簡易檢索 / 詳目顯示

研究生: 陳彥辰
Chen-yen Chen
論文名稱: 微米與奈米尺度金屬玻璃之製備與特性分析:機械與物理性質評估
Preparation and Characterization of Metallic Glasses in Micro-/nano-scales: Mechanical and Physical Property Evaluations
指導教授: 朱瑾
Jinn Chu
口試委員: 李三良
San-liang Lee
顏怡文
Yee-wen Yen
薛承輝
Chun-hway Hsueh
李志偉
Jyh-wei Lee
鄭憲清
Shian-ching Jang
黃志青
Chih-ching Huang
張佳文
Chia-wen Chang
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2012
畢業學年度: 101
語文別: 英文
論文頁數: 149
中文關鍵詞: 金屬玻璃過冷液態區間熱塑性成形金屬玻璃薄膜奈米尺度結構
外文關鍵詞: bulk metallic glass, Supercooled liquid region, thermoplastic imprint, thin film metallic glass, nanoscal microstructure
相關次數: 點閱:342下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本博士論文主要以新興材料金屬玻璃為研究方向,近年來金屬玻璃已被廣泛的研究,包含金屬玻璃製備的製程開發、機械性質與應用等。然而,尺寸限制與常溫下不具延性的金屬玻璃仍舊是最需要克服的議題。針對此問題,金屬玻璃潛在的應用為微奈米機電系統與光電能源相關領域。因金屬玻璃在過冷液態區間具有低黏滯流與牛頓流體行為,如此可利用微奈米壓印方法壓印出微小元件並且可進而當作模具使用,並可取代傳統蝕刻與電子束讀寫繁瑣的過程。另一方面,在微機電系統中薄膜是很常被使用的材料,金屬玻璃薄膜也被報導可實施於微奈米機電系統,探討其機械性質是必要的。因此本研究中可分成金屬玻璃塊材與薄膜兩種型態分別探討。塊狀金屬玻璃的部分,主要應用其在過冷液態區間熱壓印出微米與奈米尺度之元件,並且探討其做為模具的可能性。利用壓印成形出10×10與20×20的鈀基金屬玻璃柱狀陣列結構之元件,經兆赫電磁波的量測,觀察是否具備有濾波的功能。而利用壓印方法可製作出百微米到奈米(100μm~90nm)大小的太陽能電池抗反射層結構來取代傳統利用蝕刻與光罩製備的方法。此外,本研究利用飛秒雷射技術在鈀基金屬玻璃表面製作奈米週期性陣列,並且將其當作模具於金基金屬玻璃與高分子材料上做第二次的轉印。
    薄膜的部分主要為利用物理濺鍍法具備高玻璃成形性的鋯基金屬玻璃薄膜,其擁有之高韌性以及高強度之性質是非常適合應用於微奈米機電元件中。本研究經由奈米壓痕機分析不同尺寸厚度鋯基金屬玻璃薄膜的機械性質,並且利用高解析原子力顯微鏡來分析薄膜的原子結構,以了解原子排列鬆散之程度。


    This Ph. D. dissertation focuses on noble metallic glass materials for the research subject. Recently, metallic glass has been studied widely such as process development and mechanical properties involved in potential application. However, the important issues need to overcome are size limitation and room-temperature ductility of metallic glass applied to industry fields. From this point of view, the potential applications of metallic glass are micro/nano-electro-mechanical-system (MEMS/NEMS) and optical-electrical energy fields. Bulk metallic glasses (BMGs) act as a Newtonian flow and low viscousity at high temperatures in the supercooled liquid region (SCLR); thus forming micro device utilizing the micro/nano-imprint method is achievable. Furthermore, imprinted BMG device can be served as a mold as well, to substitute the complex processes of conventional etching and e-beam writer. Since the thin film materials are customarily employed to MEMS, thin film metallic glass (TFMG) is applicable to related field. To investigate its mechanical properties is an imperative. This study can be separated into two sessions including BMG and TFMG. In the part of bulk form, we fabricate micro/nano device using imprint method in SCLR and to evaluate the possibility to serve as a mold material for the micro/nano-fabrication process. An imprint process of Pd-based metallic glass composed is used to create a high-aspect-ratio two-dimensional structure of 10 × 10 wire array for realizing the terahertz (THz) filtering effect. The replication features ranging from 100 μm to 90 nm of Pd-based BMG is demonstrated the applicability to replace the conventional lithograph method in the fabrication of mold. Additionally, using the beam shaper feature of the femtosecond laser enabled the rapid fabrication of periodic nanostripes on the Pd-based BMG mold following a single pulse of irradiation. The Pd-based BMG mold itself can be used a master mold to transfer the features onto Au-based BMG and PDMS by imprinting.
    In the TFMG section, a high glass-forming ability of Zr-Cu-Al-Ni TFMG was prepared by sputtering. Zr-based TFMG reveals a good toughness and high strength mechanical properties, in which exhibits the applicability in MEMS field. A nanoindentation was used to evaluate the mechanical property of Zr-based TFMG with various thicknesses. Finally, to realize the atomic packing picture, a high resolution atomic force microscope was employed to analyze the atomic-scale structure of Zr-based TFMG.

    摘要 I Abstract II Acknowledgements IV List of Figures IX List of Tables XV Chapter 1 Introduction 1 Chapter 2 Background 3 2.1 Bulk Metallic Glasses (BMGs) 3 2.1.1 The Evaluation of Metallic Glasses 3 2.1.2 Glass Forming Ability (GFA) 5 2.1.3 Physical and Mechanic Properties of BMGs 10 2.2 Nano/Micro-fabrication Ability of BMGs and TFMGs: MEMS/NEMS Application 12 2.2.1 Superplasticity and Viscous Flow Properties in SCLR 12 2.2.2 Nano/micro-imprint of BMGs and TFMGs in SCLR for MENS/NEMS Application 15 2.2.3 Mold Filling Kinetics for BMGs within SCLR 24 2.3 Optical-electrical Component for BMG Application 27 2.4 Femtosecond Laser Irradiation Process on BMG 30 2.5 Thin Film Metallic Glasses (TFMGs) 34 2.5.1 Thin Film Deposition Using Physical Vapor Deposition (PVD) 34 2.5.2 Glass-forming Film 36 2.5.3 Nanostructural Heterogeneity Evaluation of TFMGs using AM-AFM 39 Chapter 3 Experimental procedure 42 3.1 Nano/micro-imprinting Process of BMGs and PDMS 42 3.1.1BMG Sample Preparation 42 3.1.2 Sample and Mold Preparation 44 3.1.3 Preparation of Pd-based BMG Mold Induced by Femtosecond Laser Technique 44 3.1.4 Compressive deformation test 46 3.1.5 Nano/micro-imprint of BMG and PDMS using Si, stainless steel and BMG molds 47 3.1.6 THz Measurement of BMG Wire Array Structure 48 3.2 Preparation of TFMG 51 3.2.1 Target and Substrate Preparation 51 3.2.2 Deposition of TFMG 51 3.3 Material Characterizations 53 3.3.1 Chemical Analyses-Electron Probe Microanalysis (EPMA) 53 3.3.2 Differential Scanning Calorimeter (DSC) 54 3.3.3 X-ray Diffractometer (XRD) 55 3.3.4 Scanning Electron Microscopy (SEM) 56 3.3.5 Transmission Electron Microscopy (TEM) 56 3.3.6 Dual Beam Focus Ion Beam (DB-FIB) 57 3.3.7 Nanoindentation 58 3.3.8 Atomic Force Microscopy (AFM) 59 Chapter 4 Results and Discussion 61 4.1 Nano/micro-imprinting of BMG 61 4.1.1 Chemical Analysis (EPMA) 61 4.1.2 Thermal Analysis (DSC) of Pd- and Au-based BMGs 61 4.1.3 Mechanical Properties of Au-based BMGs in SCLR 65 4.1.4 Crystallography and Microstucture of Au-based BMG 69 4.1.5 Nano/micro-imprint