簡易檢索 / 詳目顯示

研究生: 林興泉
Rhesa - Pramudita Utomo
論文名稱: Wet Process of Lutein Extraction from Chlorella vulgaris
Wet Process of Lutein Extraction from Chlorella vulgaris
指導教授: 李篤中
Duu-Jong Lee
口試委員: 劉志成
Jhy-Chern Liu
Christopher George Whiteley
Christopher George Whiteley
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 88
中文關鍵詞: 葉黃素小球藻濕式製程超聲波微波甲殼素聚氯化鋁
外文關鍵詞: Lutein, Chlorella vulgaris, wet process, ultrasonic, microwave irradiation, chitosan, PACl
相關次數: 點閱:369下載:14
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 保健在現代社會是一個非常重要的議題, 也是人們致力的目標, 但隨著老化, 眼睛會因累積了光氧化物質(photooxidative), 進而導致老年性黃斑部病變 (AMD)
    在2001, 美國國家眼科研究所(NEI) 證實了葉黃素可以有效延緩AMD的發生.
    目前葉黃素主要由金盞花的花辮中萃取, 但產率僅有 0.03 %. 微藻由於有較高葉黃素的含量, 有取代金盞花潛力, 從微藻中生產葉黃素需要像是冷凍乾燥等較先進的製程, 在本論文中, 本人試圖利用濕式製程取代冷凍乾燥的需求並評估此製程對葉黃素產率的影響.
    使用Bold’s Basal Medium為培養液, 在25oC與光照度1945流明下, 每兩天觀察葉黃素在微藻Chlorella vulgaris中的累積變化, 發現到第六天時微藻具有最高的葉黃素含量. 在濕式製程中, 引入細胞破碎法能提升葉黃素萃取的成效. 在本論文中, 最佳細胞破碎方式為微波(Microwave irradiation, 1.5 min, 100 W), 產率可達92.92±2.30%, 相較於超聲波細胞破碎法的87.48±1.71% (20 kHz ultrasonic, 2 min, 130 W) 與85.20±2.25% (42 kHz ultrasonic, 0.5 min, 135 W). 在微藻收集中, 使用甲殼素與聚氯化鋁的混凝技術, 再藉由在 1 bar與2 bar不同壓力下的膜過濾, 收集微藻絮凝物. 研究中發現, 在混凝劑的添加下, 會降低葉黃素萃取的產量, 其中甲殼素的影響較聚氯化鋁顯著. 粗萃取物在HPLC的分析下, 在4.5-5分鐘時可得純度為98.82 ± 0.02%的葉黃素.


    Health always becomes top priority of human kind. People already made many efforts to achieve it, but all people cannot stay healthy forever. It is because of ageing. With time, the aging eye accumulates more photooxidative and leads to age-related macular degeneration (AMD). In 2001, the National Eye Institute (NEI) confirmed that lutein can delay the progression of late stage AMD.
    Currently, lutein is obtained from the petals of marigold which has low yield 0.03%. Microalgal biomass can substitute the marigold to give better lutein yield. The production of lutein from microalgae demands more advanced technology such as lyophilization process by using freeze dyer. In this research, the author attempted to eliminate the need of freeze drying the microalgal biomass prior to the extraction processes and evaluate its effect toward lutein yield. The author called that elimination as wet process.
    The accumulation of lutein in Chlorella vulgaris per 2 day was observed. It was found that the 6th cultivation (25oC Bold’s Basal Medium with light intensity 1945 lux) gave the highest amount of lutein. The usage of cell disruption method in wet process can increase well the performance of lutein extraction. Microwave irradiation (1.5 min, 100 W) gave the best performance i.e. 92.92±2.30% followed by 20 kHz ultrasonic (2 min, 130 W) i.e. 87.48±1.71% and 42 kHz ultrasonic (0.5 min, 135 W) i.e. 85.20±2.25%. Coagulation technique by using chitosan and/or PACl (10% w/w Al2O3) in Chlorella vulgaris isolation step was also examined. Membrane filtration at 1 bar and 2 bar were used to separate the coagulated Chlorella vulgaris. It was found that PACl decreased the yield of lutein in 1 bar and 2 bar membrane filtration, chitosan decreased the yield of lutein in greater amount compared to PACl, and 2 bar system had less lutein yield compared to 1 bar. The highest amount of pure lutein (98.82 ± 0.02%) from wet processed crude lutein was obtained on 4.5-5.0 minute by using HPLC.

    ABSTRACT i 摘要 ii ACKNOWLEDGEMENT iii CONTENTS iv LIST OF TABLES vi LIST OF FIGURES vii CHAPTER 1. INTRODUCTION 1-1 1.1. Background 1-1 1.2. Objective 1-2 1.3. Research plan 1-3 CHAPTER 2. LITERATURE REVIEW 2-1 2.1. Carotenoids 2-1 2.2. Chemical and biological synthesis of carotenoids 2-2 2.3. Lutein 2-4 2.4. Microalgae as sources of carotenoids 2-6 2.5. Methods of lutein extraction 2-9 2.6. Anatomy of retina 2-14 2.6.1. Photoreceptors 2-14 2.6.2. The retinal pigment epithelium (RPE), bruch’s membrane and choriocapillaris 2-15 2.6.3. Macula 2-16 2.7. Age-related macular degeneration (AMD) 2-16 CHAPTER 3. MATERIALS AND METHODS 3-1 3.1. Chemical and materials 3-1 3.2. Equipment 3-3 3.3. Microalgae and culture medium 3-4 3.4. Analytical methods 3-5 3.4.1. Determination of maximum absorbance of lutein via UV/VIS spectrophotometer 3-5 3.4.2. Calibration curve of standard lutein 3-6 3.4.3. Determination of cell concentration 3-8 3.4.4. Determination of lutein content in Chlorella vulgaris 3-9 3.4.5. Evaluation of 20kHz ultrasonic treatment toward lutein yield in wet process 3-10 3.4.6. Evaluation of 40kHz ultrasonic treatment toward lutein yield in wet process 3-10 3.4.7. Evaluation of microwave treatment toward lutein yield in wet process 3-11 3.4.8. Evaluation of coagulation of Chlorella vulgaris toward lutein yield in wet process 3-11 3.4.9. Evaluation of extracellular organic matter (EOM) of Chlorella vulgaris toward lutein yield in wet process 3-12 3.4.10. Purification of crude lutein from wet process by using HPLC 3-14 3.4.11. Verification of lutein in the analyte by using internal standard in HPLC analysis 3-14 CHAPTER 4. RESULT AND DISCUSSION 4-1 4.1. Characteristic of Chlorella vulgaris 4-1 4.2. Determination of lutein content in Chlorella vulgaris 4-4 4.3. Evaluation of different cell wall disruption methods toward lutein yield in wet process 4-5 4.4. Evaluation of coagulation of Chlorella vulgaris toward lutein yield in wet process 4-12 4.5. Evaluation of extracellular organic matter (EOM) of Chlorella vulgaris toward lutein yield in wet process 4-24 4.6. Purification of crude lutein from wet process by using HPLC 4-24 4.7. Verification of lutein in the analyte by using internal standard in HPLC analysis 4-24 CHAPTER 5. CONCLUSIONS 5-1 REFERENCES R-1 APPENDIX A-1

    1. Chan, W. M. and Lai, T. Y. Y. 2010. Age-Related Macular Degeneration and Polypoidal Choroidal Vasculopathy in Asia. HKJOphthalmol 14, 14-19.
    2. Gierhart, D. L. 2003. Zeaxanthin and Lutein – The Macular Pigments and A Review of Their Role in Eye Health. Nutri News 5, 1-16.
    3. Research, T. 2005. Lutein and Zeaxanthin. Alternative Medicine Review 10, 128-135.
    4. Kamath, S. 2007. Biotechnological Production of Microalgal Carotenoids with Reference to Astaxanthin and Evaluation of Its Biological Activity. Department of Biotechnology of University of Mysore, 1-208.
    5. Fraunhofer. 2010. Microalgae – A Sustainable Resource for Valuable Compounds and Energy. The Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, 1-8.
    6. Carlsson, A. S., Beilen, J. B. v., Moller, R. and Clayton, D. 2007. Micro- and Macro-Algae: Utility For Industrial Applications. EPOBIO project, 1-86.
    7. Piccaglia, R., Marotti, M. and Grandi, S. 1998. Lutein and lutein ester content in different types of Tagetespatula and T. erecta. Industrial Crops and Products 8, 45-51.
    8. Eonseon, J., Polle, J. E. W., Lee, H. K., Hyun, S. M. and Chang, M. 2003. Xanthophylls in Microalgae: From Biosynthesis to Biotechnological Mass Production and Application. J. Microbiol. Biotechnol. 13, 165–174.
    9. Yachai, M. 2009. Carotenoid Production by Halophilic Archaea and Its Applications. Prince of Songkla University, 1-173.
    10. Mayer, H. and Ruttimann, A. 1980. Synthese Von Optisch Aktiven, Naturlichen Carotinoiden Und Strukturell Verwandten Naturprodukten. IV. Synthese Von (3R, 3′R, 6′R)-Lutein. Vorlaufige Mitteilung. Helvetica Chimica Acta 63, 1451–1455.
    11. Perry, A., Rasmussen, H. and Johnson, E. J. 2009. Xanthophyll (Lutein, Zeaxanthin) Content in Fruits, Vegetables and Corn and Egg Products. Journal of Food Composition and Analysis 22, 9–15.
    12. Cantrill, R. 2004. Lutein from Tagetes erecta. Chemical and Technical Assessment (CTA) 63rd JECFA, 1-5.
    13. Zhou, J., Li, S., Wu, S., Xu, X.-R., Deng, G.-F., Li, F. and Li, H.-B. 2012. Analytical Methods and Bioactivities of Lutein. International Journal of Food Nutrition and Safety 1, 75-98.
    14. Guedes, A. C., Amaro, H. M. and Malcata, F. X. 2011. Microalgae as Sources of Carotenoids. Marine Drugs 9, 625-644.
    15. Research, B. 2011. The Global Market for Carotenoids. http://www.bccresearch.com/report/carotenoids-global-market-fod025d.html. 28 February 2012.
    16. Wiltz, J. 2011. What is Chlorella Vulgaris? , http://www.livestrong.com/article/303405-what-is-chlorella-vulgaris/. 29 February 2012.
    17. Ceron, M. C., Campos, I., Sanchez, J. F., Acien, F. G., Molina, E. and Fernandez-Sevilla, J. M. 2008. Recovery of Lutein from Microalgae Biomass: Development of a Process for Scenedesmus almeriensis Biomass. J. Agric. Food Chem 56, 11761–11766.
    18. Navarrete-Bolanos, J. L., Jimenez-Islas, H., Botello-Alvarez, E. and Rico-Martinez, R. 2003. Mixed Culture Optimization for Marigold Flower Ensilage via Experimental Design and Response Surface Methodology. Journal of Agricultural and Food Chemistry 51, 2206-2211.
    19. Campo, J. A. D., Garcia-Gonzalez, M. and Guerrero, M. G. 2007. Outdoor Cultivation of Microalgae for Carotenoid Production: Current State and Perspectives. Applied Microbiology and Biotechnology 74, 1163–1174.
    20. Sevilla, J. M. F., Grima, E. M., Parra, J. J. P., Fernandez, F. G. A., Canadas, J. J. M. and Friedl, T. 2011. Microalgal Species and Its Application for Animal, Human Consumption and In Obtaining Carotenoids. United States Patent 8067225, International Classes C12N1/12.
    21. Pasquet, V., Cherouvrier, J.-R., Farhat, F., Thiery, V., Piot, J.-M., Berard, J.-B., Kaas, R., Serive, B., Patrice, T., Cadoret, J.-P. and Picot, L. 2011. Study on The Microalgal Pigments Extraction Process: Performance of Microwave Assisted Extraction. Process Biochemistry 46, 59-67.
    22. Herrero, M., Martin-Alvarez, P. J., Senorans, F. J., Cifuentes, A. and Ibanez, E. 2005. Optimization of Accelerated Solvent Extraction of Antioxidants from Spirulina Platensis Microalga. Food Chemistry 93, 417-423.
    23. Macias-Sanchez, M. D., Mantell, C., Rodriguez, M., Ossa, E. M. d. l., Lubian, L. M. and Montero, O. 2009. Comparison of Supercritical Fluid and Ultrasound-Assisted Extraction of Carotenoids and Chlorophyll a from Dunaliella salina. Talanta 77, 948-952.
    24. Gao, Y., Nagy, B., Liu, X., Simandi, B. and Wang, Q. 2009. Supercritical CO2 Extraction of Lutein Esters from Marigold (Tagetes Erecta L.) Enhanced by Ultrasound. The Journal of Supercritical Fluids 49, 345–350.
    25. Kitada, K., Machmudah, S., Sasaki, M., Goto, M., Nakashima, Y., Kumamoto, S. and Hasegawa, T. Journal of Chemical Technology & Biotechnology. Supercritical CO2 Extraction of Pigment Components with Pharmaceutical Importance from Chlorella vulgaris. Journal of Chemical 84, 657-661.
    26. Darani, K. K. and Mozafari, M. R. 2009. Supercritical Fluids Technology in Bioprocess Industries: A Review. Journal of Biochemical Technology 2, 144-152.
    27. Żwir-Ferenc, A. and Biziuk, M. 2006. Solid Phase Extraction Technique – Trends, Opportunities and Applications. Polish Journal of Environmental Studies 15, 677-690.
    28. Shen, Y., Hu, Y., Huang, K., Yin, S. a., Chen, B. and Yao, S. 2009. Solid-Phase Extraction of Carotenoids. Journal of Chromatography A 1216, 5763–5768.
    29. Smith, W., Assink, J., Klein, R., Mitchell, P., Klaver, C. C. W., Klein, B. E. K., Hofman, A., Jensen, S., Wang, J. J. and Jong, P. T. V. M. d. 2001. Risk Factors for Age-related Macular Degeneration: Pooled Findings from Three Continents. Ophthalmology 108, 697–704.
    30. AMD, T. S. o. 2012. AMD. http://www.scienceofamd.org/learn/. 11 November 2012.
    31. McCarty, C. A., Mukesh, B. N., Fu, C. L., Mitchell, P., Wang, J. J. and Taylor, H. R. 2001. Risk Factors for Age-related Maculopathy: The Visual Impairment Project. Archieves of Ophthalmology 119, 1455-1462.
    32. Wilson, G., Field, A. and Wilson, N. 2001. Smoke Gets in Your Eyes: Smoking and Visual Impairment in New Zealand. The New Zealand Medical Journal 114, 471-474.
    33. Evans, J. R., Fletcher, A. E. and Wormald, R. P. L. 2005. 28.000 Cases of Age Related Macular Degeneration Causing Visual Loss in People Aged 75 Years and Above in The United Kingdom May Be Attributable To Smoking. The British Journal of Ophthalmology 89, 550–553.
    34. Berrow, E. 2012. The Effect of Nutritional Supplementation on Subjective and Objective Measures of Visual and Retinal Function. Aston University Birmingham, 1-258.
    35. Gallemore, R. P., Hughes, B. A. and Miller, S. S. 1997. Retinal Pigment Epithelial Transport Mechanisms and Their Contributions To The Electroretinogram. Progress in Retinal and Eye Research 16, 509–566.
    36. Fraser-Bell, S., Wu, J., Klein, R., Azen, S. P., Varma, R. and Group, L. A. L. E. S. 2006. Smoking, Alcohol Intake, Estrogen Use, and Age-related Macular Degeneration in Latinos: The Los Angeles Latino Eye Study. American Journal of Ophthalmology 141, 79-87.
    37. Khan, J. C., Thurlby, D. A., Shahid, H., Clayton, D. G., Yates, J. R. W., Bradley, M., Moore, A. T. and Bird, A. C. 2006. Smoking and Age Related Macular Degeneration: The Number of Pack Years of Cigarette Smoking is A Major Determinant of Risk for Both Geographic Atrophy and Choroidal Neovascularisation. British Journal of Ophthalmology 90, 75-80.
    38. Suner, I. J., Espinosa-Heidmann, D. G., Marin-Castano, M. E., Hernandez, E. P., Pereira-Simon, S. and Cousins, S. W. 2004. Nicotine Increases Size and Severity of Experimental Choroidal Neovascularization. Investigative Ophthalmology & Visual Science 45, 311-317.
    39. Blute, T. A., Strang, C., Keyser, K. T. and Eldred, W. D. 2003. Activation of the cGMP/nitric oxide signal transduction system by nicotine in the retina. Visual Neuroscience 20, 165-176.
    40. Espinosa-Heidmann, D. G., Suner, I. J., Catanuto, P., Hernandez, E. P., Marin-Castano, M. E. and Cousins, S. W. 2006. Cigarette Smoke–Related Oxidants and the Development of Sub-RPE Deposits in an Experimental Animal Model of Dry AMD. Investigative Ophthalmology and Visual Science 47, 729-737.
    41. Erie, J. C., Good, J. A., Butz, J. A., Hodge, D. O. and Pulido, J. S. 2007. Urinary Cadmium and Age-Related Macular Degeneration. American Journal of Ophthalmology 144, 414-418.
    42. Erie, J. C., Butz, J. A., Good, J. A., Erie, E. A., Burritt, M. F. and Cameron, J. D. 2005. Heavy Metal Concentrations in Human Eyes. American Journal of Ophthalmology 139, 888-893.
    43. Wills, N. K., Ramanujam, V. M., Chang, J., Kalariya, N., Lewis, J. R., Weng, T. X. and Kuijk, F. J. v. 2008. Cadmium Accumulation in The Human Retina: Effects of Age, Gender, and Cellular Toxicity. Experimental Eye Research 86, 41-51.
    44. Fujihara, M., Nagai, N., Sussan, T. E., Biswal, S. and Handa, J. T. 2008. Chronic Cigarette Smoke Causes Oxidative Damage and Apoptosis to Retinal Pigmented Epithelial Cells in Mice. Plos One 3, 1-7.
    45. Wang, A. L., Lukas, T. J., Yuan, M., Du, N., Handa, J. T. and Neufeld, A. H. 2009. Changes in Retinal Pigment Epithelium Related to Cigarette Smoke: Possible Relevance to Smoking as a Risk Factor for Age-Related Macular Degeneration. Plos One 4, 1-11.
    46. Hughes, A. E., Orr, N., Patterson, C., Esfandiary, H., Hogg, R., McConnell, V., Silvestri, G. and Chakravarthy, U. 2007. Neovascular Age-Related Macular Degeneration Risk Based on CFH, LOC387715/HTRA1, and Smoking. Plos Medicine 4, 1993-2000.
    47. Habekovic, M. 2006. Age-related Macular Degeneration. Michigan Medical, P.C. Ophthalmology, 1-29.
    48. Bonnela, S., Mohand-Saida, S. and Sahel, J.-A. 2003. The Aging of The Retina. Experimental Gerontology 38, 825-381.
    49. Moore, D. J., Hussain, A. A. and Marshall, J. 1995. Related Variation in the Hydraulic Conductivity of Bruch's Membrane. Investigative Ophthalmology and Visual Science 36, 1290-1297.
    50. Wing, G. L., Blanchard, G. C. and Weiter, J. J. 1978. The Topography and Age Relationship of Lipofuscin Concentration in The Retinal Pigment Epithelium. Investigative Ophthalmology and Visual Science 17, 601-607.
    51. Katz, M. L., Drea, C. M., Eldred, G. E., Hess, H. H. and Jr, W. G. R. 1986. Influence of Early Photoreceptor Degeneration on Lipofuscin in The Retinal Pigment Epithelium. Experimental Eye Research 43, 561–573.
    52. Zarbin, M. A. 2004. Current Concepts in the Pathogenesis of Age-Related Macular Degeneration. Mechanisms of Ophthalmologic Disease 122, 598-614.
    53. Bird, A. C., Bressler, N. M., Bressler, S. B., Chisholm, I. H., Coscas, G., Davis, M. D., Jong, P. T. d., Klaver, C. C., .Klein, B. E. and Klein, R. 1995. An International Classification and Grading System For Age-related Maculopathy and Age-related Macular Degeneration. Survey of Ophthalmology 39, 367-374.
    54. Connon, R. 2007. Culturing of Chlorella vulgaris - Standard Operating Procedure. Daphnia Research group (University of Reading)
    55. Johnson, J. D. 2007. Lutein and Zeaxanthin: An Introduction to the Chemistry of Dietary Carotenoids. http://www.chm.bris.ac.uk/motm/carotenoids/carotenoids.htm. 2 August 2012.
    56. Dall'Osto, L., Lico, C., Alric, J., Giuliano, G., Havaux, M. and Bassi, R. 2006. Lutein is Needed for Efficient Chlorophyll Triplet Quenching in The Major LHCII Antenna Complex of Higher Plants and Effective Photoprotection in Vivo Under Strong Light. Bio Med Central Plant Biology 6, 1-20.
    57. Zheng, H., Yin, J., Gao, Z., Huang, H., Ji, X. and Dou, C. 2011. Disruption of Chlorella vulgaris Cells for the Release of Biodiesel-Producing Lipids: A Comparison of Grinding, Ultrasonication, Bead Milling, Enzymatic Lysis, and Microwaves. Appl Biochem Biotechnol 164, 1215–1224.
    58. Mercer, P. and Armenta, R. E. 2011. Developments in Oil Extraction from Microalgae. European Journal of Lipid Science and Technology 113, 539-547.
    59. Mandal, V., Mohan, Y. and Hemalatha, S. 2007. Microwave Assisted Extraction – An Innovative and Promising Extraction Tool for Medicinal Plant Research. Pharmacognosy Reviews 1, 7-18.
    60. Grima, E. M., Belarbi, E.-H., Ferna′ndez, F. G. A. n., Medina, A. R. and Chisti, Y. 2003. Recovery of Microalgal Biomass and Metabolites: Process Options and Economics. Biotechnology Advances 20, 491–515.
    61. Yan, M., Wang, D., Ni, J., Qu, J., Chow, C. W. K. and Liu, H. 2008. Mechanism of Natural Organic Matter Removal by Polyaluminum Chloride: Effect of Coagulant Particle Size and Hydrolysis Kinetics. Water Research 42, 3361 – 3370.
    62. Lu, G., Qu, J. and Tang, H. 1999. The Electrochemical Production of Highly Effective Polyaluminum Chloride. Water Research 33, 807-813.
    63. Wydro, P., Krajewska, B. and Hac-Wydro, K. 2007. Chitosan as a Lipid Binder: A Langmuir Monolayer Study of Chitosan-Lipid Interactions. Biomacromolecules 8, 2611-2617.
    64. Izani, N. J. N., Rafiquzzaman, M., Aidah, M. D. N. and Rafi, M. M. 2009. In Vitro Binding of Lipid (Olive Oil and Ghee) with Chitosan under The Conditions Mimicking The Gastrointestinal Tract. Saudi Pharmaceutical Journal 17, 78-84.

    QR CODE