簡易檢索 / 詳目顯示

研究生: 詹承穎
Cheng-Ying Jhan
論文名稱: 以乳化聚合法合成用於乙烯基酯樹脂及環氧樹脂之奈米級及次微米級高分子核殼型橡膠及反應型微膠顆粒之抗收縮劑及增韌劑
Synthesis of nano-scale and submicron-scale polymeric core-shell rubber and reactive microgel particle as low-profile additives and tougheners for vinyl ester resins and epoxy resins by emulsion polymerizations
指導教授: 黃延吉
Yan-Jyi Huang
口試委員: 陳崇賢
Chorng-Shyan Chen
邱文英
Wen-Yen Chiu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 298
中文關鍵詞: 奈米級/核殼型橡膠不飽和聚酯乙烯基酯樹脂抗收縮劑增韌劑反應性微膠乳化聚合
外文關鍵詞: nano-scale core-shell rubber, reactive microgel(RM), epoxy resin(EP), vinyl ester resin (VER), low-profile additives (LPA), tougherer, emulsion polymerization
相關次數: 點閱:414下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文探討以傳統種子乳化聚合法,添加或不添加乳化劑,合成奈米級或次微米級的通用型核殼型橡膠(gp-CSR)以及反應性微膠,作為乙烯基酯樹脂(VER)的抗體積收縮劑(LPA)及增韌劑。吾人合成不同化學結構之傳統UP,包括MA-PG型、MA-PA-PG型UP,及聚合度為0.16、2、5之EPR與VER樹脂基材,進而設計出具不同相容性之苯乙烯(St)/VER/CSR三成份系統。

    奈米級gp-CSR以聚丙烯酸丁酯PBA為軟質核心,以丙烯酸甲酯PMA為外殼;次微米級gp-CSR以聚丙烯酸丁酯PBA為軟質核心,以甲基丙烯酸甲酯PMMA為外殼。另外gp-CSR之外殼,亦以5~15莫耳百分比之甲基丙烯酸環丙氧酯(Glycidyl methacrylate, GMA)改質,以合成出具高極性及具特殊官能基基團外殼,如環氧基團,以增加CSR外殼之極性及與樹脂基材化學交聯之能力。

    奈米級反應微膠顆粒的合成是以苯乙烯及不飽和聚脂(UP)做為原料,利用傳統乳化聚合法,結合乳化劑和共乳化劑的添加,並控制反應物的PH值,以利自乳化聚合的機制同時作用。不飽和樹脂的原料為順丁烯二酸酐(MA)以及己二醇(HD),以總體之聚縮合反應自行合成。

    接著以80與120℃下之相分離實驗搭配Debye方程式計算基材與CSR殼層組成之單位體積偶極矩,來解釋St/ VER (n=2)/CSR三成份系統之相分離特性。最後,吾人亦探討奈米級核殼型橡膠CSR,對St/VER (n=2)/CSR三成份系統於120℃聚合固化後之體積收縮特性與機械性質的影響。


    Synthesis of nano-scale or submicron-scale general prepose core-shell rubber (gp-CSR) and nano-scale reactive microgel particles (RM) by conventional emulsion polymerization with or without surfactant as low-profile additives (LPA) and tougheners for unsaturated polyester resins (UP) and vinyl ester resin (VER) have been investigated. Two types of UP with different chemical structures, namely, MA-PG and MA-PA-PG, as well as epoxy resin (EPR) and vinyl ester resin (VER) with degree of polymerization (n) = 0.16, 2, and 5, have also been synthesized so that styrene (St) /VER /CSR ternary systems with different miscibility can be designed.

    For the synthesis of nano-scale gp-CSR, the core was made from PBA, the shell was made from poly(methyl acrylate)(PMA). For submicro-scale gp-CSR, the core was made from PBA, the shell was made from poly(methyl methacrylate) (PMMA). Futhermore, the shell of the CSR was modified by 5~15 mole percent of glycidyl methacrylate (GMA) as a comonomer to increase the molecular polarity and provide the specific functionality, such as epoxy group, for the shell of the CSR.