of Pd-based BMG 72 4.1.5.1 Morphologies of Various Imprinted Patterns 73 4.1.5.2 The Relationship Between the Viscosity and Deformability 78 4.1.5.3 Evaluations of THz Properties on Wire Array Structure 78 4.2 Periodic Nano-stripes on BMG Induced by Femtosecond Laser Technology 83 4.2.1 Crystallography of Pd-based BMG before/after Femtosecond Laser Treatment 83 4.2.2 Microstructural Analysis 83 4.2.3 Surface Morphology and Cross-sectional Image of Periodic Nano-stripes and Stainless Steel 86 4.2.4 Ablation Mechanism 87 4.3 Application of Pd-based BMG Mold 91 4.3.1 Multiple Replications of Features on PDMS and BMG Using Pd-based Mold Prepared by Femtosecond Laser 91 4.3.2 Replications of Features on PDMS Using Imprinted Nanograting Pd-based Mold 97 4.4 Evaluation of Mechanical and Nanostructral Properties of Zr-based TFMG 99 4.4.1Chemical Analysis 99 4.4.2 Thermal Analysis of ZrCuAlNi TFMG 99 4.4.3 Crystallography (XRD) 101 4.4.4 Surface Roughness (AFM) 102 4.4.5 Mechanical Property Evaluation (Nanoindentation) 103 4.4.6 Nanostructral Heterogeneity Analysis by AM-AFM 106 Chapter 5. Summary and Conclusions 113 References 115 Appendix 121 Vita 130 Publication Lists 131

    [1] W. H. Wang, C. Dong, C. H. Shek, Materials Science and Engineering: R, 44 (2004) 45.
    [2] A. Inoue, A. Takeuchi, Acta Materialia, 59 (2011) 2243.
    [3] A. Inoue, A. Takeuchi, Materials Science and Engineering: A, 375-377 (2004) 16.
    [4] J. P. Chu, H. Wijaya, C. W. Wu, T. R. Tsai, C. S. Wei, T. G. Nieh, J. Wadsworth, Applied Physics Letters, 90 (2007) 034101.
    [5] J. P. Chu, C. L. Chiang, T. G. Nieh, Y. Kawamura, Intermetallics, 10 (2002) 1191.
    [6] Y. C. Chen, T. R. Tsai, J. P. Chu, H. Sung, J. S. C. Jang, H. Kato, Applied Physics Express, 5 (2012) 012201.
    [7] J. Schroers, Q. Pam, A. Desai, JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 16 (2007) 240.
    [8] G. Kumar, H. X. Tang, J. Schroers, Nature, 457 (2009) 868.
    [9] G. Kumar, A. Desai, J. Schroers, Advanced Materials, 23 (2011) 461.
    [10] J. Schroers, Advanced Materials, 22 (2010) 1566.
    [11] H. S. Chou, J. C. Huang, L. W. Chang, Surface and Coatings Technology, 205 (2010) 587.
    [12] A. Inoue, K. Ohtera, K. Kita, Japanese Journal of Appied Physics, 27 (1988) L2248.
    [13] W. Klement, R. H. Willens, P. Duwez, Nature, 187 (1960) 869.
    [14] H. W. Kui, D. Turnbull, Applied Physics Letters, 47 (1985) 796.
    [15] H. W. Kui, A. L.Greer, D.Turnbull, Applied Physics Letters, 45 (1984) 615.
    [16] A.Inoue, A.Takeuchi, Acta Materialia, 59 (2011) 2243-2267.
    [17] A. Inoue, Acta Materialia, 48 (2000) 279.
    [18] Z. P. Lu, C. T. Liu, Physical Review Letters, 91 (2003)115505.
    [19] E. Axinte, Materials and Design, 35 (2012) 518.
    [20] Z. P. Lu, C. T. Liu, Intermetallics, 12 (2004) 1035.
    [21] Z. P. Lu, C. T. Liu, Acta Materialia, 50 (2002) 3501
    [22] Z. P. Lu, X. Hu, Y. Li, S. C. Ng, Material Science and Engineering: A, 304 (2001) 679.
    [23] I. W. Donald, H. A. Davies, Journal of Non-crystalline Solids, 30 (1978) 77.
    [24] M. Marcus, D. Turnbull, Material Science and Engineering, 23 (1976) 211.
    [25] A. Ioune, Material Transactions, JIM, 36 (1995) 866.
    [26] A. Inoue, T. Zhang, T. Masumoto , Journal of Non-crystalline Solids, 156-158 (1993) 473.
    [27] Y. Li, S. C. Ng, C. K. Ong, H. H. Hng, T. T. Goh, Scripta Materialia, 36 (1997) 783.
    [28] X. H. Du, J. C. Huang, C. T. Liu, Z. P. Lu, Journal of Applied Physics, 101 (2007) 086108.
    [29] A. Inoue , Y. Kawamura, Y. Saotome, Material Science Forum, 233-234 (1997) 147.
    [30] Y. Saotome, S. Miwa, T. Zhang, A. Inoue, Journal of Materials Processing Technology, 113 (2001) 64.
    [31] Y. Saotome, K. Imai, N. Sawanobori, Journal of Materials Processing Technology, 140 (2003) 379.
    [32] Y. Kawamura, T. Nakamura, A. Inoue, Scripta Materialia, 39 (1998) 301
    [33] J. P. Chu, C. L. Chiang, H. Wijaya, R. T. Huang, C. W. Wu, B. Zhang, W. H. Wang, T. G. Nieh, Scripta Materialia, 55 (2006) 227.
    [34] C. L. Chiang, J. P. Chu, C. T. Lo, T. G. Nieh, Z. X. Wang, W. H. Wang, Intermetallics, 12 (2004) 1057.
    [35] J. Schroers, B. Lohwongwatana, W. L. Johnson, A. Peker, Applied Physics Letters, 87 (2005) 061912.
    [36] J. Schroers, Q. Pham, A. Peker, N. Paton, R.V. Curtis, Scripta Materialia, 57 (2007) 341.
    [37] B. Sarac, J. Ketkaew, D. O. Popnoe, J. Schroers, Advanced Materials, 22 (2012) 3161.
    [38] M. Carmo, S. Ding, G. Kumar, J. Schroers, A. D. Taylor, ACS NANO, 5 (2011) 2979.
    [39] G. Kumar, J. Schroers, Applied Physics Letters, 92 (2008) 031901.
    [40] G. Kumar, A. Desai, J. Schroers, Advanced Materials, 23 (2011) 461.
    [41] G. Kumar, P. A. Staffier, J. Blawzdziewicz, U. D. Schwarz, J. Schroers , Applied Physics Letters, 97 (2010) 101907.
    [42] Y. Saotome, K. Itoh, T. Zhang, A. Inoue, Scripta Materialia, 44 (2001) 1541.
    [43] Y. Saotome, K. Imai, S. Shioda, S. Shimizu, T. Zhang, A. Inoue, Intermetallics, 10 (2002) 1241.
    [44] P. Sharma, H. Kimura, Y. Saotome, A. Inoue, Nanotechnology, 18 (2007) 035302.
    [45] P. Sharma, N. Kaushik, H. Kimura,Y. Saotome, A. Inoue, Nanotechnology, 18 (2007) 035302.
    [46] K. Takenaka, N. Togashi, N. Nishiyama, A. Inoue, Intermetallics, 18 (2010) 1969.
    [47] K. Takenaka, N. Saidoh, N. Nishiyama, A. Inoue, Nanotechnology, 22 (2011) 105302.
    [48] K. Takenaka, N. Togashi, N. Nishiyama, A. Inoue, Journal of Non-Crystalline Solids, 356 (2010) 1542-1545.
    [49] S. Hata, T. Kato, T. Fukushige, A. Shimokohbe, Microelectronic Engineering, 67-68 (2003) 574.
    [50] D. Wu, N. Fang, C. Sun, X, Zhanga, W. J. Padilla, D. N. Basov, D. R. Smith, Schultz, Applied Physics Letters, 83 (2003) 201.
    [51] A. J. Gallant, M. A. Kaliteevski, S. Brand, D. Wood, M. Petty, R. A. Abram, J. M. Chamberlain, Journal of Applied Physics, 102 (2007) 023102.
    [52] A. J. Gallant, M. A. Kaliteevski, D. Wood, C. M. Petty, R. A. Abram, S. Brand, G. P. Swift, D. A. Zeze, J. M. Chamberlain, Applied Physics Letters, 91 (2007) 161115.
    [53] J. B. Pendry, A. J. Holden, D. J. Robbins, W. J. Stewart, Journal of Physics : Condense Matter 10 (1998) 4785.
    [54] C. Wang, Y. C. Chang, J. Yao, C. Luo, S. Yin, P. Ruffin, C. Brantley, E. Edwards, Applied Physics Letters, 100 (2012) 023107.
    [55] M. Tsukamoto, T. Kayahara, H. Nakano, M. Hashida, M. Katto, M. Fujita, M. Tanaka, N. Abe, Journal of Physics: Conference Series, 59 (2007) 666-669.
    [56] M. Huang, F. L. Zhao, Y. Cheng, N. S. Xu, Z. Z. Xu, ACS NANO, 3 (2009) 4602.
    [57] S.H. Kim, I. B. Sohn, S. Jeong, Applied Physics A: Materials Scienand and Processing, 102 (2010) 55.
    [58] A.Y. Vorobyev, C. Guo, Applied Physics A: Materials Science and Processing, 86 (2006) 321.
    [59] A.Y. Vorobyev, A. N. Topkov, O. V. Gurin, V. A. Svich, C. Guo, Applied Physics Letters, 95 (2009) 121106.
    [60] A.Y. Vorobyev, C. Guo, Journal of Applied Physics, 104 (2008) 053516.
    [61] M. D. Perry, B. C. Stuart, P. S. Banks, M. D. Feit, V. Yanovsky, A. M. Rubenchik, Journal of Applied Physics, 85 (1999) 6803.
    [62] E. G. Gamaly, A. V. Rode, B. Luther-Davies, Journal of Applied Physics, 85 (1999) 4213.
    [63] M. Birnbaum, Journal of Applied Physics, 36 (1965) 3688.
    [64] A.E. Siegman, Applied Physics Letters, 40 (1982) 824.
    [65] G. Zhou, P. M. Fauchet, A. E. Siegman, Physical Review B, 26 (1982) 5366.
    [66] J. F. Young, J. S. Preston, H. M. V. Driel, J. E. Sipe, Physical Review B, 27 (1983) 1155.
    [67] J. S. Preston, H. M. V. Driel, J. E. Sipe, Physical Review B, 40 (1989) 3942.
    [68] J. Bonse, S. Baudach, J. Kruger, W. Kautek, M. Lenzner, Applied Physics A: Materials Scienand and Processing, 74 (2002) 19.
    [69] G. Dumitru, V. Romano, H. P. Weber, M. Sentis, W. Marine, Applied Physics A: Materials Scienand and Processing, 74 (2002) 729.
    [70] A. Borowiec, H. K. Haugen, Applied Physics Letters, 82 (2003) 4462.
    [71] A. Y. Vorobyev, V. S. Makin, C. Guo, Journal of Applied Physics, 101 (2007) 034903.
    [72] F. Ma, J. Yang, X. Zhu, C. Liang, H. Wang, Applied Surface Science, 256 (2010) 3653.
    [73] T. Shinonaga, M. Tsukamoto, S. Maruyama, N. Matsushita, T. Wada, X. Wang, H. Honda, Transactions of JWRI, 38 (2009) 81.
    [74] T. Sano, K. Takahashi, A. Hirose, K. F. Kobayashi, Materials Science Forum, 539-543 (2007) 1951.
    [75] J. L. Vossen, W.Kern, Thin Film Processes, Academic Press New York, 1978, California.
    [76] R. B. Schwarz, W. L. Johnson, Physical Review Letters, 51 (1983) 415.
    [77] S. Hata, K. Sato, A. Shimokohbe, SPIE International Symposium on Microelectronics and Micro-Electro-Mechanical Systems, MICRO/MEMS, 3892 (1999) 97.
    [78] Y. Liu, S. Hata, K. Wada, A. Shimokohbe, Proceedings of the 14th IEEE International Conference on Micro Electro and Mechanical Systems; Interlaken, Switzerland, (2001) 37.
    [79] J. P. Chu, C. T. Liu, T. Mahalingam, S. F. Wang, M. J. O’Keefe, B. Johnson, C. H. Kuo, Physical Review B, 69 (2004).
    [80] J. P. Chu, C. T. Lo, Y. K. Fang, B. S. Han, Applied Physics Letters, 88 (2006) 012510.
    [81] J. P. Chu, C. Y. Wang, L. J. Chen, Q. Chen, Surface and Coatings Technology, 205 (2011) 2914.
    [82] Z. F. Li, W. S. Lai, B. X. Liu, Applied Physics Letters, 77 (2000) 3920.
    [83] Y. Q. Cheng, E. Ma, Progress in Materials Science, 56 (2011) 379.
    [84] C. Fan, P. K. Liaw, T. W. Wilson, W. Dmowski, H. Choo, C. T. Liu, J. W. Richardson, Th. Proffen, Applied Physics Letters, 89 (2006) 111905.
    [85] J. C. Ye, J. Lu, C. T. Liu, Q. Wang, Y. Yang, Nature Materials, 9 (2010) 619.
    [86] Y. Yang, J. F. Zeng, J. C. Ye, J. Lu, Applied Physics Letters, 97 (2010) 261905.
    [87] Y. Yang, C. T. Liu, Journal of Materials Science, 47 (2012) 55.
    [88] Z. Y. Liu, Y. Yang, Intermetallics, 26 (2012) 86.
    [89] Y. H. Liu, K. Nakajima, W. Zhang, A. Hirata, T. Nishi, A. Inoue, M. W. Chen, Physical Review Letters, 106 (2011) 125504.
    [90] Y. Yang, J. F. Zeng, A. Volland, J. J. Blandin, S. Gravier, C. T. Liu, Acta Materialia, 60 (2012) 5260.
    [91] Y. C. Chen, J. P. Chu, J. S. C. Jang, C. W. Wu, Materials Science and Engineering: A, 556 (2012) 488.
    [92] R. Mendis, D. Grischkowsky, Optics Letters, 26 (2001) 846.
    [93] J. S. Melinger, N. Laman, S. S. Harsha, D. Grischkowsky, Applied Physics Letters, 89 (2006) 251110.
    [94] W.C. Oliver, G.M. Pharr, Journal of Materials Research, 7 (1992) 1564.
    [95] A. Inoue, Y. H. Kim, T. Masumoto, Material Transactions, JIM, 33 (1992) 487.
    [96] J. P. Chu, C. L. Chiang, T. Mahalingam, T. G. Nieh, Scripta Materialia, 49 (2003) 435.
    [97] Y. Kawamura, T. Shibata, A. Inoue, T. Masumto, Acta Materialia, 46 (1997) 253.
    [98] S. X. Song, Y. H. Lai, J. C. Huang, T. G. Nieh, Applied Physics Letters, 94 (2009) 061911.
    [99] T. G. Nieh,J. Wadsworth, C. T. Liu, T. Ohkubo, Y. Hirotsu, Acta Materialia, 49 (2001) 2887.
    [100] S. Gravier, P. Donnadieu, S. Lay, B. Doisneau, F. Bley, L. Salvo, J. J. Blandin, Journal of Alloys and Compounds, 504 (2010) S226.
    [101] U. Wolff, N. Pryds, E. Joshon, J. A. Wert, Acta Materialia, 52 (2004) 1989.
    [102] Z. Bian, G. He, G. L. Chen, Scripta Materialia, 46 (2002) 407.
    [103] C. Fan, D. V. Louzguine, C. Li, A. Inoue, Applied Physics Letters, 75 (1999) 340.
    [104] CRC Handbook of Chemistry and Physics, CRC Press, New York, 87th ed (2006-2007) 12.
    [105] C. J. Byrne, M. Eldrup, M. Ohnuma, R. S. Eriksen, Journal of Materials Processing Technology, 210 (2010) 1419.
    [106] C. H. Hsieh, J. Y. Jeng, S. L. Lee, Y. T. Pan, Laser Physics, 22 (2012) 1229.
    [107] J. Reif, F. Costache, S. Eckert, M. Henyk, Applied Physics A: Materials Science and Processing, 79 (2004) 1229.
    [108] S. Hou, Y. Huo, P. Xiong, Y. Zhang, S. Zhang, T. Jia, Z. Sun, J. Qiu, Z. Xu, Journal of Physics D: Applied Physics, 44 (2011) 505401.
    [109] Y. Zhang, C. W. Lo, J. A. Taylor, S. Yang, Langmuir, 22 (2006) 8595.
    [110] J. P. Rolland, E. C. Hagberg, G. M. Denison, K. R. Carter, J. M. D. Simone, Angewandte Chemie, 116 (2004) 5920.
    [111] R. Vaidyanathan, G. Ravichandran, S. Suresh, Acta Materialia, 49 (2001) 3781.
    [112] W.C. Oliver, G.M. Pharr, J. Mater. Res., 7 (1992) 1564.
    [113] R. Saha, W.D. Nix, Acta Materialia, 50 (2002) 23.
    [114] H. S. Chou, J. C. Huang, L. W. Chang, T.G. Nieh, Applied Physics Letters, 93 (2008) 191901.
    [115] M. C. Liu, C. J. Lee, Y. H. Lai, J. C. Huang, Thin Solid Films, 518 (2010) 7295.
    [116] H. S. Chou, J. C. Huang, L.W. Chang, Surface and Coatings Technology, 205 (2010) 587.
    [117] J. P. Chu, J. S. C. Jang, J. C. Huang, H. S. Chou, Y. Yang, J. C. Ye, Y. C. Wang, J. W. Lee, F. X. Liu, Y. F. Gao, P. K. Liaw, Y. C. Chen, C. M. Lee, C. L. Li, C. Rullynai, Thin Solid Films, 520 (2012) 5097
    [118] A. Inoue, Acta Materialia, 48 (2000) 279.
    [119] J. C. Ye, J. Lu, Y. Yang, P. K. Liaw, Intermetallics, 18 (2010) 385.
    [120] W. L. Johnson, K. Samwer, Physical Review Letters, 95 (2005) 195501.
    [121] L. Wang, H. Bei, Y. F. Gao, Z.P. Lu, T. G. Nieh, Acta Materialia, 59 (2011) 2858.
    [122] A.S. Argon, Acta Metallurgica, 27 (1979) 47.

    QR CODE