簡易檢索 / 詳目顯示

研究生: 張容瑋
Jung-Wei Chang
論文名稱: 以RAFT活自由基溶液聚合法合成高分子接枝之氧化石墨烯及熱脫層氧化石墨烯及探討其對不飽和聚酯樹脂與環氧樹脂之聚合固化樣品微觀型態結構、體積收縮、機械性質、熱傳導及導電性質的影響
Synthesis of polymer-grafted graphene oxide and thermally reduced graphene oxide by RAFT free radical solution polymerizations, and their effects on cured sample morphologies, volume shrinkage, mechanical properties, and thermal and electrical conductivities for unsaturated polyester resins and epoxy resins
指導教授: 黃延吉
Yan-Jyi Huang
口試委員: 陳崇賢
Chorng-Shyan Chern
邱文英
Wen-Yen Chiu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 263
中文關鍵詞: 高分子接枝之熱還原氧化石墨烯抗收縮劑可逆加成-斷裂鏈轉移聚合法熱還原氧化石墨烯
外文關鍵詞: polymer grafted thermal reduced graphene oxide, low-profile additive, reversible addition-fragmentation chain transfer, thermal reduced graphene oxide
相關次數: 點閱:326下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文探討用作熱固性樹脂抗收縮劑及增韌劑之具核殼型結構(CSS)高分子接枝之熱還原氧化石墨烯的合成,其對不飽和聚酯樹脂在聚合固化後之樣品微觀型態結構、體積收縮特性、機械性質及導電導熱性質的影響。
    該類核殼型顆粒(CSS)以TRGO-polymer標示之,係以氧化石墨烯(GO)經熱還原後所形成之熱還原氧化石墨烯(TRGO)為核心及有機高分子為外殼,以Z支撐的可逆加成-斷裂鏈轉移聚合法(RAFT)合成而得。氧化石墨烯(GO)是以modified Hummers方法將天然石墨氧化合成,熱還原氧化石墨烯(TRGO)則是將氧化石墨烯放入高溫爐中,在1050˚C下,以熱還原法製得。TRGO-polymer外殼為丙烯酸甲酯(MA)與甲基丙烯酸環氧丙酯(GMA)的共聚合物(poly(MA-co-GMA))及聚丙烯酸丁酯(BA)與丙烯酸甲酯(MA))及甲基丙烯酸環丙氧烷酯(GMA)的共聚合物之團聯共聚合物(PBA-b- poly(MA-co-GMA))。
    鏈轉移劑(BTPT)、氧化石墨烯(GO)、熱還原氧化石墨烯(TRGO)及接枝高分子之熱還原氧化石墨烯(TRGO-polymer)的結構及特徵,吾人以1H-NMR、GPC、FTIR、TGA及XRD鑑定之。本文中,吾人亦控制分子鏈長設定不同分子量之TRGO-polymer,探討該苯乙烯(St)/不飽和聚脂樹脂(UP)/TRGO-polymer三成分系統於110˚C恆溫固化後之微觀結構型態(以SEM及TEM鑑定)、體積收縮、機械性質、導熱及導電性質。


    Synthesis of polymer grafted thermal reduced graphene oxide with core-shell structure (CSS) as low-profile additives (LPA) and toughenors for thermoset resins, and their effects on the cured sample morphology, volume shrinkage characteristics and mechanical properties, and thermal and electrical conductivities for unsaturated polyester resins (UP) during the cure were investigated.
    These CSS designated as TRGO-polymer, which contained thermal reduced graphene oxide (TRGO) as the core and organic polymer as the shell, were synthesized by the Z supported reversible addition-fragmentation chain transfer (RAFT) graft polymerization using S-Benzyl S'-trimethoxysilyl propyl trithio-carbonate (BTPT) as the coupable RAFT chain transfer agent (CTA). The graphene oxide (GO) was synthesized from natural graphite powder by a modified Hummers method. Thermal reduced graphene oxide (TRGO) was obtained by placing the graphene oxide in a high temperature furnace at 1050 ℃ by a thermal reduction method. The grafted polymer as the shell structure of the TRGO-polymer was made from copolymer of MA and glycidyl methacrylate (poly(MA-co-GMA)), and poly(butylacrylate)-block- poly(methylacrylate-co-glycidyl methacrylate) (PBA-block-poly(MA-co-GMA)).
    Structure and property characterizations of BTPT, GO, TRGO and TRGO-polymer have been performed by using 1H-NMR, GPC, FTIR, TGA and XRD. In this work, we also control the molecular chain and set the different molecular weight of TRGO-polymer to discuss the micro structure, volume shrinkage characteristics and mechanical properties, thermal and electrical conductivities of the styrene(St)/unsaturated polyester resins(UP)/TRGO-polymer ternary systems during the cure have also been explored.

    目錄 摘要 I Abstract II 誌謝 IV 目錄 V 圖目錄 XII 表目錄 XXII 第一章 緒論 1 1-1石墨烯 1 1-2高分子複合材料 7 1-3不飽和聚酯 (Unsaturated polyester, UP) 7 1-4環氧樹脂 (Epoxy Resin) 8 1-5乙烯基酯樹脂 (Vinyl Ester Resin, VER) 11 1-6抗收縮劑 (Low Profile Additive, LPA) 11 1-7增韌劑 12 1-8研究範疇 13 第二章 文獻回顧 14 2-1石墨烯/高分子奈米複合材料之研究 14 2.2氧化石墨烯(GO)及熱還原氧化石墨(TRGO)的製備 18 2.3自由基聚合法 19 2-4溶液聚合法 (Solution Polymerization) 22 2-5活性自由基聚合法 23 2-5-1原子轉移自由基聚合法 (ATRP) 24 2-5-2穩定自由基聚合法 (SFRP) 26 2-5-3可逆加成-斷裂鏈轉移聚合法 (RAFT) 27 2-6不飽和聚酯與苯乙烯之交聯共聚合反應 30 2-7不飽和聚酯(UP)樹脂之聚合固化後微觀結構之研究 33 2-8不飽和聚酯(UP)樹脂之抗收縮補償機制及體積收縮研究 34 2-9不飽和聚酯(UP)硬化後的機械性質研究 37 2-10以RAFT聚合法合成高分子接枝之氧化石墨烯 39 2-11石墨烯的分散及影響 40 2-12接枝率與分子量效應之影響 41 第三章 實驗方法及設備 42 3.1實驗藥品 42 3.2 實驗儀器 46 3.2.1 X光繞射儀 (XRD) 46 3.2.2傅立葉轉換紅外線光譜儀 (FTIR) 47 3.2.3熱重分析儀 (TGA) 48 3.2.4核磁共振光譜儀 (NMR) 49 3.2.5凝膠滲透層析儀 (GPC) 50 3.2.6電子比重計 (ED) 51 3.2.7高溫爐 52 3.2.8掃描式電子顯微鏡(SEM) 53 3.2.9穿透式電子顯微鏡(TEM) 54 3.2.10耐衝擊測試機 56 3.2.11萬用材料試驗機 57 3.2.12小型超音波洗淨機 58 3.2.13直流攪拌器 58 3.2.14真空減壓迴旋濃縮機 59 3.2.15水流抽氣幫浦 59 3.2.16熱傳導分析儀 60 3.2.17導電分析儀 61 3.3 實驗方法 62 3.3.1氧化石墨烯(GO)之合成 62 3.3.2熱脫層氧化石墨烯(TRGO)之製備 62 3.3.3鏈轉移劑S-Benzyl S'-trimethoxysilyl propyl trithiocarbonate(BTPT)合成 63 3.3.4熱還原氧化石墨烯接枝聚合物(TRGO-Polymer)之合成 65 3.3.4-1熱還原氧化石墨烯接枝雙區段共聚合物之合成 65 3.3.4-2胺解斷鏈接枝聚合物鏈 69 3.3.5固化試片製作 70 3.3.5-1 St/UP雙成份系統溶液之製備 70 3.3.5-2 St/UP/抗收縮劑(LPA)三成份系統溶液之製備 70 3.3.5-3體積變化性質試片與機械性質試片之製備 71 3.3.6體積變化量測-密度法 72 第四章 結果與討論 73 4.1氧化石墨烯(GO)及熱還原氧化石墨烯(TRGO)之鑑定 73 4.1.1氧化石墨烯(GO)之FTIR鑑定 73 4.1.2氧化石墨烯(GO)熱還原氧化石墨烯(TRGO)之XRD鑑定 75 4.1.3氧化石墨烯(GO)熱還原氧化石墨烯(TRGO)之TGA鑑定 79 4.2鏈轉移劑S-Benzyl S'-trimethoxy silylpropyl trithiocarbonate(BTPT)合成 81 4.2.1探討鏈轉移劑(BTPT)實驗步驟 81 4.2.2鏈轉移試劑(BTPT)之NMR鑑定 82 4.3 大分子的鏈轉移試劑(macro-RAFT agent of BTPT-P(MA-co-GMA))之鑑定 88 4.3.1大分子的鏈轉移試劑(BTPT-P(MA-co-GMA))之NMR鑑定 88 4.3.2 大分子的鏈轉移試劑(BTPT-P(MA-co-GMAy)-xK)之GPC鑑定 100 4.4 接枝嵌段高分子之熱還原氧化石墨烯 (TRGO-Polymer) 之合成與分析 105 4.4.1溶液中自由相高分子(free polymer)之NMR鑑定 106 4.4.3接枝高分子之熱還原氧化石墨(TRGO-polymer)之TGA鑑定 123 4.4.4接枝高分子熱還原氧化石墨烯 (TRGO-Polymer) 之XRD鑑定 131 4.5體積收縮測定 134 4.5.1 St/UP(MA-PA-PG,AN=30)/TRGO三成分系統固化後之體積收縮特性 134 4.5.2 St/UP(MA-PA-PG,AN=30)/TRGO-PBA-b-P(MA-co-GMA10)-xK (x=30、17、8)三成分系統固化後之體積收縮特性 136 4.5.3 St/UP(MA-PA-PG,AN=30)/TRGO-PBA-b-P(MA-co-GMA20)-xK (x=30、17、8)三成分系統固化後之體積收縮特性 139 4.6 SEM微觀型態結構 142 4.6.1 St/UP(MA-PA-PG,AN=30)雙成分系統 142 4.6.2 St/UP(MA-PA-PG AN=30)/TRGO三成分系統 143 4.6.3 St/UP(MA-PA-PG,AN=30)/TRGO-PBA-b-P(MA-co-GMA10)-xK (x=30、17、8)三成分系統 146 4.6.4 St/UP(MA-PA-PG,AN=30)/TRGO-PBA-b-P(MA-co-GMA20)-xK (x=30、17、8)三成分系統 153 4.7 TEM微觀型態結構 160 4.7.1 St/UP(MA-PA-PG,AN=30)雙成分系統 160 4.7.2 St/UP(MA-PA-PG AN=30)/TRGO三成分系統 161 4.7.3 St/UP(MA-PA-PG,AN=30)/TRGO-PBA-b-P(MA-co-GMA10)-xK (x=30、17、8)三成分系統 164 4.7.4 St/UP(MA-PA-PG,AN=30)/TRGO-PBA-b-P(MA-co-GMA20)-xK (x=30、17、8)三成分系統 171 4.8導熱性質測定 178 4.8.1 St/UP(MA-PA-PG,AN=30)/TRGO三成分系統 178 4.8.2 St/UP(MA-PA-PG,AN=30)/TRGO-PBA-b-P(MA-co-GMA10)-xK (x=30、17、8)三成分系統 181 4.8.3 St/UP(MA-PA-PG,AN=30)/TRGO-PBA-b-P(MA-co-GMA20)-xK (x=30、17、8)三成分系統 184 4.9導電性質測定 187 4.9.1 St/UP(MA-PA-PG,AN=30)/TRGO三成分系統 187 4.9.2 St/UP(MA-PA-PG,AN=30)/TRGO-PBA-b-P(MA-co-GMA10)-xK (x=30、17、8)三成分系統 190 4.9.3 St/UP(MA-PA-PG,AN=30)/TRGO-PBA-b-P(MA-co-GMA20)-xK (x=30、17、8)三成分系統 193 4.10耐衝擊強度測試 196 4.10.1 St/UP(MA-PA-PG,AN=30)/TRGO三成分系統 196 4.10.2 St/UP(MA-PA-PG,AN=30)/TRGO-PBA-b-P(MA-co-GMA10)-xK (x=30、17、8)三成分系統 198 4.10.3 St/UP(MA-PA-PG,AN=30)/TRGO-PBA-b-P(MA-co-GMA20)-xK (x=30、17、8)三成分系統 201 4.11楊氏模數測試 204 4.11.1 St/UP(MA-PA-PG,AN=30)/TRGO三成分系統 204 4.11.2 St/UP(MA-PA-PG,AN=30)/TRGO-PBA-b-P(MA-co-GMA10)-xK (x=30、17、8)三成分系統 206 4.11.3 St/UP(MA-PA-PG,AN=30)/TRGO-PBA-b-P(MA-co-GMA20)-xK (x=30、17、8)三成分系統 209 4.12抗張強度測試 212 4.12.1 St/UP(MA-PA-PG,AN=30)/TRGO三成分系統 212 4.12.2 St/UP(MA-PA-PG,AN=30)/TRGO-PBA-b-P(MA-co-GMA10)-xK (x=30、17、8)三成分系統 214 4.12.3 St/UP(MA-PA-PG,AN=30)/TRGO-PBA-b-P(MA-co-GMA20)-xK (x=30、17、8)三成分系統 217 4.13斷裂延伸率測試 220 4.13.1 St/UP(MA-PA-PG,AN=30)/TRGO三成分系統 220 4.13.2 St/UP(MA-PA-PG,AN=30)/TRGO-PBA-b-P(MA-co-GMA10)-xK (x=30、17、8)三成分系統 222 4.13.3 St/UP(MA-PA-PG,AN=30)/TRGO-PBA-b-P(MA-co-GMA20)-xK (x=30、17、8)三成分系統 225 第五章 結論 228 第六章 未來工作 231 第七章 參考文獻 232

    參考文獻
    [1] C. W. Macosko, H. Kim, A. A. Abdala, Macromolecules 2010, 43, 6515.
    [2] M. Eizenberg, J. M. Blakely, Surf. Sci. 1970, 82, 228–236.
    [3] K. S. Novoselov, A. K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I. V. Grigorieva, A. A. Firsov, Science 2004, 306, 666–669.
    [4] K. Hu, D. D. Kulkarni, I. Choi, Vladimir V. Tsukruk, Progress in Polymer Science, 2014, 39, 193.
    [5] R. B. Burns, "Polyester molding compounds", Marcel Dekker, New York, 1982.
    [6] B. Ellis, "Chemistry and Technology of Epoxy Resins", London: Blackie Academic and Professional 1993.
    [7] 陳東課,環氧樹脂在基層板之應用, 化工技術第四卷第五期, 1996.
    [8] 賴耿陽,環氧樹脂應用實務, 復漢出版社, 台灣, 1999.
    [9] 賴家聲,環氧樹脂與硬化劑(上), 復漢出版社, 台灣, 1999.
    [10] S. V. Levchik, G. Camino, M. P. Luda, L. Costa, G. Muller, B. Costes, Polymer degradation and stability 1998, 60, 169.
    [11] 黃滄閔,碩士論文,國立成功大學,2001.
    [12] F. Fekete, in "Unsaturated Polyester Technology" ed. P.F. Bruins, Gordon and Breach Science Publishers, New York 1976, 28.
    [13] N. A. Miller, C. D. Stirling, Polym. Polym. Comps. 2001, 9, 31.
    [14] R. E. Young, in "Unsaturated Polyester Technology" ed. P.F. Bruins, Gordon and Breach Science Publishers, New York 1976.
    [15] M. E. Kelly, in "Unsaturated Polyester Technology" ed. P.F. Bruins, Gordon and Breach Science Publishers, New York 1976, 370.
    [16] Y. J. Huang, C. M. Liang, Polymer 1996, 37, 401.
    [17] T. Mitani, H. Shiraishi, K. Honda, G.E. Owen, 44th Annual Conference Composite Institute, SPI, Session 12-F, 1989.
    [18] W. Li, L. J. Lee, Polymer 1998, 39, 5677.
    [19] M. Kinkelaar, S. Muzumdar, L. J. Lee, Polymer Engineering & Science 1995, 35, 823.
    [20] R. R. Hill, S. V. Muzumdar, L. J. Lee, Polymer Engineering & Science 1995, 35, 852.
    [21] E. Martuscelli, P. Musto, G. Ragosta, G. Scarinzi, E. Bertotti, Journal of Polymer Science Part B: Polymer Physics 1993, 31, 619.
    [22] S. B. Pandit, V. M. Nadkarni, Industrial & Engineering Chemistry Research 1994, 33, 2778.
    [23] The B.F. Goodrich Co, WO93/21274, Oct. 28.1993.
    [24] W. Crc for Polymers Pty. Ltd, WO97, 43339 Nov 20,1997.
    [25] J. Chiefari, Y. K. Chong, F. Ercole, J. Krstina, J. Jeffery, T. P. T. Le, R. T. A. Mayadunne, G. F. Meijs, C. L. Moad, G. Moad, Macromolecules 1998, 31, 5559.
    [26] G. M. T. P. Le, S. H. T. E. Rizzardo, PCT Int. Appl. WO9801478 A1980115 1998.
    [27] D. J. Keddie, G. Moad, E. Rizzardo, S. H. Thang, Macromolecules 2012, 45, 5321.
    [28] S. Perrier, and Y. Zhao, Macromolecules 2007, 40, 9116-9124.
    [29] Y. Miura, C. W. Macosko, Chemistry of Materials 2010, 22, 3441.
    [30] H. Kim, C. W. Macosko, Macromolecules 2008, 41, 3317.
    [31] W. Huang, X. Ouyang, L. J. Lee, ACS Nano, 6, 10178, 2012.
    [32] J. Z. Xu, C. Chen, Y. Wang, H. Tang, Z. M. Li, B. S. Hsiao, Macromolecules, 2011, 44, 2808.
    [33] J. R. Potts, O. Shankar, L. Du, and R.S. Ruoff, Macromolecules 2012, 45, 6045.
    [34] S. Wang, M. Tambraparni, J. Qiu, J. Tipton, D. Dean, Macromolecules, 2009, 42, 5251.
    [35] S. Ganguli, A. K. Roy, D. P. Anderson, Carbon 2008, 46, 806.
    [36] M. Martin-Gallego, R. Verdejo, M. A. Lopez-Manchado, M. Sangermano, Polymer 2011, 52, 4664.
    [37] S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, R. S. Ruoff, Carbon 2007, 45, 1558.
    [38] D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, R. S. Ruoff, Nature 2006, 442, 282–286.
    [39] P. Steurer, R. Wissert; R. Thomann, R. Muelhaupt, Macromol. Rapid Commun. 2009, 30, 316–327.
    [40] C. W. Macosko, Polymer 2009, 50, 3797–3809.
    [41] H. Kim, Y. Miura, and C. W. Macosko, Chem. Mater. 2010, 22, 3441–3450 3441.
    [42] S. Ahmed, H.S. Wajid, A. Tanvir, S.D.F. Irin, F. Alan, M. J. Jankowski, Green, Macromol, Mater.Eng, 2013, 298, 339–347.
    [43] W. S. Hummers, R. E. Offeman, J. Am. Chem. Soc., 1958, 80, 1339.
    [44] H. C. Schniepp, J. L. Li, M. J. McAllister, H. Sai, M. Herrera-Alonso, D. H. Adamson, R. K. Prud'homme, R. Car, D. A. Saville, I. A. Aksay, The Journal of Physical Chemistry B 2006, 110, 8535.
    [45] Y. Yang, J. Wang, J. Zhang, J. Liu, X. Yang, H. Zhao, Langmuir 2009, 25, 11808.
    [46] F. Beckert, C. Friedrich, R. Thomann, R. Mulhaupt, Macromolecules 2012, 45, 1346.
    [47] 彭俊昇,碩士論文,國立台灣科技大學,2000.
    [48] H. R. Allcock, F. W. Lampe, "Contemporary Polymer Chemistry, "2nd Ed.", Prentice-Hall, New Jersey, 1990, p.50.
    [49] C.S. Brazel and S.L. Rosen, "Fundamental Principles of Polymeric Materials, 3rd Ed." Wiley, New York, 2012.
    [50] 張容瑋,碩士論文,國立台灣科技大學,2008.
    [51] M. Szwarc, Nature, 178, 1168, London, 1956.
    [52] T. Otsu, M. Yoshida, Makromol Chem Rapid Commun. 1982, 3, 127, 542.
    [53] K. Matyjaszewski, J. Xia, Chemical Reviews 2001, 101, 2921.
    [54] J. S. Wang, K. Matyjaszewski, Journal of the American Chemical Society 1995, 117, 5614.
    [55] M. Kamigaito, T. Ando, M. Sawamoto, Chemical Reviews 2001, 101, 3689.
    [56] D. H. Solomon, E. Rizzardo, P. Cacioli, US Patent, 4, 581, 429, 1985.
    [57] M. K. Georges, R. P. N. Veregin, P. M. Kazmaier, G. K. Hamer, Macromolecules 1993, 26, 2987.
    [58] R. Francis, D. Taton, J. L. Logan, P. Masse, Y. Gnanou, R. S. Duran, Macromolecules 2003, 36, 8253.
    [59] P. Takolpuckdee, C. A. Mars, S. Perrier, Organic letters 2005, 7, 3449.
    [60] Y. S. Yang and L. J. Lee, Polymer 1988, 29, 1793.
    [61] 江文慶,碩士論文,國立台灣科技大學,1996.
    [62] Y. J. Huang, C. C. Su, J, Appl. Polym. Sci. 1995, 55, 305.
    [63] C.C. Su, J, Appl. Polym. Sci. 1995, 55, 323.
    [64] Y. J. Huang, S. C. Lee, J. P. Dong, J. Appl. Polym. Sci. 2000, 78, 558.
    [65] E. J. Bartkus, C. H Kroekel, Appl. Polym. Symp. 1970, 15, 113.
    [66] V. A. Pattison, R. R. Hindersinn, W. T. Schwartz, J. Appl. Polym. Sci. 1974, 18, 2763.
    [67] Y. J. Huang, T. S. Chen, J. G. Huang, F. H. Lee, J. Appl. Polym. Sci. 2003, 89, 3336.
    [68] J.P. Dong, J.G. Huang, F.U. Lee, J.W. Roan, and Y.J. Huang, J. Appl. Polym. Sci. 2004, 91, 3369.
    [69] K. E. Atkins, in “Sheet Molding Compound: Science and Technology” Ed., H.G. Kia, Hanser Publishers, 1993, Ch4.
    [70] C. B. Bucknall, I. K. Partridge, M. J. Phillips, Polym. 1991, 32, 786.
    [71] Y. J. Huang, J. C. Horng, Polym. 1998, 39, 3683.
    [72] W. D. Cook, O. Delatycki, J. Polym. Sci. Polym. Phys. Ed. 1974, 12, 1925.
    [73] O. Delatycki, J. Polym. Sci. Polym. Phys. Ed. 1974, 12, 2111.
    [74] J. P. Dong, J. H. Lee, D. H. Lai, Y. J. Huang, Appl. Polym. Sci. 2005, 98, 264.
    [75] Y. Zhao, and S. Perrier, Macromolecules 2006, 39, 8603.
    [76] K. Jiang, C. Ye, P. Zhuang, X. tpu, and Y. Zhao, Macromolecules 2012, 45, 1346.
    [77] O. Guler, M Tekeli, M Taskin, Ceramics International, 2021, Pages 521-533.
    [78] U. Khan, Arlene O’Neill, Harshit Porwala, Peter Maya, Khalid Nawazb, Jonathan N. Colemana, Carbon, p.470-475, 2012.
    [79] Milo S. P. Shaffer, N. Rubio, H. Au, H. S. Leese, Sheng Hu and Adam J. Clancy, Macromolecules 2017, 50, 7077.
    [80] 江義駿,碩士論文,國立臺灣科技大學,2017.
    [81] 張庭豐,碩士論文,國立臺灣科技大學,2018.
    [82] 黃妍綾,碩士論文,國立臺灣科技大學,2019.
    [83] 粘純嫣,碩士論文,國立臺灣科技大學,2016.
    [84] H. S. Maharana, P. K. Rai, and A. Basu, Journal of Materials Science (2017) 52, 1089–1105.
    [85] M. J. McAllister, and J. L. Li, Chem Mater, 2007, 19, 4396-4404.
    [86] M. J. Fernandez-Merino, and L. Guardia, Chem. C, 2010, 114, 6426-6432.

    QR CODE