    For the synthesis nano-scale reaction microgel particles,two comonomers,including styrene (St) and unsaturated polyester (UP),were employed. Conventional emulsion polymerizations, which involved the addition of sodium dodecyl sulfate as a surfactant and 1-pentanol as a co-surfactant, along with the adjustment of PH value during the polymeriz -ation to facilitate a self-emulsifying copolymerization a simultaneous reaction of St and UP were carried out. As to the UP resine used as the monomer, it was made from maleic anhydride(MA) and 1,6-hexanediol (HD) by polycondensation in bulk at our laboratory.

    By conducting phase separation experiments and employing Debye’s equation, the dipole moments of UP, VER, EPR, the shell component of the CSR, and RM can be calculated, and the phase characteristics of the St/VER/CSR and St/VER/RM ternary systems have been elucidated.

    Finally, the volume shrinkage characteristics and mechanical properties of the St/VER (n=2)/CSR ternary system after cure have also been explored.

    中文摘要.....................................................................................................Ⅰ 英文摘要....................................................................................................Ⅱ 誌  謝...................................................................................................IV 目  錄....................................................................................................V 圖目錄.......................................................................................................IX 表目錄................................................................................................. XVII 第一章 緒論...............................................................................................1 1-1 簡介...............................................................................................1 1-2 不飽和聚酯(UP)之合成...............................................................4 1-3 環氧樹脂(EPR)之合成.................................................................5 1-4 乙烯基酯樹脂(VER)之合成........................................................7 1-5 不飽和聚酯(UP)與苯乙烯(St)之交聯共聚合反應.....................8 1-6 種子乳化聚合法與複合乳膠顆粒之應用及製備………….....11 1-7 結合RAFT總體聚合反應、自發性相反轉及無乳化劑之乳化聚合法合成特用型核殼型橡膠………............................................12 1-8 石墨烯/高分子奈米複合材料………........................................13 1-9 研究範疇.....................................................................................18 第二章 文獻回顧.....................................................................................20 2-1 不飽和聚酯(UP)之合成.............................................................20 2-2 環氧樹脂(EPR)之合成…………………..................................21 2-3 乙烯基酯樹脂(VER)之合成.....................................................22 2-4 乳化聚合法................................................................................25 2-5 自由基聚合反應........................................................................31 2-6 無乳化劑之乳化聚合反應與反應機構....................................32 2-7 活性自由機聚合法....................................................................33 2-8 原子轉移自由基聚合法(ATRP) ...............................................34 2-9 穩定自由基聚合法(SFRP) ......................................................36 2-10 可逆加成-斷裂練轉移聚合法(RAFT) .................................36 2-11 乳液安定性.............................................................................38 2-12 共聚合反應機構與控制共聚合體組成.................................41 2-13 石墨烯/高分子奈米複合材料之研究.....................................44 2-14 氧化石墨烯(GO)及熱還原氧化石墨烯(TRGO)之製備....... 44 第三章 實驗方法及設備........................................................................46 3-1 實驗藥品....................................................................................46 3-1-1 不飽和聚酯(UP)的合成原料.................................................46 3-1-2 環氧樹脂(EPR)及乙烯基酯樹脂(VER)的合成原料.............47 3-1-3 應用於環氧樹脂鏈延伸之觸媒(ETPP.Ac.HAc)的合成原料49 3-1-4 以傳統乳化聚合法合成之通用型核殼型橡膠(gp-CSR)之合成原料................................................................................................50 3-1-5 反應性微膠顆粒的合成原料.................................................52 3-2 實驗設備....................................................................................54 3-2-1 合成設備.................................................................................54 3-2-2 鑑定設備.................................................................................56 3-3 實驗步驟....................................................................................60 3-3-1 不飽和聚酯(UP) ....................................................................60 3-3-2 環氧樹脂(EPR) ......................................................................69 3-3-3 乙烯基酯樹脂(VER) .............................................................76 3-3-4 以傳統種子乳化聚合法合成奈米級反應性微膠顆............78 3-3-5 傳統乳化聚合法合成之通用型核殼型橡膠(gp-CSR) ........79 3-3-6 單體的純化............................................................................87 3-3-7 轉化率的測定........................................................................88 3-3-8 乳液粒徑之測定...................................................................88 3-3-9 相對分子量級分子量分布之測定........................................89 3-3-10 核磁共振光譜之測定..........................................................90 3-3-11 玻璃轉移溫度(Tg)之測定..................................................90 3-3-12 穿透式電子顯微鏡(TEM)與掃描式電子顯微鏡(SEM)觀測樣品之製備....................................................................................91 3-3-13 相分離之測定...................................................................92 3-3-14 St/VER(n=2)/nano-CSR三成分系統固化試片製作…….92 第四章 結果與討論..............................................................................94 4-1 樹脂之合成.............................................................................94 4-1-1 MA-PG型與MA-PA-PG型不飽和聚酯(UP)之合成...........94 4-1-2 MA-HD 型不飽和聚酯(UP)之合成..................................103 4-1-3 環氧樹脂(EPR)之合成.......................................................105 4-1-4 乙烯基酯樹脂(VER)之合成..............................................108 4-1-5 合成樹脂時的注意事項.....................................................115 4-2 樹脂之鑑定分析.....................................................................118 4-2-1 MA-PG型及MA-PA-PG型不飽和聚酯(UP)之鑑定分析.... 118 4-2-2 環氧樹脂(EPR)及乙烯基酯樹脂(VER)之鑑定分析.........122 4-2-3 不飽和樹脂(UP)、環氧樹脂(EPR)與乙烯基酯樹脂(VER)之NMR分析.......................................................................................146 4-3以傳統乳化聚合法合成反應性微膠顆粒之鑑定分析...........174 4-4 以傳統乳化聚合法合成通用型核殼型橡膠(gp-CSR)之鑑定分析.....................................................................................................177 4-4-1 以DLS測定通用型奈米級核殼型橡膠(gp-CSR)之粒徑...177 4-4-2通用型奈米級核殼型橡膠(gp-CSR)之玻璃轉移溫度(Tg)之DSC鑑定分析..................................................................................181 4-4-3 以DLS測定通用型次微米級核殼型橡膠(gp-CSR)之粒徑184 4-5三成分系統之體積收縮性質測試.............................................190 4-5-1 St/VER(n=2)/ MAA -500-Gx三成分系統之體積收縮性質測試......................................................................................................190 4-5-2 St/VER(n=2)/ MA -30-Gx三成分系統之體積收縮性質測試…………………………………………………………………..199 4-5-3 St/VER(n=2)/ RM 三成分系統之體積收縮性質測試…………………………………………………………………..208 4-6三成分系統之機械性質測試....................................................214 4-6-1 St/VER(n=2)/MMA -500-G0三成分系統之機械性質測試.214 4-6-2 St/VER(n=2)/MA -30-G3三成分系統之機械性質測試.......223 4-6-3 St/VER(n=2)/RM三成分系統之機械性質測試...................232 4-7 St/UP (or VER)R 三成分系統相容性.....................................241 4-7-1 以Debye’s equation與基團貢獻法計算樹脂基材(UP, EPR, VER)及核殼型橡膠(gp-CSR, s-CSR)之偶極矩.............................241 第五章 結論...........................................................................................258 第六章 未來工作...................................................................................260 第七章 補充...........................................................................................261 第八章 參考文獻...................................................................................267

    【1】R.B. Burns , “Polyester Molding Compounds ,” Marcel Dekker , New York , (1982)
    【2】H.G. Kia , ed., “Sheet Molding Compound : Science and Technology ,” Hanser Publishers , New York , (1993).
    【3】E.J. Bartkus and C. H. Kroekel, J. Appl. Polym. Sci., Appl. Polym. Symp., 15, 113 (1970).
    【4】Y.J. Huang, T.S. Chen, J.G. Huang and F.H. Lee, J. Appl. Polym. Sci., 89, 3336(2003).
    【5】V.A. Pattison, R.R. Hindersinn and W.T. Schwartz, J. Appl. Polym. Sci., 18, 2763 (1974).
    【6】W. Funke, R. Kolitz, and W. Straehle, Makromol. Chem., 180, 2797 (1979).
    【7】W. Funke, and K. Walther, Polymer J., 17, 1, 179 (1985).
    【8】W. Funke, Br. Polym. J., 21, 107 (1989).
    【9】L. Liang and W. Funke, Macromolecules, 29 ,8685 (1996).
    【10】郭庭蓁, 碩士論文, 國立台灣科技大學, 2006.
    【11】 J.P. Dong, J.H. Lee, D.H. Lai and Y.H. Huang, J. Appl. Polym. Sci., 98, 246(2005).
    【12】 E. Martuscelli, P. Musto, G. Ragosta, G. Scarinz and E. Bertotti, J. Polym. Sci., Part B: Polym. Phys., 31, 619 (1993).
    【13】 S.B. Pandit and V.M. Nadkarni, Ind. Eng. Chem. Res.,33,2778 (1994).
    【14】 The B.F. Goodrich Co., WO93/21274 (Oct. 28, 1993).
    【15】 Crc for Polymers Pty. Ltd, WO97/43339 (Nov. 20,1997).
    【16】 J. Wang, M. Lee, X. Yu, J. Ji and K. Yao, J. Mater. Sci. Technol., 20, 5, 522 (2004).
    【17】 J. Wang, M. Lee, K. Yao, J. Ji and X. Yu, J. Mater. Sci. Technol., 20, 6, 787 (2004).
    【18】 J.Y. Qian, R. A. Pearson, V. L. Dimonie and M. S. El-Aasser, J. Appl. Polym. Sci., 58, 439 (1995).
    【19】 K.F. Lin and Y.D. Shieh, J. Appl. Polym. Sci., 69, 2069 (1998).
    【20】 K.F. Lin and Y.D. Shieh, J. Appl. Polym. Sci., 70, 2313 (1998).
    【21】 C.L Lee, K.R Lin and W.Y. Chiu, J. Appl. Polym. Sci., 51, 1621 (1994).
    【22】梁景冠,碩士論文,國立台灣科技大學,2003.
    【23】 Y.J. Huang, J.H. Wu, J.G. Liang, M.W. Hsu, and J.K. Ma, J. Appl. Polym. Sci, 107, 939 (2008).
    【24】 C.B. Arends, ed., “Polymer Toughening,” Marcel Dekker, New York, 1996.
    【25】The Dow Chemical Company , PCT Int.Appl.WO986/07067(Dec. 4, 1986).
    【26】朱祈佑,碩士論文,國立台灣科技大學, 2007.
    【27】Y.S.Yang and L.J.Lee,Polymer,29,1793(1988).
    【28】K.Horie,I.Mita,and H.Kambe,J.Polym.Sci.PartA-1:Polym. Chem. 7,2561(1969).
    【29】江文慶,碩士論文,國立台灣科技大學,1996.
    【29.a】Y. J. Huang and W. C. Jiang, Polymer, 39, 6631 (199)
    【29.b】Liang Liang and W.Funke. Maceomolecules 1996, 29, 8650-8655
    【29.c】W. Funke*, R. Kolitz, W. Straehle, Makromol. Chem. 180, 2797-2799
    【29.d】Angel Setyawati Djiuardi , 碩士論文國立台灣科技大學,2008
    【30】Y.C. Chen , V. L. Dimonie , and M.S. El-Aasser , J. Appl. Polym. Sci. , 42 , 1049(1991).
    【31】J.Berg.D.C.Sundberg, and B.Kronberg , Polym. Mater. Sci. Eng. , 54 , 367 , (1986).
    【32】D.C.Sundberg , A.J.Cassasa , J.Pantazopoulos , M.R.Muscato, B.K.Kronberg , and J.Berg , J. Appl. Polym. Sci. , 41 , 1425(1990).
    【33】S. Fre’al-Saison, M. Save, C. Bui, B.Charleux, and S. Magnet, Macromolecules, 39, 8632 (2006).
    【34】H. Kim, A.A. Abdada, and C.W. Macosko, Macromolecules, 43, 6515 (2010).
    【35】K.Hu.D.D Kulkarni, I Choi, V.V. Tsukruk, Prog. Polym. Sci,39, 1934(2014)

    【36】 J. Simitzis, Eur. Polym. J., 24, 87 (1988).
    【37】 R. Subramaniam and F. J. McGarry, 48th Annual Conference,
    Composites Institute, SPI, Session 14-C (Feb. 8-11, 1993).
    【38】 B. R. Bogner and M. Kallaur, in “Sheet Molding Compounds:
    Science and Technology,” ed. H. G. Kia, Hanser, New York, Ch.2, 1993.
    【39】 Amoco Chemical Co., “Processing Unsaturated Polyesters
    Based on Amoco Isophthalic Acid,” IP-43b, 1989.
    【40】 E. F. Cariston and G. B. Johnson, U. S. Patent 2, 904, 533,1959.
    【40】劉嘉樺,碩士論文,國立台灣科技大學, 2008.
    【41】黃俊翰,碩士論文,國立台灣科技大學, 2009.
    【42】 L.V McAdams and J.A Gannon, “Epoxy Resins”.P322-382 in Encyclopeclia of Polymer Science and Engineering,Vol.6,H.F.Mark,N.M Bikales , C.G
    【43】 B.Ellis,Ed”Chemistry and Technology of Epoxy Resins, ”Blackie Academic & Professional , Londom , 1993 ,ch1
    【44】 Carlisle Chemical works , Inc,U.S. Patent 3,341,580,1967
    【45】 The Dow Chemical Campany,U.S.Patent 3,948,855,1976

