簡易檢索 / 詳目顯示

研究生: 朱泓宇
Hung-Yu Chu
論文名稱: 自修復性、可撓性與可拉伸性之軟性混和奈米纖維電極材料製備及其智慧衣應用
Self-Healing, Flexibility, and Stretchability of Flexible Hybrid Nanofiber Electrodes for Smart Clothes Applications
指導教授: 邱智瑋
Chih-Wei Chiu
口試委員: 邱顯堂
Hsien-Tang Chiu
鄭智嘉
Chih-Chia Cheng
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 85
中文關鍵詞: 靜電紡絲浸塗技術還原氧化石墨烯表面活性劑自修復材料自修復效率心電圖智慧服飾
外文關鍵詞: Electrospinning, Dip-Coating Technology, Reduced Graphene Oxide, Surfactants, Self-Healing Materials, Self-Healing Efficiency, Electrocardiogram, Smart Clothing
相關次數: 點閱:199下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • 摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VII 表目錄 XII 第一章 緒論 1 1.1 前言 1 1.2 研究目的 2 第二章 文獻回顧 4 2.1 奈米材料 4 2.1.1 導電聚合物 4 2.1.2 還原氧化石墨烯 8 2.1.3 分散劑 10 2.1.4 自修復材料 14 2.2 製程技術 18 2.2.1 靜電紡絲 18 2.2.2 浸塗技術 21 2.3 生物醫學訊號分析 24 2.3.1 智慧服飾 24 2.3.2 心電圖 (Electrocardiogram, ECG) 26 第三章 實驗方法 30 3.1 實驗流程圖 30 3.2 實驗藥品、實驗設備和檢測儀器 30 3.2.1 實驗藥品 30 3.2.2 實驗設備 32 3.2.3 檢測儀器 33 3.3 實驗步驟 35 3.3.1 靜電紡絲溶液的製備 35 3.3.2 靜電紡絲製備纖維薄膜 36 3.3.3 浸塗液的製備 37 3.3.4 浸塗纖維薄膜電極 38 3.3.5 纖維薄膜電極與服飾結合並测量心電訊號 39 第四章 結果與討論 40 4.1 植酸與聚苯胺的混合 40 4.2 Triton X-100/還原氧化石墨烯的分散性評估 42 4.3 纖維薄膜電極的結構分析 47 4.4 纖維薄膜電極的電性分析 49 4.4.1 植酸/聚苯胺/熱塑性聚氨酯纖維薄膜電極 49 4.4.2 還原氧化石墨烯/植酸/聚苯胺/熱塑性聚氨酯纖維薄膜電極 50 4.4.3 還原氧化石墨烯/聚丙烯酸/植酸/聚苯胺/熱塑性聚氨酯纖維薄膜電極 51 4.5 纖維薄膜電極的自修復特性 52 4.6 纖維薄膜電極的機械性質 56 4.7 纖維薄膜電極的心電圖訊號分析 59 第五章 結論 62 第六章 參考文獻 63

    [1] Cheng, X.; Yang, Y.; Schwebel, D. C.; Liu, Z.; Li, L.; Cheng, P.; Ning, P.; Hu, G. Population ageing and mortality during 1990–2017: a global decomposition analysis. PLoS Medicine 2020, 17 (6), e1003138.
    [2] Afroj, S.; Tan, S.; Abdelkader, A. M.; Novoselov, K. S.; Karim, N. Highly conductive, scalable, and machine washable graphene‐based E‐textiles for multifunctional wearable electronic applications. Advanced Functional Materials 2020, 30 (23), 2000293.
    [3] Wang, P.; Hu, M.; Wang, H.; Chen, Z.; Feng, Y.; Wang, J.; Ling, W.; Huang, Y. The evolution of flexible electronics: from nature, beyond nature, and to nature. Advanced Science 2020, 7 (20), 2001116.
    [4] Gao, W.; Ota, H.; Kiriya, D.; Takei, K.; Javey, A. Flexible electronics toward wearable sensing. Accounts of Chemical Research 2019, 52 (3), 523-533.
    [5] Michelsen, J. S.; Lund, M. C.; Alkjær, T.; Finni, T.; Nielsen, J. B.; Lorentzen, J. Wearable electromyography recordings during daily life activities in children with cerebral palsy. Developmental Medicine & Child Neurology 2020, 62 (6), 714-722.
    [6] Nigusse, A. B.; Mengistie, D. A.; Malengier, B.; Tseghai, G. B.; Langenhove, L. V. Wearable smart textiles for long-term electrocardiography monitoring—A review. Sensors 2021, 21 (12), 4174.
    [7] Zhao, S.; Li, M.; Wu, X.; Yu, S.; Zhang, W.; Luo, J.; Wang, J.; Geng, Y.; Gou, Q.; Sun, K. Graphene-based free-standing bendable films: designs, fabrications, and applications. Materials Today Advances 2020, 6, 100060.
    [8] Kim, S.; Lee, S.; Jeong, W. EMG measurement with textile-based electrodes in different electrode sizes and clothing pressures for smart clothing design optimization. Polymers 2020, 12 (10), 2406.
    [9] Jin, W. Y.; Ovhal, M. M.; Lee, H. B.; Tyagi, B.; Kang, J. W. Scalable, all‐printed photocapacitor fibers and modules based on metal‐embedded flexible transparent conductive electrodes for self‐charging wearable applications. Advanced Energy Materials 2021, 11 (4), 2003509.
    [10] Rasmussen, S. C. Conjugated and conducting organic polymers: the first 150 years. ChemPlusChem 2020, 85 (7), 1412-1429.
    [11] Guo, X.; Facchetti, A. The journey of conducting polymers from discovery to application. Nature Materials 2020, 19 (9), 922-928.
    [12] Babel, V.; Hiran, B. L. A review on polyaniline composites: Synthesis, characterization, and applications. Polymer Composites 2021, 42 (7), 3142-3157.
    [13] Foyle, L. D.; Hicks, G. E.; Pollit, A. A.; Seferos, D. S. Polyacetylene revisited: a computational study of the molecular engineering of N-type polyacetylene. The Journal of Physical Chemistry Letters 2021, 12 (32), 7745-7751.
    [14] AL-Refai, H. H.; Ganash, A. A.; Hussein, M. A. Polythiophene and its derivatives–Based nanocomposites in electrochemical sensing: A mini review. Materials Today Communications 2021, 26, 101935.
    [15] Zarei, M.; Samimi, A.; Khorram, M.; Abdi, M. M.; Golestaneh, S. I. Fabrication and characterization of conductive polypyrrole/chitosan/collagen electrospun nanofiber scaffold for tissue engineering application. International Journal of Biological Macromolecules 2021, 168, 175-186.
    [16] Zhang, X.; Xiang, D.; Wu, Y.; Harkin-Jones, E.; Shen, J.; Ye, Y.; Tan, W.; Wang, J.; Wang, P.; Zhao, C. High-performance flexible strain sensors based on biaxially stretched conductive polymer composites with carbon nanotubes immobilized on reduced graphene oxide. Composites Part A: Applied Science and Manufacturing 2021, 151, 106665.
    [17] Jiang, Y.; Dong, X.; Sun, L.; Liu, T.; Qin, F.; Xie, C.; Jiang, P.; Hu, L.; Lu, X.; Zhou, X. An alcohol-dispersed conducting polymer complex for fully printable organic solar cells with improved stability. Nature Energy 2022, 7 (4), 352-359.
    [18] Li, X.; Kim, K.; Oh, H.; Moon, H. C.; Nam, S.; Kim, S. H. Cone-jet printing of aligned silver nanowire/poly (ethylene oxide) composite electrodes for organic thin-film transistors. Organic Electronics 2019, 69, 190-199.
    [19] Park, J.; Yoon, H.; Kim, G.; Lee, B.; Lee, S.; Jeong, S.; Kim, T.; Seo, J.; Chung, S.; Hong, Y. Highly customizable all solution–processed polymer light emitting diodes with inkjet printed Ag and transfer printed conductive polymer electrodes. Advanced Functional Materials 2019, 29 (34), 1902412.
    [20] Naveen, M. H.; Gurudatt, N. G.; Shim, Y.-B. Applications of conducting polymer composites to electrochemical sensors: A review. Applied Materials Today 2017, 9, 419-433.
    [21] Ma, Z.; Chen, P.; Cheng, W.; Yan, K.; Pan, L.; Shi, Y.; Yu, G. Highly sensitive, printable nanostructured conductive polymer wireless sensor for food spoilage detection. Nano Letters 2018, 18 (7), 4570-4575.
    [22] Zang, J.; Qian, H.; Wei, Z.; Cao, Y.; Zheng, M.; Dong, Q. Reduced graphene oxide supported MnO nanoparticles with excellent lithium storage performance. Electrochimica Acta 2014, 118, 112-117.
    [23] Filip, J.; Tkac, J. Is graphene worth using in biofuel cells? Electrochimica Acta 2014, 136, 340-354.
    [24] Kim, M.; Lee, C.; Jang, J. Fabrication of highly flexible, scalable, and high‐performance supercapacitors using polyaniline/reduced graphene oxide film with enhanced electrical conductivity and crystallinity. Advanced Functional Materials 2014, 24 (17), 2489-2499.
    [25] Sreeprasad, T. S.; Maliyekkal, S. M.; Lisha, K. P.; Pradeep, T. Reduced graphene oxide–metal/metal oxide composites: facile synthesis and application in water purification. Journal of Hazardous Materials 2011, 186 (1), 921-931.
    [26] Amarnath, M.; Gurunathan, K. Highly selective CO2 gas sensor using stabilized NiO-In2O3 nanospheres coated reduced graphene oxide sensing electrodes at room temperature. Journal of Alloys and Compounds 2021, 857, 157584.
    [27] Yu, C.; Ma, P.; Zhou, X.; Wang, A.; Qian, T.; Wu, S.; Chen, Q. All-solid-state flexible supercapacitors based on highly dispersed polypyrrole nanowire and reduced graphene oxide composites. ACS Applied Materials & Interfaces 2014, 6 (20), 17937-17943.
    [28] Müller, F.; Peukert, W.; Polke, R.; Stenger, F. Dispersing nanoparticles in liquids. International Journal of Mineral Processing 2004, 74, S31-S41.
    [29] Chen, S.; Han, M.; AlSofi, A. M. Synergistic effects between different types of surfactants and an associating polymer on surfactant–polymer flooding under high-temperature and high-salinity conditions. Energy & Fuels 2021, 35 (18), 14484-14498.
    [30] Kierkegaard, A.; Sundbom, M.; Yuan, B.; Armitage, J. M.; Arnot, J. A.; Droge, S. T.; McLachlan, M. S. Bioconcentration of several series of cationic surfactants in rainbow trout. Environmental Science & Technology 2021, 55 (13), 8888-8897.
    [31] Abdellahi, B.; Bois, R.; Golonu, S.; Pourceau, G.; Lesur, D.; Chagnault, V.; Drelich, A.; Pezron, I.; Nesterenko, A.; Wadouachi, A. Synthesis and interfacial properties of new 6-sulfate sugar-based anionic surfactants. Tetrahedron Letters 2021, 74, 153113.
    [32] Kubelka, J.; Bai, S.; Piri, M. Effects of surfactant charge and molecular structure on wettability alteration of calcite: insights from molecular dynamics simulations. The Journal of Physical Chemistry B 2021, 125 (4), 1293-1305.
    [33] Zheng, K.; Xia, W.; Zhang, W. Reverse flotation of non-coking coal fines using non-ionic surfactant triton X-100 as depressant. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2021, 611, 125794.
    [34] Kamal, M. S.; Hussein, I. A.; Sultan, A. S. Review on surfactant flooding: phase behavior, retention, IFT, and field applications. Energy & Fuels 2017, 31 (8), 7701-7720.
    [35] Olkowska, E.; Polkowska, Z.; Namiesnik, J. Analytics of surfactants in the environment: problems and challenges. Chemical Reviews 2011, 111 (9), 5667-5700.
    [36] Hu, J.; Li, H.; Muhammad, S.; Wu, Q.; Zhao, Y.; Jiao, Q. Surfactant-assisted hydrothermal synthesis of TiO2/reduced graphene oxide nanocomposites and their photocatalytic performances. Journal of Solid State Chemistry 2017, 253, 113-120.
    [37] Wypych, G. Self-healing materials: principles and technology; Elsevier, 2022.
    [38] Wen, N.; Song, T.; Ji, Z.; Jiang, D.; Wu, Z.; Wang, Y.; Guo, Z. Recent advancements in self-healing materials: Mechanicals, performances and features. Reactive and Functional Polymers 2021, 168, 105041.
    [39] Zhao, X.; Wang, H.; Luo, J.; Ren, G.; Wang, J.; Chen, Y.; Jia, P. Ultrastretchable, adhesive, anti-freezing, conductive, and self-healing hydrogel for wearable devices. ACS Applied Polymer Materials 2022, 4 (3), 1784-1793.
    [40] Zou, Y.; Chen, C.; Sun, Y.; Gan, S.; Dong, L.; Zhao, J.; Rong, J. Flexible, all-hydrogel supercapacitor with self-healing ability. Chemical Engineering Journal 2021, 418, 128616.
    [41] Yang, M.; Cheng, Y.; Yue, Y.; Chen, Y.; Gao, H.; Li, L.; Cai, B.; Liu, W.; Wang, Z.; Guo, H. High‐Performance Flexible Pressure Sensor with a Self‐Healing Function for Tactile Feedback. Advanced Science 2022, 9 (20), 2200507.
    [42] Liu, R.; Lai, Y.; Li, S.; Wu, F.; Shao, J.; Liu, D.; Dong, X.; Wang, J.; Wang, Z. L. Ultrathin, transparent, and robust self-healing electronic skins for tactile and non-contact sensing. Nano Energy 2022, 95, 107056.
    [43] Wang, T.; Zhang, Y.; Liu, Q.; Cheng, W.; Wang, X.; Pan, L.; Xu, B.; Xu, H. A self‐healable, highly stretchable, and solution processable conductive polymer composite for ultrasensitive strain and pressure sensing. Advanced Functional Materials 2018, 28 (7), 1705551.
    [44] Rayleigh, L. XX. On the equilibrium of liquid conducting masses charged with electricity. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 1882, 14 (87), 184-186.
    [45] Cooley, J. F. Apparatus for electrically dispersing fluids. Google Patents: 1902.
    [46] Morton, W. J. Method of dispersing fluids. Google Patents: 1902.
    [47] Anton, F. Process and apparatus for preparing artificial threads. Google Patents: 1934.
    [48] Wu, T.; Ding, M.; Shi, C.; Qiao, Y.; Wang, P.; Qiao, R.; Wang, X.; Zhong, J. Resorbable polymer electrospun nanofibers: History, shapes and application for tissue engineering. Chinese Chemical Letters 2020, 31 (3), 617-625.
    [49] Keirouz, A.; Wang, Z.; Reddy, V. S.; Nagy, Z. K.; Vass, P.; Buzgo, M.; Ramakrishna, S.; Radacsi, N. The History of Electrospinning: Past, Present, and Future Developments. Advanced Materials Technologies 2023, 2201723.
    [50] Khalil, A.; Singh Lalia, B.; Hashaikeh, R.; Khraisheh, M. Electrospun metallic nanowires: Synthesis, characterization, and applications. Journal of Applied Physics 2013, 114, 171301.
    [51] Frenot, A.; Chronakis, I. S. Polymer nanofibers assembled by electrospinning. Current Opinion in Colloid & Interface Science 2003, 8 (1), 64-75.
    [52] Ahmadijokani, F.; Molavi, H.; Bahi, A.; Fernández, R.; Alaee, P.; Wu, S.; Wuttke, S.; Ko, F.; Arjmand, M. Metal‐Organic Frameworks and Electrospinning: A Happy Marriage for Wastewater Treatment. Advanced Functional Materials 2022, 32 (51), 2207723.
    [53] Coelho, S. C.; Estevinho, B. N.; Rocha, F. Encapsulation in food industry with emerging electrohydrodynamic techniques: Electrospinning and electrospraying–A review. Food Chemistry 2021, 339, 127850.
    [54] Kaniuk, Ł.; Stachewicz, U. Development and advantages of biodegradable PHA polymers based on electrospun PHBV fibers for tissue engineering and other biomedical applications. ACS Biomaterials Science & Engineering 2021, 7 (12), 5339-5362.
    [55] Hosseini, S. A.; Vossoughi, M.; Mahmoodi, N. M.; Sadrzadeh, M. Clay-based electrospun nanofibrous membranes for colored wastewater treatment. Applied Clay Science 2019, 168, 77-86.
    [56] Park, S. H.; Byeon, S. Y.; Park, J.-H.; Kim, C. Insight into the critical role of surface hydrophilicity for dendrite-free zinc metal anodes. ACS Energy Letters 2021, 6 (9), 3078-3085.
    [57] Wenten, I.; Khoiruddin, K.; Wardani, A.; Aryanti, P.; Astuti, D.; Komaladewi, A. Preparation of antifouling polypropylene/ZnO composite hollow fiber membrane by dip-coating method for peat water treatment. Journal of Water Process Engineering 2020, 34, 101158.
    [58] Ojstršek, A.; Jug, L.; Plohl, O. A review of electro conductive textiles utilizing the dip-coating technique: their functionality, durability and sustainability. Polymers 2022, 14 (21), 4713.
    [59] Ding, Y.; Xu, W.; Wang, W.; Fong, H.; Zhu, Z. Scalable and facile preparation of highly stretchable electrospun PEDOT: PSS@ PU fibrous nonwovens toward wearable conductive textile applications. ACS Applied Materials & Interfaces 2017, 9 (35), 30014-30023.
    [60] Fernández-Caramés, T. M.; Fraga-Lamas, P. Towards the Internet of smart clothing: A review on IoT wearables and garments for creating intelligent connected e-textiles. Electronics 2018, 7 (12), 405.
    [61] Cho, G.; Lee, S.; Cho, J. Review and reappraisal of smart clothing. International Journal of Human-Computer Interaction 2009, 25 (6), 582-617.
    [62] Zang, X.; Ma, H.; Sun, Y.; Tang, Y.; Ji, J.; Xue, M. Integrated polypyrrole-based smart clothing with photothermal conversion and thermosensing functions for wearable applications. Langmuir 2022, 38 (32), 9967-9973.
    [63] McSharry, P. E.; Clifford, G. D.; Tarassenko, L.; Smith, L. A. A dynamical model for generating synthetic electrocardiogram signals. IEEE Transactions on Biomedical Engineering 2003, 50 (3), 289-294.
    [64] Martis, R. J.; Acharya, U. R.; Adeli, H. Current methods in electrocardiogram characterization. Computers in Biology and Medicine 2014, 48, 133-149.
    [65] Huang, C.-Y.; Chiu, C.-W. Facile fabrication of a stretchable and flexible nanofiber carbon film-sensing electrode by electrospinning and its application in smart clothing for ECG and EMG monitoring. ACS Applied Electronic Materials 2021, 3 (2), 676-686.
    [66] Li, Y.; Li, X.; Zhang, S.; Liu, L.; Hamad, N.; Bobbara, S. R.; Pasini, D.; Cicoira, F. Autonomic self‐healing of PEDOT: PSS achieved via polyethylene glycol addition. Advanced Functional Materials 2020, 30 (30), 2002853.
    [67] Manikandan, M. S.; Soman, K. A novel method for detecting R-peaks in electrocardiogram (ECG) signal. Biomedical Signal Processing and Control 2012, 7 (2), 118-128.

    無法下載圖示 全文公開日期 2033/07/31 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE