簡易檢索 / 詳目顯示

研究生: 康芳瑜
Fang-Yu Kang
論文名稱: 氧化鎢/氧化鐵複合粉體混摻於奈米纖維素氣凝膠用於氣體與水體汙染物之去除
The study of WO2.72@Fe3O4/CNF aerogel composites and its applications for VOCs and aqueous pollutants removal
指導教授: 吳昌謀
Chang-Mou Wu
口試委員: 黃旭曄
HUANG,XU-YE
陳俊傑
CHEN,JUN-JIE
陳榮宏
CHEN,RONG-HONG
安大中
AN,DA-ZHONG
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 100
中文關鍵詞: 六價鉻還原甲醛吸附甲醛降解奈米纖維素氣凝膠
外文關鍵詞: Hexavalent chromium reduction, Formaldehyde adsorption, Formaldehyde degradation, Cellulose nanofiber, Aerogel
相關次數: 點閱:204下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 因應工業發展,生質能源等具永續經營之議題的開發儼然成為當今重要的研究方向。纖維素奈米纖維(Cellulose Nanofiber, CNF),作為地球上產量最豐富的再生資源,同時兼具可生物降解、低密度、高長寬比、較大的比表面積以及高強度等優點,在複合材料、生物工程等領域表現出了良好的前景。
    氣凝膠具有低密度、高比表面積、高孔隙率等特性,目前被廣泛研究在各領域,纖維素奈米纖維氣凝膠(CNF aerogel),除了保有傳統氣凝膠高孔隙率、高比表面積的優點外,更結合纖維素本身優異性能,在吸附、儲能、隔熱和生物醫學等方面皆有不少應用。
    本研究開發一更具環保且低成本的新製程來製備CNF,並以此CNF作為基材,接著透過冷凍乾燥法來製備聚多巴胺(PDA)-聚乙烯醇(PVA)-奈米纖維素(CNF)混和有機氣凝膠,並將此氣凝膠混摻WO2.72@Fe3O4粉體製成具有光催化降解/還原特性之複合材料。
    本研究應用端分為兩個部分,第一部分將製備出的複合氣凝膠作為吸附材,用於去除空氣中的游離甲醛,其吸附效率可達85 %,單位面積甲醛吸附量2033 ppm/m2∙24h,而在照射UV光(波長254 nm) 後,甲醛透過WO2.72@Fe3O4光催化粉體被降解,其降解效率為78.2 %。第二部分則是將複合氣凝膠作為過濾材,用來去除汙水中的六價鉻金屬離子(Hexavalent chromium, Cr (VI)),且在太陽光照射210分鐘後,鉻酸鉀溶液中六價鉻的還原效率為97.4 %,並經由三次重複光催化實驗後,還原效率仍有97.3 %。
    經由研究結果顯示,WO2.72@Fe3O4/PDA-CNF複合氣凝膠同時具有吸附汙染物並將其去除之功效,且在氣相以及水相皆可以應用,再加上材料本身製成環保且具有可生物降解,在吸附及過濾領域中具有相當好的前景。


    In response to industrial development, the development of sustainable management issues such as biomass energy has become an important research direction today. Cellulose Nanofiber (CNF), as the most abundant renewable resource on earth, has the advantages of biodegradation, low density, high aspect ratio, large specific surface area and high strength. It has shown good prospects in the fields of composite materials and bioengineering.
    Aerogel has the characteristics of low density, high specific surface area, high porosity, etc., and is currently widely studied in various fields. Cellulose nanofiber aerogel (CNF aerogel) not only retains the advantages of high porosity and high specific surface area of traditional aerogels, but also combines the excellent properties of cellulose itself. It has many applications in adsorption, energy storage, thermal insulation and biomedicine.
    In this study, a new, more environmentally friendly and low-cost process was developed to prepare CNF. Using this CNF as a substrate, polydopamine (PDA)-polyvinyl alcohol (PVA)-nanocellulose (CNF) composite aerogel were prepared by freeze-drying method. The aerogel was mixed with WO2.72@Fe3O4 powder to make a composite material with photocatalytic degradation/ reduction characteristics.
    The application side of this study is divided into two parts. The first part is the composite aerogel used as an adsorbent to remove formaldehyde in the air. Its adsorption capacity is 2033 ppm/ m2∙24h of formaldehyde adsorption per unit area. After being irradiated with UV light (wavelength =254nm), formaldehyde was degraded through the WO2.72@Fe3O4 photocatalytic powder, and the degradation efficiency was 85 %.
    The second part uses the composite aerogel as a filter material to remove hexavalent chromium metal ions (Cr(VI)) in sewage. It was confirmed by experiments that the reduction efficiency of hexavalent chromium in potassium chromate solution was 97.4%. After 210 minutes of sunlight exposure. And after three repeated photocatalytic experiments, the reduction efficiency is still 97.3 %.
    The research results show that the WO2.72@Fe3O4/PDA-CNF composite aerogel has the effect of adsorbing pollutants and removing them at the same time, and can be applied in both the gas phase and the water phase. In addition, the material itself is environmentally friendly and biodegradable, and has a very good prospect in the field of adsorption and filtration.

    摘要 Abstract 目錄 圖目錄 表目錄 第1章 前言 1.1. 研究背景 第2章 文獻回顧與原理 2.1. 奈米纖維素 2.2. 奈米纖維素製備方式 2.2.1. TEMPO氧化法 2.2.2. 酸水解法 2.2.3. 機械處理法 2.2.4. 細菌培養法 2.3. 氣凝膠 2.3.1. 奈米纖維素氣凝膠 2.4. 氣凝膠製備方式 2.4.1. 超臨界乾燥法 2.4.2. 冷凍乾燥法 2.5. 氣態甲醛吸附 2.5.1. 物理吸附 2.5.2. 化學吸附 2.6. 光催化材料 2.6.1. WO2.72光催化粉體 2.6.2. 磁性Fe3O4奈米顆粒 2.7. 研究動機與目的 第3章 實驗 3.1. 實驗藥品 3.2. 實驗設備及儀器 3.3. 實驗流程圖 3.4. 試片製備 3.4.1. 奈米纖維素製備 3.4.2. 改性PDA-PVA/ CNF 懸浮液製備 3.4.3. WO2.72@Fe3O4光催化粉體製備 3.4.4. WO2.72@Fe3O4/PDA-CNF 複合氣凝膠製備 3.5. 分析方法 3.5.1. 高解析度場發射掃描式電子顯微鏡 3.5.2. 孔隙率量測 3.5.3. 基重 3.5.4. 孔徑分析 3.5.5. 空氣微粒過率效能評估 3.5.6. 游離甲醛吸附能力 3.5.7. 吸水率計算 3.5.8. 吸水速率性試驗 3.5.9. 親疏水性測試 3.5.10. 透濕性量測 3.5.11. 太陽光水蒸發量測量 3.5.12. 隔熱性能量測 3.5.13. 紫外-可見分光光度測試儀 第4章 結果與討論 4.1. CNF複合氣凝膠 4.1.1. 顯微結構分析 4.1.2. 氣體過濾分析 4.1.3. 親疏水性分析 4.1.4. 水蒸發效能分析 4.2. CNF複合氣凝膠去除游離甲醛分析 4.2.1. 甲醛吸附效能分析 4.2.2. 甲醛降解效能分析 4.2.3. 光降解甲醛反應機制 4.3. CNF複合氣凝膠去除液體汙染物分析 4.3.1. 光還原六價鉻效能分析 4.3.2. 光還原六價鉻反應機制 第5章 結論 第6章 參考文獻

    1. de Falco, G., et al., Role of sulfur and nitrogen surface groups in adsorption of formaldehyde on nanoporous carbons. Carbon, 2018. 138: p. 283-291.
    2. Fan, X., et al., The roles of various plasma species in the plasma and plasma-catalytic removal of low-concentration formaldehyde in air. J Hazard Mater, 2011. 196: p. 380-5.