    【46】 N. Agarwal, I. K. Varma, and V. Choudhary, J. Appl. Polym. Sci., 99, 2424(2006).
    【47】 B. Gawdzik, and T. Matynia, J. Appl. Polym. Sci., 81, 2062(2001).
    【48】 P. Penczek, J. Sodhi, and R. Osrysz, J. Appl. Polym. Sci., 101, 2627 (2006).
    【50】 P. F. Bruins, Ed., “Unsatruated Polyester Technology, ” Gordon and Breach, New York, 1976,p315-342.
    【49】彭俊昇, 碩士論文,國立台灣科技大學,2000.
    【50】 G. Odian,”Principle of polymerization, ”4th Edition, Wiley, New York, 2004.
    【51】廖平喜,聚合物化學,高立圖書有限公司,台北, 1997.
    【52】 H.R. Allcock and F.W. Lampe.,”Contemporary Polymer Chemistry”,3nd Ed., Prentice Hall, Englewood Cliffs, New Jersey,p. 59, 2003.
    【53】吳嘉鴻, 碩士論文, 台灣科技大學, 2003.
    【54】J.W.Vanderhoff, “Science and Technology of Polymer Colloids”, G. W.Poehlein, H.O. and J. W.Goodwin Eds., Vol.I.,1983.
    【55】 V.I.Yeliseyeva, in ”Emulsion Polymerization”, chap.7, Academic Press,New York,1982.
    【56】 H.One and H.Saeki, Br.Polym.J, 7, 21(1975)
    【57】 M.S.Juang and I.M.Krieger, J.Polym.Sci., Polym.Chem.Ed.,14, 2089(1976).
    【58】 S.A.Chen and H.S.Chang, J.Polym.Sci., Polym.Chem.Ed., 23, 2615(1985).
    【59】 D.H.Napper and A.G.Parts, J.Polym.Sci., 16, 113(1962).
    【60】 R.M.Fitch, Br.Polym.J., 5, 467(1973).
    【61】 J.H.Bayendale, M.G.Evans and J.K.Kilham, Trans.Faraday Soc., 42, 688(1946).
    【62】 J.W.Goodwin, J.Hearn, C.C.Ho and R.H.Ottewill, Br.Polym.J., 5, 347(1973).
    【63】張容瑋, 碩士論文,台灣科技大學, 2008.
    【64】 M ,Szwarc.Nature(London),178,1168(1956).
    【65】 T. Otsu, M.Yoshida, Makromol Chem, Rapid Commun., 3,127(1982).
    【66】 K.Matyjaszewski, J.Xia, Chem. Rev., 101, 2921(2001).
    【67】 J.S.Wang,K.Matyjaszewski, ,J.Am.Chem.Soc.,117,5614(1995).
    【68】 M.Kamigaito, T.Ando,;M. Sawamoto, Chem. Rev., 101, 3689 (2001)
    【69】 D. H. Solomon, E. Rizzardo and P. Cacioli, US Patent 4, 581, 429,1985.
    【70】 M. K. Georges, R. P. N. Veregin, P. M. Kazmaier and G. K. Hamer, Macromolecules, 26, 2987 (1993).
    【71】 R.Francis,D.Taton,J.Logan,P.Masse,Y.Gnanou,and R.S.Duran, Macromolecules,86,8253(2003).
    【72】 T.P.Le,G.Moad,E.Rizzardo, and S.H.Thang, PCTInt. Appl. WO9801478 A1980115, 1998.
    【73】 J. Chiefari, Y. K. Chong, F. Ercole, J. Krstina, J. Jefery, T. P. T. Le, R. T. A. Mayadunne, G. F. Meijs, C. L. Moad, G. Moad, E. Rizzardo, S. H. Thong, Macromolecules, 31, 5559 (1998).
    【74】 P.Takolpuckdee, C. A.Mars, S.Perrier, Org. Lett., 7, 3449(2005).
    【75】 Y.Tsujii, M.Ejaz, K.Sato, A.Goto, and T.Fukuda, Macromolecules ,34, 8872(2001).
    【76】 D.L.Patton, and R.C.Advincula, Macromolecules, 39, 8674 (2006).
    【77】 R.Narain, and S.P.Armes, Macromolecules,36,4675(2003).【78】 M. H.Stenzel, T. P.Davis, and A. G.Fane, J Mater Chem, 13, 2090(2003).
    【79】 D.J. Keddie, G. Moad, E. Rizzado, and S.H. Thang, Macromolecules, 45, 5321(2012).
    【80】 許繼強, 碩士論文, 台灣科技大學, 2000.
    【81】 A. S. Kablnov, K. N. Makarov, A. V. Pertzov and E. D. Shchukin, J. Colloid Interface Sci., 138, 98 (1990).
    【82】 A. S. Kabalnov, A. V. Pertzov and E. D. Shchukin, Colloids Surfaces, 124, 19 (1987).
    【83】 P. Taylor, Colloids Surfaces A: Phys. Chem. Eng. Aspects, 99, 175 (1995).
    【84】 A. S. Kabalnov and E. D. Shchukin, Adv. in Colloid Interface Sci, 138, 69 (1992).
    【85】 W. L. Grimm, T. I. Min, M. S. El-Aasser and J. W. Vanderhoff, J. Colloid Interface Sci., 94, 531 (1983).
    【86】 Y. T. Choi, “Formation and Stabilization of Miniemulsions andLatexes”, Ph. D. Dissertation, Lehigh University,1986.
    【87】 W. L. Grimm, “The Use of Mixed-Emulsifier Systems in the Preparation and Stabilization of Emulsions and Latexes”, M. S. Thesis, Lehigh University, 1986.
    【880】 M. S. El-Aasser, C. D. Lack, Y. T. Choi, T. I. Min, J. W. Vanderhoff and F. M. Fowkes, Colloids Surfaces, 12, 79 (1984).
    【89】 C.S.Brazel and S.L.Rosen , “Fundamental Principles of PolymericMaterials,” 3rd Ed., Wiley, New York, 2012.
    【90】 蔡明洲, 碩士論文, 台灣科技大學, 2006.
    【92.a】曾國棟,碩士論文, 台灣科技大學, 2005.
    【91】 H. Kim, Y. Miura, and C.W. Macosko, Chem. Mater., 22, 3441 (2010).
    【92】 H. Kim and C.W. Macosko, Macromolecules, 41, 3317 (2008).
    【93】 W. Huang, X. Ouyang, and L.J. Lee, ACS Nano, 6, 10178 (2012).
    【94】 J.Z. Xu, C. Chen, Y. Wang, H. Tang, Z.M. Li, and B.S. Hsiao, Macromolecules, 44, 2808 (2011).
    【95】 J.R. Potts, O. Shankar, L. Du, and R.S. Ruoff, Macromolecules, 45, 6045 (2012).
    【96】 S. Wang, M. Tambraparni, J. Qiu, J. Tipton, and . Dean, Macromolecules, 42, 5251 (2009).
    【97】 S. Ganguli, A.K. Roy, D.P. Anderson, Carbon, 46, 806 (2008).
    【98】 M. Martin-Gallego, R. Verdejo, M.A. Lopez-Manchado, and M. Sangermanno, Polymer, 52, 4664 (2011).
    【991】S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, and R.S. Ruoff, Carbon, 45, 1558 (2007).
    【1002】W.S. Hummers, and R.E. Offeman, J. Am. Chem. Soc., 80, 1339 (1958).
    【101】H.C. Schniepp, J.L. Li, M.J. McAllister, H. Sai, M. Herrere-Alonso, D.H. Adamson, R.K. Prud’homme, R. Car, R.A. Savile, and I.A. Aksay, J. Phys. Chem. B, 110, 8535 (2006).
    【102】Y. Yang, J. Wang, J. Zhang, J. Liu, X. Yang, and H,. Zhao, Langmuir, 25, 11808 (2009).

    【103】 Beckert, C. Friedrich, R. Thomann, and R. Mulhaupt, Macromolecules, 45, 7083 (2012).
    【104】Senyek, M. L.; Kulig, J. J.; Parker D. K. The Goodyear Tire and Rubber Co. US Patent 6,369,158, 2002.
    【105】V. Nelliappan, A. Klein, E.S. Daniels, and I.E. Roberts, J. Polym. Sci. Part A, Vol34, 3183-3190(1996).
    【106】戴夢祥, 碩士論文, 國立台灣科技大學, 2010
    【107】許毓倫, 碩士論文, 國立台灣科技大學, 2011
    【108】許勝裕, 碩士論文, 國立台灣科技大學, 2012
    【109】饒瑞博, 碩士論文, 國立台灣科技大學, 2013
    【110】鍾孟儒, 碩士論文, 國立台灣科技大學, 2014
    【111】X. Wang,Y. Luo, B. Li, and S. Zhu, Macromolecules, 42,6414(2009).
    【112】W. Ming, F.N. Jones, and S. Fu, Macromol. Chem. Phys. 199, 1075(1998).
    【113】A. Hammond, P.M. Budd, and C. Price, Progr. Colloid Polym. Sci,113, 142(1993).
    【114】E.A. Collins, J. Bares, F.W. Billmeyer, “Experiments in Polymer Science”, J. Wiley&Sons, N.Y.,1973, p.334.
    【115】阮峻維, 碩士論文, 國立台灣科技大學, 1999.
    【116】黃智偉, 碩士論文, 國立台灣科技大學, 2012
    【117】曾建誠, 碩士論文, 國立台灣科技大學, 2012
    【118】Couvreur, L.; Charleux, B.; Guerret, O.; Magnet, S. Macromol. Chem.Phys., 204, 2055(2003).
    【119】K. Landfester, C. Boeffel, M.Lamble, H.W. Spiess, Ecole d’Application des Hauts Polymers/CNRS, 29, 5972-5980(1996).
    【120】D.W.V. Krevlen, ”Properties of polymers: their correlation with chemical structure, their numerical estimation and prediction from additive group contributions”, 3rd Ed., Elserier, Amsterdam,1990.
    【121】J.Guo,X.Liu,Y.Cheng,Y.Li,G.Xu, and P.Cui,J.Colloid andInterface Science,326,138(2008).
    【122】P. Bartlett and R. H. Ottewill, A neutron scattering study of thestructure of a bimodal colloidal crystal,J. Chem. Phys.,96,3306(1992).
    【123】D. Liu, H.J. Sue, Z. J. Thompson, F.S. Bates, M.A. Hillmyer, Dettloff, G. Jacob, N. Verghese, and H. Pham, Polym. Mater. Sci. Eng. ,103, 504 (2010)
    【124】A. Lazzeri, and C.B.Bucknall, J Mater. Sci., 28,6799 (1993)
    【125】Tassia Yuliana, 碩士論文, 國立台灣科技大學, 2013.
    【126】Instituto de Macromoleculas, Universidade Federal do Rio de Janeiro Ilha do Fundao, Centro de Tecnologia, BI. J,Rio de Janeiro, CP 68525 CEP 21945-970, RJ, Brazil (2002)

    QR CODE