簡易檢索 / 詳目顯示

研究生: 葉祖豪
Tsu-Hao Yeh
論文名稱: 具高度有序微米孔洞陣列之銀薄膜的製備及其作為表面拉曼增強散射檢測之應用研究
Silver metal meshes with highly-ordered microhole arrays as surface-enhanced Raman scattering (SERS) substrates
指導教授: 朱瑾
Jinn P. Chu
口試委員: 江偉宏
Wei-Hung Chiang
林宗宏
Zong-Hong Lin
姚栢文
Pak-Man Yiu
邱昱誠
Yu-Cheng Chiu
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 104
中文關鍵詞: 磁控濺鍍技術金屬微米孔洞陣列表面增強拉曼光譜基材奈米銀顆粒孔雀石綠
外文關鍵詞: Magnetron sputtering technique, metallic micro-hole array, Surface-enhanced Raman spectroscopy substrate, silver nanoparticles, malachite green (MG)
相關次數: 點閱:179下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 表面增強拉曼光譜(Surface-Enhanced Raman Spectroscopy, SERS)係一利用具有奈
    米結構之基材以提升拉曼訊號強度之分析手法,並廣泛應用於分析化學、環境檢測、食
    品安全等重要領域。一高度靈敏之 SERS 藥品裝載之基材由其所具備之表面電漿共振
    (Surface Plasmon Resonance, SPR) 特性來進行對於特徵峰強度之貢獻,而該特性會受到
    基材之材料組成、奈米結構形貌之影響。本研究旨在利用半導體之微影製程技術以及物
    理氣象沉積之磁控濺鍍技術以開發一具有微米級距之孔洞陣列可撓式薄膜,並且嘗試將
    其應用於實際分析環境中。
    本研究可分為二章節,首先透過不同光罩中之孔洞陣列設計,利用濺鍍一銀薄膜於
    其上,並且製備一系列具有不同形貌以及排列之微米孔洞陣列,其中包含圓形、三角形
    以及菱形。透過利用羅丹明 6G (R6G) 作為待測之探針分子,發現具有三角晶格排列之
    菱形孔洞結構之孔洞陣列能夠提供最佳之訊號提升。
    而後為了進一步提升其作為 SERS 基材之提升訊號響應之潛力,本研究嘗試利用磁
    控濺鍍鍍覆奈米銀顆粒於其上,並且成功透過奈米銀顆粒以及金屬銀孔洞陣列之間的耦
    合效應來提升其拉曼強度,利用 R6G 作為待測分子時,其最低可偵測之濃度可達 10-11
    M,增強因子(EF)為 8.29×1012
    , 相對標準差(RSD)為 6.18%。為了進一步探討其在實際用
    途上,亦利用孔雀石綠(malachite green, MG)作為分析分子進行分析,亦發現其 LOD 可
    達 10-6M,並且可在吳郭魚表皮上附著其 SERS 基材並且有效提升 MG 於魚表皮上之拉
    曼訊號。證實金屬銀孔洞陣列作為 SERS 基材其所具有的規則孔洞可提供良好的定點量
    測,並能進一步提升分析數據之精準度以及可信度


    SERS is an analytical technique that amplifies Raman signals using a nanostructured
    substrate. In important fields such as analytical chemistry, environmental monitoring, and food
    safety, it finds extensive applications. High-sensitivity SERS substrates rely on their surface
    plasmon resonance (SPR) characteristics, which depend on their materials and nanostructures.
    This study aims to develop a flexible thin film with a micro-scale hole array using lithography
    and physical vapor deposition techniques and explore its utility in real analysis.
    There are two main sections to the study. In the first section, through the use of various
    photo masks and patterned templates, silver is sputtered onto a photoresist patterned substrate,
    which creates a series of microhole arrays with various shapes and arrangements, including
    circular, triangular, and rhombus. Using Rhodamine 6G (R6G) as the probe molecule, it was
    founded that an array with rhombus-shaped holes with a triangular lattice arrangement could
    enhance the signal most significantly.
    Moreover, silver nanoparticles were sputtered onto the metal mesh substrate using
    magnetron sputtering in order to enhance its potential as a SERS substrate. In addition to
    enhancing the signal response, the silver nanoparticles were successfully coupled with the
    metallic silver hole array. With R6G utilized as the probe molecule, the limit of detection (LOD)
    was determined to be 10-11 M, the enhancement factor (EF) was calculated to be 8.29×1012, the
    relative standard deviation (RSD) was determined to be 6.18%. The use of malachite green
    (MG) as an analytical molecule was also applied in order to explore its practical application. A
    limit of detection (LOD) of 10-6 M was observed for MG, and the SERS substrate was capable
    of affixed to tilapia skin, effectively amplifying the Raman signal of MG. Based on these
    findings, the metal silver micro-hole array, functioning as a SERS substrate, has regular holes
    that facilitate precise measurements as well as enhance the accuracy and reliability of analytical
    results.

    摘要.............................................................................................................................................I Abstract ..................................................................................................................................... II Acknowledgements.................................................................................................................IV Contents..................................................................................................................................... V List of Figures .........................................................................................................................VII List of Tables......................................................................................................................... XIII Chapter 1 Introduction ........................................................................................................ 1 Chapter 2 Literature Review............................................................................................... 3 2.1 Surface-Enhanced Raman Scattering (SERS).................................................... 3 2.1.1 Surface plasmon resonance (SPR)............................................................................ 3 2.1.2 Localized surface plasmon resonance (LSPR).......................................................... 4 2.1.3 Raman spectroscopy ................................................................................................. 6 2.1.4 Surface-enhanced Raman scattering (SERS).......................................................... 10 2.1.5 Rhodamine 6G (R6G)............................................................................................. 20 2.1.6 Malachite Green (MG)............................................................................................ 21 2.2 Metallic Glass Nano-Tube arrays (MeNTA).................................................... 23 2.2.1 Nano-tube periodic array structure ......................................................................... 23 2.2.2 Application of MeNTAs.......................................................................................... 25 2.3 Sputtered silver Nano-particles (AgNPs)......................................................... 29 2.4 Periodic hole array structure ............................................................................ 33 2.4.1 Numerical simulation results of Periodic hole array............................................... 34 2.4.2 Potential applications.............................................................................................. 35 Chapter 3 Experimental Procedure ................................................................................... 37 3.1 Sample preparation........................................................................................... 38 3.1.1 Substrate and photoresist template preparation ...................................................... 38 3.1.2 Metallic Thin film deposition ................................................................................. 39 3.1.3 Lift-off process........................................................................................................ 40 3.1.4 Silver Nanoparticles deposition .............................................................................. 42 3.2 Sputtered Thin-Film characterization............................................................... 43 3.2.1 Scanning Electron Microscope (SEM) ................................................................... 43 3.2.2 Atomic Force Microscopy (AFM).......................................................................... 44 3.2.3 X-Ray Diffractometer (XRD)................................................................................. 44 3.2.4 Ultraviolet-Visible spectroscopy (UV-Vis)............................................................. 45 3.3 Raman performance characterization............................................................... 45 3.3.1 Raman spectroscopy ............................................................................................... 45 3.3.2 Analyte absorption on prepared specimen.............................................................. 47 Chapter 4 Results and Discussion..................................................................................... 48 4.1 Metal Mesh fabrication for different morphology ........................................... 48 4.1.1 Surface morphology (SEM).................................................................................... 48 4.1.2 Composition Analysis (EDS).................................................................................. 52 4.1.3 Crystallographic analysis (XRD)............................................................................ 53 4.1.4 Raman spectroscopy ............................................................................................... 54 4.1.5 Atomic Force Microscopy (AFM).......................................................................... 62 4.2 Metal Mesh @AgNPs ...................................................................................... 64 4.2.1 Characterization of the sputtered Nanoparticles..................................................... 64 4.2.2 UV-Vis Absorption spectra of AgNPs..................................................................... 68 4.2.3 Raman Spectra Performance................................................................................... 70 4.2.4 Real-World Applications......................................................................................... 76 Chapter 5 Conclusions...................................................................................................... 78 5.1 Future Works.................................................................................................... 80 References................................................................................................................................ 81

    1. Yesudasu, V., H.S. Pradhan, and R.J. Pandya, Recent progress in surface plasmon resonance based sensors: A comprehensive review. Heliyon, 2021. 7(3): p. e06321.
    2. Barnes, W., A. Dereux, and T. Ebbesen, Surface Plasmon Subwavelength Optics. Nature, 2003. 424: p. 824-830.
    3. Petryayeva, E. and U.J. Krull, Localized surface plasmon resonance: nanostructures, bioassays and biosensing--a review. Anal Chim Acta, 2011. 706(1): p. 8-24.
    4. Mayer, K.M. and J.H. Hafner, Localized Surface Plasmon Resonance Sensors. Chemical Reviews, 2011. 111(6): p. 3828-3857.
    5. Lv, S., et al., Review on LSPR assisted photocatalysis: effects of physical fields and opportunities in multifield decoupling. Nanoscale Adv, 2022. 4(12): p. 2608-2631.
    6. Shrivastav, A.M., U. Cvelbar, and I. Abdulhalim, A comprehensive review on plasmonic-based biosensors used in viral diagnostics. Commun Biol, 2021. 4(1): p. 70.
    7. Willets, K.A. and R.P. Van Duyne, Localized Surface Plasmon Resonance Spectroscopy and Sensing. Annual Review of Physical Chemistry, 2007. 58(1): p. 267-297.
    8. Liz-Marzán, L.M., Tailoring Surface Plasmons through the Morphology and Assembly of Metal Nanoparticles. Langmuir, 2006. 22(1): p. 32-41.
    9. Homola, J., Present and future of surface plasmon resonance biosensors. Analytical and Bioanalytical Chemistry, 2003. 377(3): p. 528-539.
    10. Homola, J., Surface Plasmon Resonance Sensors for Detection of Chemical and Biological Species. Chemical Reviews, 2008. 108(2): p. 462-493.
    11. Bai, F., et al., Controllable assembly of high sticky and flexibility surface-enhanced Raman scattering substrate for on-site target pesticide residues detection. Food Chem, 2023. 405(Pt A): p. 134794.
    12. Ponlamuangdee, K., et al., Graphene oxide/gold nanorod plasmonic paper – a simple and cost-effective SERS substrate for anticancer drug analysis. New Journal of Chemistry, 2020. 44(33): p. 14087-14094.
    13. Kneipp, K., et al., Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS). Physical Review Letters, 1997. 78(9): p. 1667-1670.
    14. Nie, S. and S.R. Emory, Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering. Science, 1997. 275(5303): p. 1102-1106.
    15. Masson, J.-F., Portable and field-deployed surface plasmon resonance and plasmonic sensors. Analyst, 2020. 145(11): p. 3776-3800.
    16. Smekal, A., Zur Quantentheorie der Dispersion. Naturwissenschaften, 1923. 11(43): p. 873-875.
    17. Raman, C.V. and K.S. Krishnan, A New Type of Secondary Radiation. Nature, 1928. 121(3048): p. 501-502.
    18. Dey, T., Microplastic pollutant detection by Surface Enhanced Raman Spectroscopy (SERS): a mini-review. Nanotechnology for Environmental Engineering, 2022. 8.
    19. Dippel, B. Raman Spectroscopy. Available from: https://www.raman.de/.
    20. Xu, Z., et al. Topic Review: Application of Raman Spectroscopy Characterization in Micro/Nano-Machining. Micromachines, 2018. 9, DOI: 10.3390/mi9070361.
    21. Efremov, E.V., F. Ariese, and C. Gooijer, Achievements in resonance Raman spectroscopy review of a technique with a distinct analytical chemistry potential. Anal Chim Acta, 2008. 606(2): p. 119-34.
    22. Fleischmann, M., P.J. Hendra, and A.J. McQuillan, Raman spectra of pyridine adsorbed at a silver electrode. Chemical Physics Letters, 1974. 26: p. 163-166.
    23. Langer, J., et al., Present and Future of Surface-Enhanced Raman Scattering. ACS Nano, 2020. 14(1): p. 28-117.
    24. Zhang, C., et al., SERS activated platform with three-dimensional hot spots and tunable nanometer gap. Sensors and Actuators B: Chemical, 2018. 258: p. 163-171.
    25. Li, Q., et al., Design and Synthesis of SERS Materials for In Vivo Molecular Imaging and Biosensing. Advanced Science, 2023. 10(8): p. 2202051.
    26. Lay, C.L., et al., Aluminum nanostructures with strong visible-range SERS activity for versatile micropatterning of molecular security labels. Nanoscale, 2018. 10(2): p. 575-581.
    27. Chen, S., et al., Graphene oxide shell-isolated Ag nanoparticles for surface-enhanced Raman scattering. Carbon, 2015. 81: p. 767-772.
    28. Philpott, M.R., Effect of surface Plasmons on transitions in molecules. The Journal of Chemical Physics, 1975. 62(5): p. 1812-1817.
    29. Moskovits, M., Surface roughness and the enhanced intensity of Raman scattering by molecules adsorbed on metals. The Journal of Chemical Physics, 1978. 69(9): p. 4159-4161.
    30. Fong, K.E. and L.-Y.L. Yung, Localized surface plasmon resonance: a unique property of plasmonic nanoparticles for nucleic acid detection. Nanoscale, 2013. 5(24): p. 12043-12071.
    31. Albrecht, M.G. and J.A. Creighton, Anomalously intense Raman spectra of pyridine at a silver electrode. Journal of the American Chemical Society, 1977. 99(15): p. 5215-5217.
    32. Ding, S.-Y., et al., Electromagnetic theories of surface-enhanced Raman spectroscopy. Chemical Society Reviews, 2017. 46(13): p. 4042-4076.
    33. Prakash, J., et al., Emerging applications of atomic layer deposition for the rational design of novel nanostructures for surface-enhanced Raman scattering. Journal of Materials Chemistry C, 2019. 7(6): p. 1447-1471.
    34. John, N. and A. T.M, New trends in gold nanostructure-based SERS substrate: From fundamental to biomedical applications. Vibrational Spectroscopy, 2023. 124: p. 103477.
    35. Solís, D.M., et al., Optimization of Nanoparticle-Based SERS Substrates through Large-Scale Realistic Simulations. ACS Photonics, 2017. 4(2): p. 329-337.
    36. Brolo, A.G., D.E. Irish, and B.D. Smith, Applications of surface enhanced Raman scattering to the study of metal-adsorbate interactions. Journal of Molecular Structure, 1997. 405(1): p. 29-44.
    37. Ding, S.-Y., et al., Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials. Nature Reviews Materials, 2016. 1(6): p. 16021.
    38. Moskovits, M., Surface-enhanced Raman spectroscopy: a brief retrospective. Journal of Raman Spectroscopy, 2005. 36(6-7): p. 485-496.
    39. Liang, P., et al., A balsam pear-shaped CuO SERS substrate with highly chemical enhancement for pesticide residue detection. Microchimica Acta, 2020. 187(6): p. 335.
    40. Le Ru, E.C., et al., Surface Enhanced Raman Scattering Enhancement Factors:  A Comprehensive Study. The Journal of Physical Chemistry C, 2007. 111(37): p. 13794-13803.
    41. Zhou, J., et al., Functionalized gold nanoparticles: Synthesis, structure and colloid stability. Journal of Colloid and Interface Science, 2009. 331(2): p. 251-262.
    42. Sanzone, G., et al., Ag/TiO2 nanocomposite for visible light-driven photocatalysis. Superlattices and Microstructures, 2018. 123: p. 394-402.
    43. García de Abajo, F.J., Colloquium: Light scattering by particle and hole arrays. Reviews of Modern Physics, 2007. 79(4): p. 1267-1290.
    44. Nurani, S.J., C.K. Saha, and M.A. Khan, Silver Nanoparticles Synthesis, Properties, Applications and Future Perspectives: A Short Review. IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE), 2015. 10: p. 117-126.
    45. Zhao, J., et al., Methods for Describing the Electromagnetic Properties of Silver and Gold Nanoparticles. Accounts of Chemical Research, 2008. 41(12): p. 1710-1720.
    46. Fu, Q., et al., Highly Reproducible and Sensitive SERS Substrates with Ag Inter-Nanoparticle Gaps of 5 nm Fabricated by Ultrathin Aluminum Mask Technique. ACS Applied Materials & Interfaces, 2015. 7(24): p. 13322-13328.
    47. Chen, B., et al., Green Synthesis of Large-Scale Highly Ordered Core@Shell Nanoporous Au@Ag Nanorod Arrays as Sensitive and Reproducible 3D SERS Substrates. ACS Applied Materials & Interfaces, 2014. 6(18): p. 15667-15675.
    48. Park, S.-G., et al., 3D Hybrid Plasmonic Nanomaterials for Highly Efficient Optical Absorbers and Sensors. Advanced Materials, 2015. 27(29): p. 4290-4295.
    49. Kanipe, K.N., et al., Large Format Surface-Enhanced Raman Spectroscopy Substrate Optimized for Enhancement and Uniformity. ACS Nano, 2016. 10(8): p. 7566-7571.
    50. Cong, S., et al., Electrochromic semiconductors as colorimetric SERS substrates with high reproducibility and renewability. Nature Communications, 2019. 10(1): p. 678.
    51. Zhang, T., et al., Periodic Porous Alloyed Au–Ag Nanosphere Arrays and Their Highly Sensitive SERS Performance with Good Reproducibility and High Density of Hotspots. ACS Applied Materials & Interfaces, 2018. 10(11): p. 9792-9801.
    52. Le Ru, E.C. and P.G. Etchegoin, Chapter 2 - Raman spectroscopy and related optical techniques, in Principles of Surface-Enhanced Raman Spectroscopy, E.C. Le Ru and P.G. Etchegoin, Editors. 2009, Elsevier: Amsterdam. p. 29-120.
    53. He, X.N., et al., Surface-enhanced Raman spectroscopy using gold-coated horizontally aligned carbon nanotubes. Nanotechnology, 2012. 23(20): p. 205702.
    54. contributors, W. Rhodamine 6G. 2023, June 12 12 June 2023 19:33 UTC; Available from: https://en.wikipedia.org/w/index.php?title=Rhodamine_6G&oldid=1159824783.
    55. Kumar, P., et al., A highly sensitive, flexible SERS sensor for malachite green detection based on Ag decorated microstructured PDMS substrate fabricated from Taro leaf as template. Sensors and Actuators B: Chemical, 2017. 246: p. 477-486.
    56. contributors, W. Malachite green. Available from: https://en.wikipedia.org/w/index.php?title=Malachite_green&oldid=1159817105.
    57. Lu, Y.-C., et al., Wafer-scale SERS metallic nanotube arrays with highly ordered periodicity. Sensors and Actuators B: Chemical, 2021. 329: p. 129132.
    58. Chu, J.P., K.-W. Tseng, and C.-Y. Liu, Large-area alloy nanotube arrays with highly-ordered periodicity: Fabrication and characterization. Materials & Design, 2021. 209: p. 109998.
    59. 曾冠瑋, 純金屬和合金有序排列奈米管陣列的製備和性質分析, in 材料科學與工程系. 2020, 國立臺灣科技大學.
    60. 劉芝羽, 三維有序金屬奈米管陣列應用於表面增強拉曼散射基材之研究, in 材料科學與工程. 2021, 國立臺灣科技大學.
    61. Yang, Y.X. and J.P. Chu, Cost-effective large-area Ag nanotube arrays for SERS detections: effects of nanotube geometry. Nanotechnology, 2021. 32(47).
    62. Nguyen Hoang, N., Multifunctional Silver Nanoparticles: Synthesis and Applications, in Silver Micro-Nanoparticles, K. Samir, K. Prabhat, and P. Chandra Shakher, Editors. 2021, IntechOpen: Rijeka. p. Ch. 3.
    63. Ryspayeva, A., et al. PEI/Ag as an Optical Gas Nano-Sensor for Intelligent Food Packaging. in 2018 IEEE 18th International Conference on Nanotechnology (IEEE-NANO). 2018.
    64. Maréchal, N., E. Quesnel, and Y. Pauleau, Silver thin films deposited by magnetron sputtering. Thin Solid Films, 1994. 241(1): p. 34-38.
    65. Ohring, M., Materials Science of Thin Films: Depositon and Structure. 2001: Elsevier.
    66. Tervamäki, T. Sputtering - Solid State Chemistry. 2021 2021/08/04; Available from: https://wiki.aalto.fi/display/SSC/Sputtering.
    67. Kratochvíl, J., et al., Comparison of magnetron sputtering and gas aggregation nanoparticle source used for fabrication of silver nanoparticle films. Surface and Coatings Technology, 2015. 275: p. 296-302.
    68. Najiminaini, M., et al., Optical resonance transmission properties of nano-hole arrays in a gold film: effect of adhesion layer. Optics Express, 2011. 19(27): p. 26186-26197.
    69. Li, Q., et al., The relationship between extraordinary optical transmission and surface-enhanced Raman scattering in subwavelength metallic nanohole arrays. J Nanosci Nanotechnol, 2010. 10(11): p. 7188-91.
    70. Im, H., et al., Template-Stripped Smooth Ag Nanohole Arrays with Silica Shells for Surface Plasmon Resonance Biosensing. ACS Nano, 2011. 5(8): p. 6244-6253.
    71. Qiu, T., et al., Tailoring light emission properties of organic emitter by coupling to resonance-tuned silver nanoantenna arrays. Applied Physics Letters, 2009. 95(21): p. 213104.
    72. Xu, S., et al., Liquid–liquid interfacial self-assembled triangular Ag nanoplate-based high-density and ordered SERS-active arrays for the sensitive detection of dibutyl phthalate (DBP) in edible oils. Analyst, 2021. 146(15): p. 4858-4864.
    73. Xu, L., et al., One-step fabrication of metal nanoparticles on polymer film by femtosecond LIPAA method for SERS detection. Talanta, 2021. 228: p. 122204.
    74. Beeram, R. and V.R. Soma, Ultra-trace detection of diverse analyte molecules using femtosecond laser structured Ag–Au alloy substrates and SERRS. Optical Materials, 2023. 137.
    75. Zhou, Y., et al., High-performance flexible surface-enhanced Raman scattering substrate based on the particle-in-multiscale 3D structure. Nanophotonics, 2021. 10(16): p. 4045-4055.
    76. Pang, Y. and M. Jin, Self-Assembly of Silver Nanowire Films for Surface-Enhanced Raman Scattering Applications. Nanomaterials (Basel), 2023. 13(8).
    77. Zhang, Y., et al., A novel approach to determine leucomalachite green and malachite green in fish fillets with surface‐enhanced Raman spectroscopy (SERS) and multivariate analyses. Journal of Raman Spectroscopy, 2012. 43(9): p. 1208-1213.

    無法下載圖示 全文公開日期 2026/08/18 (校內網路)
    全文公開日期 2026/08/18 (校外網路)
    全文公開日期 2026/08/18 (國家圖書館:臺灣博碩士論文系統)
    QR CODE