簡易檢索 / 詳目顯示

研究生: 曾逸群
Yi-Qun Tseng
論文名稱: 金奈米粒子-氧化石墨烯-奈米纖維複合層析紙於表面增強拉曼光譜之應用
Gold Nanoparticles-Graphene Oxide-Cellulose Nanofibers based Chromatographic SERS Paper for Bio-Detection
指導教授: 楊銘乾
Ming-Chien Yang
口試委員: 楊銘乾
Ming-Chien Yang
劉定宇
Ting-Yu Liu
鄭詠馨
Yung-Hsin Cheng
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 81
中文關鍵詞: 奈米纖維素氧化石墨烯金奈米粒子表面增強拉曼光譜
外文關鍵詞: TOCNs, gold nanoparticles, graphene oxide, surface-enhanced Raman scattering (SERS)
相關次數: 點閱:282下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用纖維素純化技術,純化針葉纖維素,以TEMPO (2,2,6,6-tetramethylepiperidin-1-oxyl)/NaBr/NaClO氧化纖維素中的羥基,引入羧基及醛基,將其纖維素奈米化,改質過後的奈米纖維 (TONCs),透過XRD繞射分析顯示TOCNs保有纖維素原本結晶度及完整性。在實驗中,我們添加氧化石墨烯(GO)於TOCNs中,GO特殊的苯環結構有助於增強拉曼光譜訊號,並能增加紙製品的機械強力(約7-8倍),製作出具高延展性之紙製品(GO@TOCNs)。隨後我們將金奈米粒子(AuNPs)導入GO@TOCNs複合紙表面,使AuNPs@GO@TOCNs複合紙具有表面增強拉曼(surface enhance Raman scattering, SERS)檢測能力及層析能力,藉由調控TOCNs及GO的比例,可將待測物有效層析分離。本次實驗之檢測分子為羅丹明6G (Rhodamine 6G)及直接藍(Direct blue),透過AuNPs@GO@TOCNs複合層析紙初步層析分離,再使用SERS技術來做檢測,其最低檢測濃度<10-7M,作為新興的生醫快篩檢測試紙,未來可用於民生、環保及生醫產業上(例如:水中污染物、生物分子、細菌檢測等)。


    The nanohybrids of surface-enhanced Raman scattering (SERS) detection papers were successfully fabricated by gold nanoparticles (AuNPs) immobilized on the graphene oxide (GO) nanosheets-cellulose nanofibers (TOCNs) substrates. TOCNs were extracted from the recycling cellulose fibers from the food wastes, and then modified by a 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO) to exfoliate it. GO and TOCNs were further blended together to fabricate papers by the paper machine. Furthermore, AuNPs were (ca. 10 nm) in-situ grown on the GO@TOCNs paper as SERS substrate for biomolecules and water pollutants detection. [2] The result show that the tensile strength of AuNPs@GO@TOCNs composites is 7-8 times higher than the pristine TOCNs papers, showing the great mechanical properties after the addition of GO and AuNPs. X-ray diffraction patterns show that TOCNs still maintain great crystallinity, even though diameters of cellulose fibers decrease from micro- to nano-scale. The biomolecules of rhodamine 6G and direct blue can be detected by Raman spectroscopy and chromatographic separation. The limit of detection (LOD) on AuNPs@GO@TOCNs SERS paper is lower than 10-7 M. The reason is that GO can doubly enhance the SERS intensity by the surface plasmon resonance in the symmetrical benzene structure. Finally, the nanohybrids paper can be used as a chromatographic paper to separate the samples by modulated the ratios of GO and TOCNs. Thus, AuNPs@GO@TOCNs papers are potential to apply in the platform of the chromatographic separation and rapid SERS detection of biomolecules.

    目錄 致謝 1 中文摘要 2 Abstract 3 目錄 4 圖目錄 8 第 1 章 (Introduction) 13 1.1 研究背景 13 1.2 研究目的 14 第 2 章 文獻回顧 (Literature) 15 2.1 纖維素 15 2.1.1 纖維素性質 15 2.1.2 奈米纖維素性質 16 2.2 石墨烯 20 2.2.1 石墨烯性質 20 2.2.2 石墨烯的製備方法 25 2.2.3 氧化石墨烯 27 2.2.4 氧化石墨烯製備方法 28 2.3 金奈米粒子 30 2.3.1 金奈米粒子性質 30 2.3.2 金奈米粒子合成方法與結構 30 2.4 薄膜層析法 35 2.4.1 薄膜層析法介紹 35 2.5 拉曼光譜 37 2.5.1 拉曼光譜的歷史 37 2.5.2 拉曼光譜的原理 38 2.5.2 表面增強拉曼光譜簡介 39 2.5.3 表面增強拉曼光譜效應機制 40 第 3 章 實驗 (Experiment) 45 3.1 實驗材料 45 3.2 實驗設備 46 3.3 實驗流程 48 3.4 實驗原理及方法 49 3.4.1 奈米纖維素製備 49 3.4.2 氧化石墨烯合成 50 3.4.3 氧化石墨烯-奈米纖維紙製備 52 3.4.4 金奈米粒子-氧化石墨烯-奈米纖維複合層析紙合成 53 3.4.7 表面增強拉曼光譜實驗 54 第 4 章 結果討論 (Results and Discussion) 56 4.1 金奈米粒子-氧化石墨烯-奈米纖維複合層析紙 56 4.1.1 奈米纖維合成 56 4.1.2 氧化石墨烯之合成 58 4.1.3 氧化石墨烯-奈米纖維複合層析紙 61 4.1.4 金奈米粒子-氧化石墨烯-奈米纖維素複合層析紙 63 4.2 SERS效應與應用探討 67 4.2.1 金奈米粒子-氧化石墨烯-奈米纖維複合層析紙分離分子之情形 67 4.2.2 金奈米粒子-氧化石墨烯-奈米纖維複合層析紙之SERS檢測 68 第 5 章 結論 74 參考文獻 (Reference) 75

    1. Mariano, M.; Dufresne, A., Nanocellulose: Common Strategies for Processing of Nanocomposites. In Nanocelluloses: Their Preparation, Properties, and Applications, 2017; pp 203-225.
    2. Isogai, A.; Saito, T.; Fukuzumi, H., TEMPO-oxidized cellulose nanofibers. Nanoscale 2011, 3 (1), 71-85.
    3. Pääkkö, M.; Ankerfors, M.; Kosonen, H.; Nykänen, A.; Ahola, S.; Österberg, M.; Ruokolainen, J.; Laine, J.; Larsson, P. T.; Ikkala, O.; Lindstrom, T., Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 2007, 8 (6), 1934-1941.
    4. Wågberg, L.; Decher, G.; Norgren, M.; Lindström, T.; Ankerfors, M.; Axnäs, K., The build-up of polyelectrolyte multilayers of microfibrillated cellulose and cationic polyelectrolytes. Langmuir 2008, 24 (3), 784-795.
    5. Siró, I.; Plackett, D.; Hedenqvist, M.; Ankerfors, M.; Lindström, T., Highly transparent films from carboxymethylated microfibrillated cellulose: the effect of multiple homogenization steps on key properties. Journal of Applied Polymer Science 2011, 119 (5), 2652-2660.
    6. Bondeson, D.; Mathew, A.; Oksman, K., Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis. Cellulose 2006, 13 (2), 171.
    7. Saito, T.; Kimura, S.; Nishiyama, Y.; Isogai, A., Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 2007, 8 (8), 2485-2491.
    8. Li, X.; Liu, X., Fabrication of three-dimensional microfluidic channels in a single layer of cellulose paper. Microfluidics and nanofluidics 2014, 16 (5), 819-827.
    9. Lavoine, N.; Desloges, I.; Dufresne, A.; Bras, J., Microfibrillated cellulose - its barrier properties and applications in cellulosic materials: a review. Carbohydrate polymers 2012, 90 (2), 735-64.
    10. Zhang, Y.; Small, J. P.; Amori, M. E.; Kim, P., Electric field modulation of galvanomagnetic properties of mesoscopic graphite. Physical review letters 2005, 94 (17), 176803.
    11. Geim, A. K.; Novoselov, K. S., The rise of graphene. In Nanoscience and Technology: A Collection of Reviews from Nature Journals 2010; pp 11-19.
    12. Wallace, P. R., The band theory of graphite. Physical Review 1947, 71 (9), 622.
    13. Frank, I.; Tanenbaum, D. M.; van der Zande, A. M.; McEuen, P. L., Mechanical properties of suspended graphene sheets. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena 2007, 25 (6), 2558-2561.
    14. Lee, C.; Wei, X.; Kysar, J. W.; Hone, J., Measurement of the elastic properties and intrinsic strength of monolayer graphene. science 2008, 321 (5887), 385-388.
    15. Colonna, F.; Los, J.; Fasolino, A.; Meijer, E., Properties of graphite at melting from multilayer thermodynamic integration. Physical Review B 2009, 80 (13), 134103.
    16. Neek-Amal, M.; Peeters, F. M., Nanoindentation of a circular sheet of bilayer graphene. Physical Review B 2010, 81 (23), 235421.
    17. Meyer, J. C.; Geim, A. K.; Katsnelson, M. I.; Novoselov, K. S.; Booth, T. J.; Roth, S., The structure of suspended graphene sheets. Nature 2007, 446 (7131), 60.
    18. Novoselov, K.; Neto, A. C., Two-dimensional crystals-based heterostructures: materials with tailored properties. Physica Scripta 2012, 2012 (T146), 014006.
    19. Iyechika, Y., Application of graphene to high-speed transistors: expectations and challenges; 1349-3663; NISTEP Science & Technology Foresight Center: 2010.
    20. Reina, A.; Jia, X.; Ho, J.; Nezich, D.; Son, H.; Bulovic, V.; Dresselhaus, M. S.; Kong, J., Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano letters 2008, 9 (1), 30-35.
    21. Obraztsov, A.; Obraztsova, E.; Tyurnina, A.; Zolotukhin, A., Chemical vapor deposition of thin graphite films of nanometer thickness. Carbon 2007, 45 (10), 2017-2021.
    22. Vlassiouk, I.; Regmi, M.; Fulvio, P.; Dai, S.; Datskos, P.; Eres, G.; Smirnov, S., Role of hydrogen in chemical vapor deposition growth of large single-crystal graphene. ACS nano 2011, 5 (7), 6069-6076.
    23. Yung, K.; Wu, W.; Pierpoint, M.; Kusmartsev, F., Introduction to graphene electronics–a new era of digital transistors and devices. Contemporary Physics 2013, 54 (5), 233-251.
    24. He, H.; Klinowski, J.; Forster, M.; Lerf, A., A new structural model for graphite oxide. Chemical physics letters 1998, 287 (1-2), 53-56.
    25. Lerf, A.; He, H.; Forster, M.; Klinowski, J., Structure of graphite oxide revisited. The Journal of Physical Chemistry B 1998, 102 (23), 4477-4482.
    26. Hirata, M.; Gotou, T.; Horiuchi, S.; Fujiwara, M.; Ohba, M., Thin-film particles of graphite oxide 1:: High-yield synthesis and flexibility of the particles. Carbon 2004, 42 (14), 2929-2937.
    27. Szabó, T.; Szeri, A.; Dékány, I., Composite graphitic nanolayers prepared by self-assembly between finely dispersed graphite oxide and a cationic polymer. Carbon 2005, 43 (1), 87-94.
    28. Brodie, B. C., XIII. On the atomic weight of graphite. Philosophical Transactions of the Royal Society of London 1859, (149), 249-259.
    29. Lin, Z.; Liu, Y.; Yao, Y.; Hildreth, O. J.; Li, Z.; Moon, K.; Agar, J. C.; Wong, C. In Surface engineering of graphene for high performance supercapacitors, 2011 IEEE 61st Electronic Components and Technology Conference (ECTC), IEEE: 2011; pp 236-241.
    30. Hummers Jr, W. S.; Offeman, R. E., Preparation of graphitic oxide. Journal of the american chemical society 1958, 80 (6), 1339-1339.
    31. Bagri, A.; Mattevi, C.; Acik, M.; Chabal, Y. J.; Chhowalla, M.; Shenoy, V. B., Structural evolution during the reduction of chemically derived graphene oxide. Nature chemistry 2010, 2 (7), 581.
    32. HANDLEY, D. A., The development and application of colloidal gold as a microscopic probe. In Colloidal Gold, Elsevier: 1989; pp 1-12.
    33. Faraday, M., X. The Bakerian Lecture.—Experimental relations of gold (and other metals) to light. Philosophical Transactions of the Royal Society of London 1857, (147), 145-181.
    34. Kneipp, K.; Haka, A. S.; Kneipp, H.; Badizadegan, K.; Yoshizawa, N.; Boone, C.; Shafer-Peltier, K. E.; Motz, J. T.; Dasari, R. R.; Feld, M. S., Surface-enhanced Raman spectroscopy in single living cells using gold nanoparticles. Applied Spectroscopy 2002, 56 (2), 150-154.
    35. Talley, C. E.; Jackson, J. B.; Oubre, C.; Grady, N. K.; Hollars, C. W.; Lane, S. M.; Huser, T. R.; Nordlander, P.; Halas, N. J., Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates. Nano letters 2005, 5 (8), 1569-1574.
    36. Orendorff, C. J.; Gole, A.; Sau, T. K.; Murphy, C. J., Surface-enhanced Raman spectroscopy of self-assembled monolayers: sandwich architecture and nanoparticle shape dependence. Analytical chemistry 2005, 77 (10), 3261-3266.
    37. Wang, G.; Shen, X.; Yao, J.; Park, J., Graphene nanosheets for enhanced lithium storage in lithium ion batteries. Carbon 2009, 47 (8), 2049-2053.
    38. Kimling, J.; Maier, M.; Okenve, B.; Kotaidis, V.; Ballot, H.; Plech, A., Turkevich method for gold nanoparticle synthesis revisited. The Journal of Physical Chemistry B 2006, 110 (32), 15700-15707.
    39. Turkevich, J.; Stevenson, P. C.; Hillier, J., A study of the nucleation and growth processes in the synthesis of colloidal gold. Discussions of the Faraday Society 1951, 11, 55-75.
    40. Brown, K. R.; Walter, D. G.; Natan, M. J., Seeding of colloidal Au nanoparticle solutions. 2. Improved control of particle size and shape. Chemistry of Materials 2000, 12 (2), 306-313.
    41. Harwood, L. M.; Moody, C. J., Instructor's Manual to Accompany Experimental Organic Chemistry: Principles and Practice. Blackwell Scientific Publications: 1989.
    42. Mangold, H.; Stahl, E., Thin-layer chromatography. 1969.
    43. Furniss, B.; Hannaford, A.; Rogers, V.; Smith, P.; Tatchell, A., London; York, N., Vogel’s Textbook of Practical Organic Chemistry, Including Qualitative Organic Analysis. ELBS 1978.
    44. Andrić, F.; Bajusz, D.; Rácz, A.; Šegan, S.; Héberger, K., Multivariate assessment of lipophilicity scales—Computational and reversed phase thin-layer chromatographic indices. Journal of pharmaceutical and biomedical analysis 2016, 127, 81-93.
    45. Louden, J., Raman microscopy. In Practical Raman Spectroscopy, Springer: 1989; pp 119-151.
    46. Tanaka, M.; Young, R., Review Polarised Raman spectroscopy for the study of molecular orientation distributions in polymers. Journal of Materials Science 2006, 41 (3), 963-991.
    47. Long, D., Including Higher Order Processes,; Brillouin, a.; Scattering, R., Introductory Raman Spectroscopy. John R. Ferraro, Kazuo Nakamoto and Chris W. Brown. Academic Press, Amsterdam, 2003. xiii+ 434. Journal of Raman Spectroscopy: An International Journal for Original Work in all Aspects of Raman Spectroscopy, Including Higher Order Processes, and also Brillouin and Rayleigh Scattering 2005, 36 (10), 1012-1012.
    48. Fleischmann, M.; Hendra, P. J.; McQuillan, A. J., Raman spectra of pyridine adsorbed at a silver electrode. Chemical physics letters 1974, 26 (2), 163-166.
    49. Doering, W. E.; Nie, S., Single-molecule and single-nanoparticle SERS: examining the roles of surface active sites and chemical enhancement. The Journal of Physical Chemistry B 2002, 106 (2), 311-317.
    50. Félidj, N.; Aubard, J.; Lévi, G.; Krenn, J. R.; Hohenau, A.; Schider, G.; Leitner, A.; Aussenegg, F. R., Optimized surface-enhanced Raman scattering on gold nanoparticle arrays. Applied Physics Letters 2003, 82 (18), 3095-3097.
    51. Nie, S.; Emory, S. R., Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. science 1997, 275 (5303), 1102-1106.
    52. Kneipp, K.; Wang, Y.; Kneipp, H.; Perelman, L. T.; Itzkan, I.; Dasari, R. R.; Feld, M. S., Single molecule detection using surface-enhanced Raman scattering (SERS). Physical review letters 1997, 78 (9), 1667.
    53. Campion, A.; Kambhampati, P., Surface-enhanced Raman scattering. Chemical society reviews 1998, 27 (4), 241-250.
    54. Jeanmaire, D. L.; Van Duyne, R. P., Surface Raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. Journal of electroanalytical chemistry and interfacial electrochemistry 1977, 84 (1), 1-20.
    55. Albrecht, M. G.; Creighton, J. A., Anomalously intense Raman spectra of pyridine at a silver electrode. Journal of the american chemical society 1977, 99 (15), 5215-5217.
    56. Le Ru, E.; Blackie, E.; Meyer, M.; Etchegoin, P. G., Surface enhanced Raman scattering enhancement factors: a comprehensive study. The Journal of Physical Chemistry C 2007, 111 (37), 13794-13803.
    57. Haes, A. J.; Van Duyne, R. P., A unified view of propagating and localized surface plasmon resonance biosensors. Analytical and bioanalytical chemistry 2004, 379 (7-8), 920-930.
    58. Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C., The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. ACS Publications: 2003.
    59. Le Ru, E.; Etchegoin, P., Introduction to plasmons and plasmonics. Principles of Surface-Enhanced Raman Spectroscopy 2009, 3, 121-183.
    60. Xu, H.; Bjerneld, E. J.; Käll, M.; Börjesson, L., Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering. Physical review letters 1999, 83 (21), 4357.
    61. Hao, E.; Schatz, G. C., Electromagnetic fields around silver nanoparticles and dimers. The Journal of chemical physics 2004, 120 (1), 357-366.
    62. Jensen, T. R.; Schatz, G. C.; Van Duyne, R. P., Nanosphere lithography: Surface plasmon resonance spectrum of a periodic array of silver nanoparticles by ultraviolet− visible extinction spectroscopy and electrodynamic modeling. The Journal of Physical Chemistry B 1999, 103 (13), 2394-2401.
    63. Liu, G. L.; Lee, L. P., Nanowell surface enhanced Raman scattering arrays fabricated by soft-lithography for label-free biomolecular detections in integrated microfluidics. Applied Physics Letters 2005, 87 (7), 074101.
    64. Wang, H. H.; Liu, C. Y.; Wu, S. B.; Liu, N. W.; Peng, C. Y.; Chan, T. H.; Hsu, C. F.; Wang, J. K.; Wang, Y. L., Highly raman‐enhancing substrates based on silver nanoparticle arrays with tunable sub‐10 nm gaps. Advanced Materials 2006, 18 (4), 491-495.

    無法下載圖示 全文公開日期 2024/08/16 (校內網路)
    全文公開日期 2024/08/16 (校外網路)
    全文公開日期 2024/08/16 (國家圖書館:臺灣博碩士論文系統)
    QR CODE