    3. Wang, J., et al., Room-Temperature Oxidation of Formaldehyde by Layered Manganese Oxide: Effect of Water. Environ Sci Technol, 2015. 49(20): p. 12372-9.
    4. Wu, Q., et al., Inhibit the formation of toxic methylphenolic by-products in photo-decomposition of formaldehyde–toluene/xylene mixtures by Pd cocatalyst on TiO2. Applied Catalysis B: Environmental, 2021. 291.
    5. Khosroshahi, N., et al., Collocation of MnFe2O4 and UiO-66-NH2: An efficient and reusable nanocatalyst for achieving high-performance in hexavalent chromium reduction. Journal of Molecular Structure, 2022. 1263.
    6. Wang, J., et al., A porous g-C3N4 nanosheets containing nitrogen defects for enhanced photocatalytic removal meropenem: Mechanism, degradation pathway and DFT calculation. Environ Res, 2020. 184: p. 109339.
    7. Guo, S., et al., Simultaneous reduction of Cr(VI) and degradation of tetracycline hydrochloride by a novel iron-modified rectorite composite through heterogeneous photo-Fenton processes. Chemical Engineering Journal, 2020. 393.
    8. Koutavarapu, R., et al., Novel Z-scheme binary zinc tungsten oxide/nickel ferrite nanohybrids for photocatalytic reduction of chromium (Cr (VI)), photoelectrochemical water splitting and degradation of toxic organic pollutants. J Hazard Mater, 2022. 423(Pt A): p. 127044.
    9. Yu, Y., et al., Adsorption-photocatalysis synergistic removal of contaminants under antibiotic and Cr(VI) coexistence environment using non-metal g-C3N4 based nanomaterial obtained by supramolecular self-assembly method. J Hazard Mater, 2021. 404(Pt A): p. 124171.
    10. Khosroshahi, N., M. Darabi Goudarzi, and V. Safarifard, Fabrication of a novel heteroepitaxial structure from an MOF-on-MOF architecture as a photocatalyst for highly efficient Cr(vi) reduction. New Journal of Chemistry, 2022. 46(7): p. 3106-3115.
    11. Monsef, R., M. Ghiyasiyan-Arani, and M. Salavati-Niasari, Application of ultrasound-aided method for the synthesis of NdVO4 nano-photocatalyst and investigation of eliminate dye in contaminant water. Ultrason Sonochem, 2018. 42: p. 201-211.
    12. Bangar, S.P., et al., Surface modifications of cellulose nanocrystals: Processes, properties, and applications. Food Hydrocolloids, 2022. 130.
    13. Tan, K., et al., An insight into nanocellulose as soft condensed matter: Challenge and future prospective toward environmental sustainability. Sci Total Environ, 2019. 650(Pt 1): p. 1309-1326.
    14. Abitbol, T., et al., Nanocellulose, a tiny fiber with huge applications. Curr Opin Biotechnol, 2016. 39: p. 76-88.
    15. Han, Z., H. Zhu, and J.H. Cheng, Structure modification and property improvement of plant cellulose: Based on emerging and sustainable nonthermal processing technologies. Food Res Int, 2022. 156: p. 111300.
    16. Kim, J.-H., et al., Review of nanocellulose for sustainable future materials. International Journal of Precision Engineering and Manufacturing-Green Technology, 2015. 2(2): p. 197-213.
    17. Tsuguyuki Saito, S.K., Yoshiharu Nishiyama, and Akira Isogai, Cellulose Nanofibers Prepared by TEMPO-Mediated Oxidation of Native Cellulose. Biomacromolecules, 2007. 8: p. 2485-2491.
    18. Fukuzumi, H., et al., Thermal stabilization of TEMPO-oxidized cellulose. Polymer Degradation and Stability, 2010. 95(9): p. 1502-1508.
    19. Isogai, A. and L. Bergström, Preparation of cellulose nanofibers using green and sustainable chemistry. Current Opinion in Green and Sustainable Chemistry, 2018. 12: p. 15-21.
    20. Isogai, A., T. Saito, and H. Fukuzumi, TEMPO-oxidized cellulose nanofibers. Nanoscale, 2011. 3(1): p. 71-85.
    21. Shang, Z., et al., Improving dispersion stability of hydrochloric acid hydrolyzed cellulose nano-crystals. Carbohydr Polym, 2019. 222: p. 115037.
    22. Beck-Candanedo, S., M. Roman, and D.G. Gray, Effect of Reaction Conditions on the Properties and Behavior of
    Wood Cellulose Nanocrystal Suspensions. Biomacromolecules, 2005. 6: p. 1048-1054.
    23. Lu, P. and Y.-L. Hsieh, Preparation and properties of cellulose nanocrystals: Rods, spheres, and network. Carbohydrate Polymers, 2010. 82(2): p. 329-336.
    24. An, X., et al., Preparation of cellulose nano-crystals through a sequential process of cellulase pretreatment and acid hydrolysis. Cellulose, 2016. 23(4): p. 2409-2420.
    25. Lee, S.-Y., et al., Preparation of cellulose nanofibrils by high-pressure homogenizer and cellulose-based composite films. Journal of Industrial and Engineering Chemistry, 2009. 15(1): p. 50-55.
    26. Zuluaga, R., et al., Cellulose microfibrils from banana farming residues: isolation and characterization. Cellulose, 2007. 14(6): p. 585-592.
    27. Siró, I. and D. Plackett, Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose, 2010. 17(3): p. 459-494.
    28. Panthapulakkal, S. and M. Sain, Preparation and Characterization of Cellulose Nanofibril Films from Wood Fibre and Their Thermoplastic Polycarbonate Composites. International Journal of Polymer Science, 2012. 2012: p. 1-6.
    29. Johnson, R.K., et al., A new bio-based nanocomposite: fibrillated TEMPO-oxidized celluloses in hydroxypropylcellulose matrix. Cellulose, 2008. 16(2): p. 227-238.
    30. Zimmermann, T., N. Bordeanu, and E. Strub, Properties of nanofibrillated cellulose from different raw materials and its reinforcement potential. Carbohydrate Polymers, 2010. 79(4): p. 1086-1093.
    31. Nechyporchuk, O., M.N. Belgacem, and J. Bras, Production of cellulose nanofibrils: A review of recent advances. Industrial Crops and Products, 2016. 93: p. 2-25.
    32. Bulota, M., et al., Acetylated microfibrillated cellulose as a toughening agent in poly(lactic acid). Journal of Applied Polymer Science, 2012. 126(S1): p. E449-E458.
    33. Wang, Q.Q., et al., Morphological development of cellulose fibrils of a bleached eucalyptus pulp by mechanical fibrillation. Cellulose, 2012. 19(5): p. 1631-1643.
    34. Nechyporchuk, O., F. Pignon, and M.N. Belgacem, Morphological properties of nanofibrillated cellulose produced using wet grinding as an ultimate fibrillation process. Journal of Materials Science, 2014. 50(2): p. 531-541.
    35. Jonoobi, M., A.P. Mathew, and K. Oksman, Producing low-cost cellulose nanofiber from sludge as new source of raw materials. Industrial Crops and Products, 2012. 40: p. 232-238.
    36. Klemm, D., et al., Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed Engl, 2011. 50(24): p. 5438-66.
    37. Abral, H., et al., Preparation of nano-sized particles from bacterial cellulose using ultrasonication and their characterization. Carbohydr Polym, 2018. 191: p. 161-167.
    38. Ul-Islam, M., T. Khan, and J.K. Park, Water holding and release properties of bacterial cellulose obtained by in situ and ex situ modification. Carbohydrate Polymers, 2012. 88(2): p. 596-603.
    39. Li, Y., M. Lin, and J.W. Davenport, Ab Initio Studies of Cellulose I: Crystal Structure, Intermolecular Forces, and Interactions with Water. The Journal of Physical Chemistry C, 2011. 115(23): p. 11533-11539.
    40. Yang, W.-J., et al., Fire-retarded nanocomposite aerogels for multifunctional applications: A review. Composites Part B: Engineering, 2022. 237.
    41. Yang, W., et al., Novel 3D Network Architectured Hybrid Aerogel Comprising Epoxy, Graphene, and Hydroxylated Boron Nitride Nanosheets. ACS Appl Mater Interfaces, 2018. 10(46): p. 40032-40043.
    42. Du, L., T. Lu, and B. Li, CO2 capture and sequestration in porous media with SiO2 aerogel nanoparticle-stabilized foams. Fuel, 2022. 324.
    43. Bo, G., et al., Enhancing the Fire Safety and Smoke Safety of Bio-Based Rigid Polyurethane Foam via Inserting a Reactive Flame Retardant Containing P@N and Blending Silica Aerogel Powder. Polymers (Basel), 2021. 13(13).
    44. Song, S., et al., Carbon aerogel based composite phase change material derived from kapok fiber: Exceptional microwave absorbility and efficient solar/magnetic to thermal energy storage performance. Composites Part B: Engineering, 2021. 226.
    45. Phanthong, P., et al., Fabrication and evaluation of nanocellulose sponge for oil/water separation. Carbohydr Polym, 2018. 190: p. 184-189.
    46. Zhang, Y., et al., Functional nanocomposite aerogels based on nanocrystalline cellulose for selective oil/water separation and antibacterial applications. Chemical Engineering Journal, 2019. 371: p. 306-313.
    47. Yang, X. and E.D. Cranston, Chemically Cross-Linked Cellulose Nanocrystal Aerogels with Shape Recovery and Superabsorbent Properties. Chemistry of Materials, 2014. 26(20): p. 6016-6025.
    48. Cai, C., et al., Wood-inspired superelastic MXene aerogels with superior photothermal conversion and durable superhydrophobicity for clean-up of super-viscous crude oil. Chemical Engineering Journal, 2021. 421.
    49. Chen, Y., et al., Elasticity-Enhanced and Aligned Structure Nanocellulose Foam-like Aerogel Assembled with Cooperation of Chemical Art and Gradient Freezing. ACS Sustainable Chemistry & Engineering, 2018. 7(1): p. 1381-1388.
    50. Xie, C., et al., From Monomers to a Lasagna-like Aerogel Monolith: An Assembling Strategy for Aramid Nanofibers. ACS Nano, 2019. 13(7): p. 7811-7824.
    51. Zhuang, J., et al., Adsorption of small size microplastics based on cellulose nanofiber aerogel modified by quaternary ammonium salt in water. Separation and Purification Technology, 2022. 293.
    52. Sepahvand, S., et al., Modified cellulose nanofibers aerogels as a novel air filters; Synthesis and performance evaluation. Int J Biol Macromol, 2022. 203: p. 601-609.
    53. Tang, J., et al., Compressible cellulose nanofibril (CNF) based aerogels produced via a bio-inspired strategy for heavy metal ion and dye removal. Carbohydr Polym, 2019. 208: p. 404-412.
    54. Zheng, Q., Z. Cai, and S. Gong, Green synthesis of polyvinyl alcohol (PVA)–cellulose nanofibril (CNF) hybrid aerogels and their use as superabsorbents. J. Mater. Chem. A, 2014. 2(9): p. 3110-3118.
    55. El-Naggar, M.E., et al., Synthesis, drying process and medical application of polysaccharide-based aerogels. Int J Biol Macromol, 2020. 145: p. 1115-1128.
    56. Zuo, L., et al., Polymer/Carbon-Based Hybrid Aerogels: Preparation, Properties and Applications. Materials (Basel), 2015. 8(10): p. 6806-6848.
    57. Dervin, S. and S.C. Pillai, An Introduction to Sol-Gel Processing for Aerogels, Sol-Gel Materials for Energy, Environment and Electronic Applications. Springer, 2017: p. P.1~22.
    58. Verma, N.K., P. Khare, and N. Verma, Synthesis of iron-doped resorcinol formaldehyde-based aerogels for the removal of Cr(VI) from water. Green Processing and Synthesis, 2015. 4(1).
    59. Wang, Y., et al., The advances of polysaccharide-based aerogels: Preparation and potential application. Carbohydr Polym, 2019. 226: p. 115242.
    60. Ganesan, K., et al., Review on the Production of Polysaccharide Aerogel Particles. Materials (Basel), 2018. 11(11).
    61. Zhang, X., et al., Ultralight, hydrophobic, anisotropic bamboo-derived cellulose nanofibrils aerogels with excellent shape recovery via freeze-casting. Carbohydr Polym, 2019. 208: p. 232-240.
    62. Ni, X., et al., The control of ice crystal growth and effect on porous structure of konjac glucomannan-based aerogels. Int J Biol Macromol, 2016. 92: p. 1130-1135.
    63. Wang, W., et al., Fabrication and characterization of a novel konjac glucomannan-based air filtration aerogels strengthened by wheat straw and okara. Carbohydr Polym, 2019. 224: p. 115129.
    64. Yi, Q., F. Niu, and W. Yu, Pd-modified TiO2 electrode for electrochemical oxidation of hydrazine, formaldehyde and glucose. Thin Solid Films, 2011. 519(10): p. 3155-3161.
    65. Zvulunov, Y. and A. Radian, Alginate Composites Reinforced with Polyelectrolytes and Clay for Improved Adsorption and Bioremediation of Formaldehyde from Water. ACS ES&T Water, 2021. 1(8): p. 1837-1848.
    66. Huang, J., et al., Ferrocenyl building block constructing porous organic polymer for gas capture and methyl violet adsorption. Journal of Central South University, 2020. 27(4): p. 1247-1261.
    67. Liu, Q., et al., Hypercrosslinked polystyrene microspheres with ultrahigh surface area and their application in gas storage. Materials Chemistry and Physics, 2017. 199: p. 616-622.
    68. Niknaddaf, S., et al., Heel formation during volatile organic compound desorption from activated carbon fiber cloth. Carbon, 2016. 96: p. 131-138.
    69. Chen, N., et al., Preparation and characterization of porous granular ceramic containing dispersed aluminum and iron oxides as adsorbents for fluoride removal from aqueous solution. J Hazard Mater, 2011. 186(1): p. 863-8.
    70. Yuan, X., et al., Fabricating mesoporous silica-modified alumina with high thermal stability. Chemical Physics Letters, 2019. 716: p. 126-130.
    71. Zhang, X., et al., Adsorption of VOCs onto engineered carbon materials: A review. J Hazard Mater, 2017. 338: p. 102-123.
    72. Yang, S., et al., Enhancement of formaldehyde removal by activated carbon fiber via in situ growth of carbon nanotubes. Building and Environment, 2017. 126: p. 27-33.
    73. Na, C.J., et al., High-performance materials for effective sorptive removal of formaldehyde in air. J Hazard Mater, 2019. 366: p. 452-465.
    74. Yue, X., et al., Mitigation of indoor air pollution: A review of recent advances in adsorption materials and catalytic oxidation. J Hazard Mater, 2021. 405: p. 124138.
    75. Ewlad-Ahmed, A.M., et al., Removal of formaldehyde from air using functionalized silica supports. Environ Sci Technol, 2012. 46(24): p. 13354-60.
    76. Wang, Z., et al., Diamine-appended metal-organic frameworks: enhanced formaldehyde-vapor adsorption capacity, superior recyclability and water resistibility. Dalton Trans, 2016. 45(28): p. 11306-11.
    77. Yang, Z., et al., Enhanced Formaldehyde Removal from Air Using Fully Biodegradable Chitosan Grafted beta-Cyclodextrin Adsorbent with Weak Chemical Interaction. Polymers (Basel), 2019. 11(2).
    78. Likodimos, V., Photonic crystal-assisted visible light activated TiO2 photocatalysis. Applied Catalysis B: Environmental, 2018. 230: p. 269-303.
    79. Di, J., et al., Tunable oxygen activation induced by oxygen defects in nitrogen doped carbon quantum dots for sustainable boosting photocatalysis. Carbon, 2017. 114: p. 601-607.
    80. Sousa-Castillo, A., et al., Boosting Hot Electron-Driven Photocatalysis through Anisotropic Plasmonic Nanoparticles with Hot Spots in Au–TiO2 Nanoarchitectures. The Journal of Physical Chemistry C, 2016. 120(21): p. 11690-11699.
    81. Zhang, Z., et al., A Nonmetal Plasmonic Z-Scheme Photocatalyst with UV- to NIR-Driven Photocatalytic Protons Reduction. Adv Mater, 2017. 29(18).
    82. Wang, S. and X. Wang, Multifunctional Metal-Organic Frameworks for Photocatalysis. Small, 2015. 11(26): p. 3097-112.
    83. Li, B., et al., Construction of metal/WO 2.72 /rGO ternary nanocomposites with optimized adsorption, photocatalytic and photoelectrochemical properties. Applied Catalysis B: Environmental, 2016. 198: p. 325-333.
    84. Li, J., et al., Plasmonic W18O49-photosensitized TiO2 nanosheets with wide-range solar light harvesting. RSC Advances, 2017. 7(38): p. 23846-23850.
    85. Li, X., et al., Synthesis of 3D Hierarchical Fe3O4/Graphene Composites with High Lithium Storage Capacity and for Controlled Drug Delivery. The Journal of Physical Chemistry C, 2011. 115(44): p. 21567-21573.
    86. Xu, P., et al., Use of iron oxide nanomaterials in wastewater treatment: a review. Sci Total Environ, 2012. 424: p. 1-10.
    87. Chen, W.J., P.J. Tsai, and Y.C. Chen, Functional Fe3O4/TiO2 core/shell magnetic nanoparticles as photokilling agents for pathogenic bacteria. Small, 2008. 4(4): p. 485-91.
    88. Xu, J.W., et al., Synthesis of magnetically separable Ag3PO4/TiO2/Fe3O4 heterostructure with enhanced photocatalytic performance under visible light for photoinactivation of bacteria. ACS Appl Mater Interfaces, 2014. 6(17): p. 15122-31.
    89. Liu, X., et al., Preparation and Characterization of Fe3O4/CdS Nanocomposites
    and Their Use as Recyclable Photocatalysts. J. Phys. Chem. C, 2009. 113: p. 553–558.
    90. Ren, L., et al., One-step preparation of hierarchical superparamagnetic iron oxide/graphene composites via hydrothermal method. Applied Surface Science, 2011. 258(3): p. 1132-1138.
    91. Shouhu Xuan, et al., Magnetically Separable Fe3O4/TiO2 Hollow Spheres: Fabrication and Photocatalytic Activity. J. Phys. Chem. C, 2009. 113: p. 553-558.
    92. Motora, K.G., et al., Highly efficient photocatalytic activity of Ag3VO4/WO2.72 nanocomposites for the degradation of organic dyes from the ultraviolet to near-infrared regions. Applied Surface Science, 2020. 512.
    93. Motora, K.G. and C.-M. Wu, Magnetically separable highly efficient full-spectrum light-driven WO2.72/Fe3O4 nanocomposites for photocatalytic reduction of carcinogenic chromium (VI) and organic dye degradation. Journal of the Taiwan Institute of Chemical Engineers, 2020. 117: p. 123-132.
    94. Motora, K.G., C.-M. Wu, and S. Naseem, Magnetic recyclable self-floating solar light-driven WO2.72/Fe3O4 nanocomposites immobilized by Janus membrane for photocatalysis of inorganic and organic pollutants. Journal of Industrial and Engineering Chemistry, 2021. 102: p. 25-34.
    95. Wang, J., S.C. Kim, and D.Y.H. Pui, Investigation of the figure of merit for filters with a single nanofiber layer on a substrate. Journal of Aerosol Science, 2008. 39(4): p. 323-334.
    96. 黃琨智, et al., 台灣綠建材降低室內甲醛濃度之吸附性能檢測系統驗證. Journal of Architecture, 2012. No. 80: p. pp.63~83.

    無法下載圖示 全文公開日期 2032/09/28 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE