水管制標準 22 2.2 染料廢水處理技術概述 24 2.3 吸附技術理論 25 2.3.1 吸附現象的定義 25 2.3.2 吸附作用力 26 2.3.3 吸附劑移除能力計算 31 2.3.4等溫吸附模型 32 2.3.4.1 Langmuir 等溫吸附模型 32 2.3.4.2 Freundlich 等溫吸附模型 33 2.3.4.3 Temkin 等溫吸附模型 34 2.3.5吸附熱力學 35 2.3.6吸附動力學 35 2.3.6.1 吸附的質傳過程 35 2.3.6.2 擬一級反應動力學模型 36 2.3.6.3 擬二級反應動力學模型 37 2.3.6.4 Elovich 模型 37 2.3.6.5 Weber-Morris模型(顆粒內擴散方程式) 37 2.4 殼聚醣(Chitosan)簡介 38 2.4.1殼聚醣結構 39 2.4.2殼聚醣制備 40 2.4.3殼聚醣對染料吸附機制概述 42 2.5 石墨烯(Graphene)及氧化石墨烯(Graphene oxide )簡介 43 2.5.1氧化石墨烯結構[81] 45 2.5.2氧化石墨烯制備 47 2.5.3氧化石墨烯對染料吸附機制概述 50 第三章 實驗方法 52 3.1 實驗藥品與實驗儀器 52 3.1.1藥品 52 3.1.2實驗儀器及操作方法 53 3.2實驗步驟 55 3.2.1β–chitosan改質吸附劑合成 55 3.2.1.1交聯改質β–chitosan吸附劑製備 55 交聯改質β–chitosan吸附劑製備流程[92]: 55 3.2.1.2 β–chitosan/graphene oxide 混摻改質吸附劑製備 57 3.2.2 β–chitosan改質吸附劑對反應性染料吸附能力測試 59 3.2.2.1 pH值變化對不同吸附劑吸附能力的影響 59 3.2.2.2吸附溫度及吸附時間變化對不同吸附劑吸附能力的影響 59 3.2.2.3初始染料濃度變化對不同吸附劑吸附能力的影響 60 3.3.3β–chitosan/graphene oxide 混摻改質吸附劑對反應性染料吸附能力測試 60 3.3.3.1 pH值變化對不同吸附劑吸附能力的影響 60 3.3.3.2吸附溫度及吸附時間變化對不同吸附劑吸附能力的影響 61 3.3.3.3初始染料濃度變化對不同吸附劑吸附能力的影響 61 第四章 交聯改質β–chitosan吸附劑對反應性染料吸附能力測試 62 4.1交聯改質β–chitosan吸附劑結構分析 62 4.1.1 傅立葉紅外線光譜儀分析 62 4.1.2固態核磁共振光譜儀分析 64 4.2 pH值變化對不同吸附劑吸附能力的影響 65 4.3 等溫吸附模型 67 4.4 吸附熱力學 72 4.5 吸附動力學 75 4.6 BCCT對Reactive Blue 221染料的吸附機制 80 4.6.1氫鍵作用力 80 4.6.2傅立葉紅外線光譜儀分析 82 4.6.3元素分析 83 4.6.4 Zeta Potential Analyzer 84 4.6.5 吸附劑吸附染料前後外觀變化對照 85 第五章 β–chitosan/氧化石墨烯混摻吸附劑對反應性染料吸附能力測試 87 5.1β–chitosan/graphene接枝改質吸附劑結構分析 87 5.1.1傅立葉紅外線光譜儀分析 87 5.1.2拉曼光譜儀分析 88 5.1.3元素分析儀分析 89 5.1.4 TEM分析GO and TFGO結構 90 5.2 pH值變化對不同吸附劑吸附能力的影響 92 5.3等溫吸附模型 94 5.4吸附熱力學 99 5.6 BCCT對Reactive Blue 221染料的吸附機制 109 5.6.1氫鍵作用力 109 5.6.2傅立葉紅外線光譜儀分析 110 5.6.3元素分析 112 5.6.4 吸附劑吸染料前後外觀變化對照 112 第六章 總結 115 6.1 交聯改質β–chitosan吸附劑對反應性染料吸附能力測試 115 6.2 β–chitosan/氧化石墨烯混摻吸附劑對反應性染料吸附能力測試 116 參考文獻 118 附錄 130   圖目錄 圖2.1 紡織產業上、中、下游各產業之關聯圖 6 圖2.2染整製程單元分類彙整圖 7 圖2. 3吸附過程示意圖 26 圖2. 4表面氫鍵吸附模型 30 圖2. 5 表面烴基團接受π軌域電子 31 圖2. 6苯環與四氰基乙烯之間的供體 - 受體相互作用 31 圖2. 7吸附劑吸附過程中的質傳過程 36 圖2. 8 a.幾丁質與b.殼聚醣分子結構 40 圖2. 9幾丁質及殼聚醣提取方法 41 圖2. 10 殼聚醣吸附機理圖 42 圖2. 11碳的同素異形體示意圖 44 圖2. 12石墨烯的製備方法 45 圖2. 13早期所提出的氧化石墨烯結構模型 46 圖2. 14 Lerf及Klinowskin所建構氧化石墨烯結構模型 47 圖2. 15天然石墨結構圖 48 圖2. 16氧化石墨烯製備方法 49 圖2. 17氧化石墨烯吸附染料機制 51 圖3. 1改質Β-殼聚醣衍生產物及其中間體產物的合成示意圖….…57 圖3. 2 β-殼聚醣/多胺氧化石墨烯混掺吸附劑製備示意圖 58 圖4. 1交聯改質β - chitosan及其中間產物的FTIR分析圖 63 圖4. 2殼聚醣改質前後13C 固態NMR CP/MAS 圖譜 64 圖 4. 3 pH值對吸附劑吸附能力變化趨勢 67 圖 4. 4不同溫度下吸附材( ■ α - chitosan ●b-chitosan ▲ BCCT )之等溫吸附模型 70 圖4. 5 ( ■ α - chitosan ●b-chitosan ▲ BCCT )Van’t Hoff 圖 73 圖4. 6不同溫度下吸附材( ■ α - chitosan ●β - chitosan ▲ BCCT )之吸附動力模型 78 圖4. 7不同溫度下吸附材( ■ α - chitosan ●β-chitosan ▲ BCCT )之時間變化吸附趨勢 80 圖4. 8 UV/VIS電子吸收光譜圖 81 圖4. 9 BCCT吸附RB221前後紅外線光譜變化 82 圖4. 10 BCCT RB221 600ppm 84 圖4. 11吸附劑吸附染料前後對照圖 85 圖4. 12吸附劑對RB221吸附機制圖 86 圖5. 1 GO and TFGO 傅立葉紅外線分析圖 87 圖5. 2 GO and TFGO拉曼光譜分析圖 89 圖5. 3 TEM analysis on the GO and TFGO 91 圖5. 4 pH值變化對吸附劑吸附能力影響趨勢。 94 圖5. 5不同溫度下兩種吸附材料 ( ■ β-chitosan , ● CSGO )之等溫吸附模型 98 圖5. 6( ■ β-chitosan, ●CSGO ) Van’t Hoff 圖 101 圖5. 7不同溫度下對各種吸附材料之吸附動力模型 106 圖5. 8不同pH值及溫度下對吸附材料吸附量的時間變化趨勢影響 108 圖5. 9 UV-VIS電子吸收光譜圖 110 圖5. 10 CSGO吸附RB221染料的前後紅外線光譜的變化。 111 圖5. 11不同吸附材料吸附RB221染料水溶液前後之照片: 113 圖5. 12吸附劑CSGO吸附RB221的吸附機制。 114   表目錄 表2. 1染整製程工序概述表 8 表2. 2著色劑種類對比表 9 表2. 3染料分類及適用材料表 18 表2. 4台灣染整業放流水管制標準 23 表2. 5物理吸附和化學吸附的差異性 28 表4. 1 在不同溫度下及吸附材對Reactive Blue 221等溫線模型和參數 71 表4. 2 Reactive Blue 221對不同吸附劑吸附的熱力學參數 74 表4. 3吸附材對Reactive Blue 221吸附的不同動力學模型 79 表4. 4吸附劑吸附前後及RB 2221紅外線光譜官能基定性 83 表4. 5吸附前後之元素分析 84 表5. 1紅外線光譜分析GO改質的前後官能基表徵。 88 表5. 2 Elemental Analysis on the GO and TFGO 90 表5. 3 Elemental Analysis on the β-chitosan and CSGO 90 表5. 4在不同溫度及各種吸附材料對Reactive Blue 221等溫線模型和參數 99 表5. 5不同吸附劑對REACTIVE BLUE 221的吸附熱力學參數 101 表5. 6吸附劑對REACTIVE BLUE 221吸附的不同動力學模型 107 表5. 7紅外線光譜分析吸附劑吸附RB 2221的前後官能基表徵 111 表5. 8吸附劑對RB221染料吸附前後之元素分析。 112  

    1. L. Zhou, K. Xu, X. Cheng, Y. Xu, Q. Jia,“Study on optimizing production scheduling for water-saving in textile dyeing industry" , Journal of Cleaner Production ,2017, vol. 141 , pp. 721-727.
    2. J. Wu , L. Ma , Y. Chen , Y. Cheng , Y. Liu, X. Zha,“Catalytic ozonation of organic pollutants from bio-treated dyeing and finishing wastewater using recycled waste iron shavings as a catalyst: Removal and pathways”, Water Research ,2016, vol. 92, pp.140-148.
    3. H. Yukseler , N. Uzal, E. Sahinkaya, M. Kitis , F.B. Dilek , U. Yetis,“Analysis of the best available techniques for wastewaters from a denim manufacturing textile mill”, 2017,vol. 203, Part 3, pp. 1118-1125.
    4. H. Wua , S. Wang, “Impacts of operating parameters on oxidation–reduction potential and pretreatment efficacy in the pretreatment of printing and dyeing wastewater by Fenton process” Journal of Hazardous Materials, 2012, vol. 243, pp.86- 94.
    5. E. Rosalesa, J. Meijidea, T. Tavaresb, M. Pazosa , M.A. Sanromána,“Grapefruit peelings as a promising biosorbent forthe removal of leather dyes and hexavalentchromium”, Process Safety and Environmental Protection,2016,vol. 101, pp. 61-71.
    6. S. O. Monsalve, J. Dornellesa, E. Polla, M. R. Castrillónb, P. Valentec, M.Gutterres,“Biodecolourisation and biodegradation of leatherdyes by a native isolate of Trametes villosa”, Process Safety and Environmental Protection, 2017,vol. 109, pp. 437-451.
    7. R. H. Senay, S. M. Gökalp , E. Türker , E. Feyzioğlu ,A. Aslan , Sinan Akgöl, “A new morphological approach for removing acid dye from leather waste water: Preparation and characterization of metal-chelated spherical particulated membranes (SPMs)”, Journal of Environmental Management ,2015,vol.151, pp.295-302.
    8. T. K. Sen & S. Afroze & H. M. Ang,“Equilibrium, Kinetics and Mechanism of Removal of Methylene Blue from Aqueous Solution by Adsorption onto Pine Cone Biomass of Pinus radiata”, Water Air Soil Pollut ,2011,vol. 218, pp. 499–515.
    9. A. Paz, J. Carballo, M. J. Pérez, J. M. Domínguez, “Biological treatment of model dyes and textile wastewaters”, Chemosphere, 2017, vol.181, pp.168-177.
    10. W. Nitayaphat, “Chitosan/coffee residue composite beads for removal of reactive dye”, Materials Today: Proceedings, 2017, vol. 4, pp.6274-6283.
    11. A. Zhu, Y. Hu,“The Low-Carbon and Environmental Protection of Textile and Garment in China”, Journal of Geoscience and Environment Protection, 2016, vol.4, pp.45-49.
    12. O. J. Hao , H. Kim & P. C. Chiang ,“Decolorization of Wastewater”, Critical Reviews in Environmental Science and Technology, 2000,vol.30,no.4 , pp.449-505.
    13. M. A. M. Salleh, D. K. Mahmoud, W. A. W. A. Karim and A. Idris, “Cationic and anionic dye adsorption by agricultural solid wastes: A comprehensive review”, Desalination, 2011, vol. 280, pp.1–13.
    14. T. Robinson, G. McMullan, R. Marchant and P. Nigam, “Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative”, Bioresource Technology, 2001, vol. 77, pp. 247-255.
    15. 行業標準分類(第10次修訂), 行政院主計總處, 中華民國105年1月,pp. 39.
    16. “染整業廢水前處理設施最佳流程及標準操作手冊”, 經濟部工業局出版品, 中華民國104年7月,pp.1-36.
    17. “印染整理業安全衛生輔導研究”, 勞動部勞動及職業安全衛生研究所出版品, 中華民國104年4月,pp.1-132.
    18. “行業製程減廢及污染防治技術-印染整理業介紹”, 經濟部工業局出版品,2008,pp. 5-1~5-37.
    19. “產業節水與水再生技術手冊-產業節水手冊-紡織業”, 經濟部工業局出版品,2011,pp.1-1 ~1-22.
    20. “染整業污染防治法規與處理技術手冊”, 經濟部工業局出版品,2014,pp. 3-1~3-14.
    21. 香港棉紡業同業公會&香港生產力促進局 聯合編著,“紡織手冊”, 香港棉紡業同業公會出版品, 2001,第一版pp.5-2~5-52.
    22. 上海印染工業行業協會編著, “印染手冊”,中國紡織出版社,2003,第二版,pp.1-865.
    23. Gürses, M. Açıkyıldız, K. Güneş and M. S. Gürses, “Dyes and Pigments”, Springer, 2016, pp.1-83.
    24. 何瑾馨編著,”染料化學”,中國紡織出版社,2004,第一版,pp.1-223
    25. Peter Gregory et al., “Dyes and Dye Intermediates” Kirk-Othmer Encyclopedia of Chemical Technology. Copyright John Wiley & Sons, Inc. All rights reserved. , 2004, vol. 9, pp. 238-300.
    26. K. Hunger, “Industrial Dyes Chemistry, Properties, Applications”, WILEY-VCH Verlag GmbH & Co, 2003, First edition,pp. 1-639.
    27. 趙雅琴等人編著, “染料化學基礎”, 中國紡織出版社,2006, 第一版,pp.1-320.
    28. 小西謙三 等人編著, “工業合成染料化學”,復漢出版社,中華民國83年7月, 第一版,pp.97-121.
    29. Y. M. Slokar, A. M. Le Marechal, “Methods of Decoloration of Textile Wastewaters”, Dyes and Pigments, 1998,Vol. 37, No. 4, pp. 335-356.
    30. A. Birhanlı , M. Ozmen, “Evaluation of the Toxicity and Teratogenity of Six Commercial Textile Dyes Using theg FroEmbryo Teratogenesis Assay–Xenopus”, Drug and Chemical Toxicology,2005, vol. 1, pp. 51–65.
    31. I. Ayadi , S. M. Monteiro , I. Regaya, A.Coimbra, F. Fernandes, M. M. Oliveira, F. Peixotod and W. Mnif, “Biochemical and histological changes in the liver and gills of Nile tilapia Oreochromis niloticus exposed to Red 195 dye”, RSC Advances, 2015, vol. 5,pp. 87168–87178.
    32. J. L. Parrott, A. J. Bartlett, V. K. Balakrishnan, “Chronic toxicity of azo and anthracenedione dyes to embryo-larval fathead minnow”, Environmental Pollution, 2016, vol. 210 , pp. 40-47.
    33. V.K.Garg, P. Kaushik, “Influence of textile mill wastewater irrigation on the growth of sorghum cultivars”, Applied Ecology and Environmental Research, 2008, vol. 6, no.2, pp. 1-12.
    34. L. I. Abdullahi ,M.A.Yakasai,B.Bello,A.R. Khan, “Determination of Heavy Metals and Acute Toxicity Studies of Vat Dyes on Earthworm (Lumbricusterrestris) As Ecological Risk Indicators”, IOSR Journal Of Pharmacy,2016, vol.6 , pp. 31-36.
    35. “環境管理系統建制指引¬-染整業”, 經濟部工業局出版品, 中華民國89年5月,pp.3-1~3-6.
    36. “染整業水污染防治計術”, 經濟部工業局出版品, 中華民國83年6月,pp.73-92.
    37. “放流水標準(全條文) 108年版”,行政院環境保護署環署水字第1080028628號令, 中華民國108年4月29日,pp.36-37.
    38. C. R. Holkar , A. J. Jadhav, D. V. Pinjari, N. M. Mahamuni,A. B. Pandit, “A critical review on textile wastewater treatments: Possible approaches”, Journal of Environmental Management, 2016, vol. 182 ,pp. 351-366.
    39. K. Vikrant , B. S. Giri,, N. Razab, K. Roy, K.H. Kim, B. N. Rai, R. S. Singh, “Recent advancements in bioremediation of dye: Current status and challenges”, Bioresource Technology, 2018,vol. 253 ,pp. 355-367.
    40. R. N. Bharagava , “Emerging and Eco-Friendly Approaches for Waste Management”, Springer Nature Singapore Pte Ltd. , 2019, pp. 219 -244.
    41. S. K. Sharma, “Green Chemistry for Dyes Removal from Wastewater”, Wiley,2015,pp.1-22.
    42. G.Z.Kyzas, S.Rashidimoghadam, “Composite Nanoadsorbents”, Elsevier, 2019, pp.211-243.
    43. H. Jüntgen, “NEW APPLICATIONS FOR CARBONACEOUS
    ADSORBENTS”, Carbon. , 1977, Vol. I.5. pp. 273-283.
    44. E. Worch, “Adsorption Technology in Water Treatment Fundamentals, Processes, and Modeling”, Walter de Gruyter GmbH & Co. , 2012 , First edition,pp. 1-9.
    45. H. G. Karge and J.Weitkamp , “Molecular Sieves Science and Technology –vol 7 Adsorption and Diffusion”, Springer,2008, First edition,pp.1-43.
    46. A. Da˛browski, “Adsorption - from theory to practice”, Advances in Colloid and Interface Science,2001, vol. 93, pp.135-224.
    47. J. Wilcox, “Carbon Capture”, Springer, 2012, First edition,pp.115-175.
    48. H. Y. Erbil, “Surface Chemistry Of Solid and Liquid Interfaces”, Blackwell Publishing Ltd,2006, First edition,pp.1-346.
    49. F. Rouquerol , J. Rouquerol, K.S.W. Sing, P. Llewellyn and G. Maurin, “Adsorption by Powders and Porous Solids Principles, Methodology and Applications”, Elsevier Ltd., 2014, Second edition,pp.1-24.
    50. 李國希譯著, “吸附科學”,化學工業出版社,2006, 第一版,pp.1-30.
    51. 陳誦英 等人著, “吸附與催化”,河南科學技術出版社,2001, 第一版,pp.1-6.
    52. 賈瑛等人著, “輕質碳材料的應用”,國防工業出版社,2013, 第一版,pp.30-37.
    53. 陳光才著,“碳納米管對污染物的吸附”,化學工業出版社,2013, 第一版,pp.19-25.
    54. P. Staron, J. Chwastowski, M. Banach, “Sorption and desorption studies on silver ions from aqueous solution by coconut fiber.”, Journal of Cleaner Production,2017,vol. 149 ,pp.290-301.
    55. W. J. Webek, E.H.Smith, “Activated carbon adsorption: the state of the art”, Studies in Environmental Science, 1986, vol 29, pp. 455-492.
    56. Walter J. Weber,E.H.Smith, “Shdation and design models for adsorption processes”, Environ. Sci. Technal., 1987, vol.21. No. 11, pp.1040-1050.
    57. F. C. Wu, R.L. Tseng, R.-S. Juang, “Initial behavior of intraparticle diffusion model used in the description of adsorption kinetics”, Chemical Engineering Journal, 2009, vol.153, pp.1–8.
    58. R. A.A. Muzzarelli, “Chitin”, Pergamon Press Ltd., 1977, First edition, pp.1-154.
    59. S. Ahmed and S. Ikram, “Chitosan derivatives, composites and applications”, John Wiley & Sons Inc., 2017, First edition, pp.1-24.
    60. G. A.F. ROBERTS, “Chitin Chemistry”, MACMILLAN PRESS LTD, 1992, First edition, pp.1-115.
    61. S. K. Kim, “Chitin, Chitosan, Oligosaccharides and Their Derivatives”, Taylor and Francis Group, LLC., 2011, First edition, pp.1-45.
    62. S. Kalia, “Springer Series on Polymer and Composite Materials”, Springer, 2016, First edition, pp.1-40.
    63. “幾丁質/幾丁聚醣專輯”,食品工發展研究所出版品,2001, 第一版,pp.8-14.
    64. 蔣挺大 著, “幾丁聚醣”,化學工業出版社,2001, 第一版,pp.1-157.
    65. R. H. Hackman, “Studies on chitin I. Enzymic degradation of chitin and chitin esters”, - Australian Journal of Biological Sciences, 1954, vol.7, pp.168-178.
    66. J. P. Z i k a k i s, “Chitin, Chitosan, and Related Enzymes”, Academic Press, Inc. , 1984, First edition, pp.239-255.
    67. E. Salehi, “A review on chitosan-based adsorptive membranes”, Carbohydrate Polymers, 2016, vol. 152, pp. 419–432.
    68. H. Petroski, “The pencil a history of design and circumstance”, Bookshelf, 1989, First edition,pp.49-51.
    69. B. H. PORTER, “The forms and uses of graphite”, School Science and Mathematics, 1943, vol.43, pp. 459- 465.
    70. H.W.Kroto, “C60:Buckminsterfullerene”,Nature, 1985, vol.318, pp. 162 -163.
    71. S. lijima, “Helical microtubules of graphitic carbon”, Nature, 1991, vol. 354, pp. 56-58.
    72. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films”, Science,2004, vol. 306, pp. 666-669.
    73. M. Sharonand M. Sharon., “An Introduction to the Fundamentals and Industrial Applications”, John Wiley & Sons, Inc., 2015, First edition, pp. 1-37.
    74. A. K. Geim and K. S. Novoselow, “The rise of grapheme”, nature materials, 2007, vol.6, pp.183-191.
    75. 陳永勝 著, “石墨烯:新型二維碳納米材料”,科學出版社, 2013, 第一版,pp. 1- 6.
    76. S. Nazarpour and S. R. Waite, “Graphene Technology”, Wiley-VCH Verlag GmbH & Co., 2016,pp.19-62.
    77. Min Yiand Z. Shen., “A review on mechanical exfoliation for the scalable production of grapheme”, Journal of Materials Chemistry A, 2015, vol.3, pp.11700 -11715.
    78. Wen Qian,R. Hao, Y. Hou, Y. Tian, C. Shen, H. Gao, and X. Liang, “Solvothermal-Assisted Exfoliation Process to Produce Graphene with High Yield and High Quality”, Nano Research, 2009, vol. 2, pp. 706 -120.
    79. Yu Lin Zhong, Z. Tian, G.P. Simon and D. Li, “Scalable production of graphene via wet chemistry: progress and challenges”, Materials Today, 2015, vol. 18, , pp.73-78.
    80. Md. S.A. Bhuyan, Md. N. Uddin, Md. M. Islam, F.A. Bipasha and S.S. Hossain, “Synthesis of grapheme”, International Nano Letters,2016, vol. 6, pp. 65-83.
    81. Daniel R. Dreyer, S. Park,C. W. Bielawski and R. S. Ruoff, “The chemistry of graphene oxide”, Chemical Society Reviews,2009, vol.39, pp.228-240.
    82. S. Yaragalla ,R. K. Mishra, S. Thomas, N. Kalarikkal and H. Maria, “Carbon-Based Nanofillers and Their Rubber Nanocomposites Carbon Nano-Objects”, Elsevier Inc., 2019, First edition, pp. 183- 224.
    83. S. Somiya , “Handbook of Advanced Ceramics Materials, Applications, Processing, and Properties”, 2013, pp. 25-60.
    84. B. C. Brodie, “On the Atomic Weight of Graphite”, Philosophical Transactions of the Royal Society of London, 1859, vol. 149, pp. 249 - 259.
    85. L. Staudenmaier, “Verfahren zur Darstellung der Graphitsäure”, Berichte der deutschen chemischen Gesellschaft, 1898, vol. 31, pp.1481- 1487.
    86. V.UHofmann and E.Konig,“Untersuchungen über Graphitoxyd”,ZZAC ‐ Journal of Inorganic and General Chemistry, 1937, vol. 234, pp. 311-336.
    87. W. S. Hummers and R. Offeman, “Preparation of Graphitic Oxide”, Journal of the American Chemical Society, 1958, vol. 80, pp. 1339-1339.
    88. X. J. Lee , B. Y. Z. Hiew , K. C. Lai , L. Y. Lee , S. Gan , S. T. Gopakumar and S. Rigby, “Review on graphene and its derivatives: Synthesis methods and potential industrial implementation”, Journal of the Taiwan Institute of Chemical Engineers, 2019, vol. 98 , pp.163-180.
    89. T. K. Sen, “Air, Gas, and Water Pollution Control Using Industrial and Agricultural Solid Wastes Adsorbents”, Taylor & Francis Group, 2018, First edition, pp.255-291.
    90. M. Aliofkhazraei,N. Ali,W. I. Milne, C. S. Ozkan, S. Mitura and J. L. Gervasoni, “Graphene Science Handbook Mechanical and Chemical Properties”, Taylor & Francis Group, LLC, 2016, First edition, pp. 207-223.
    91. H. N. Tran, S.J. You, H.P. Chao, “Fast and efficient adsorption of methylene green 5 on activated carbon prepared from new chemical activation method”, Journal of Environmental Management, 2017, vol. 188 , pp.322-336.
    92. M.T. Wu, Y.L. Tsai, C.W. Chiu and C.C. Cheng, “Synthesis, characterization, and highly acidresistant properties of crosslinking β-chitosan with polyamines for heavy metal ion adsorption”, RSC Advances., 2016, vol. 6, pp. 104754–104762.
    93. Q. Ren, L. Feng, R. Fan, X. Ge and Y. Sun, “Water-dispersible triethylenetetramine-functionalized graphene: Preparation, characterization and application as an amperometric glucose sensor”, Materials Science and Engineering, 2016, vol. 68 , pp. 308–316.
    94. Yamaki S.B., Barros D.S., Garcia C.M., Socoloski P., Oliveira O.N., Teresa D.Z. , “Spectroscopic studies of the intermolecular interactions of congo red and tinopal CBS with modified cellulose fibers”, Langmuir, 2005,vol. 21, 5414–5420.
    95. M. Rinaudo, “Chitin and chitosan: Properties and applications”, Progress in Polymer Science, 2006, vol. 31, pp. 603-632.
    96. J. H. Warner, F.Schäffel and M.H.Rümmeli, “Graphene Fundamentals and Emergent Applications”, Elsevier Inc., 2013, First edition, pp. 238- 247.
    97. S. A. Chernyak, A. S. Ivanov, D. N. Stolbov, T. B. Egorova, K. I. Maslakov, Z. Shen, V.V. Lunin, S. V. Savilov, “N-doping and oxidation of carbon nanotubes and jellyfish-like grapheme nanoflakes through the prism of Raman spectroscopy”, Applied Surface Science, 2019, vol 488, pp. 51–60.


    無法下載圖示 全文公開日期 2025/01/19 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE