簡易檢索 / 詳目顯示

研究生: 陳俊男
Jiun-nan Chen
論文名稱: (Cu42Zr42Al8Ag8)99.5Si0.5塊狀金屬玻璃的磨潤行為研究
A Study on Tribological Behavior of (Cu42Zr42Al8Ag8)99.5Si0.5 Bulk Metallic Glass
指導教授: 林原慶
Yuan-Ching Lin
口試委員: 蘇侃
none
朱瑾
Jinn Chu
卓育賢
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 134
中文關鍵詞: 塊狀金屬玻璃磨潤
外文關鍵詞: bulk metallic glass, tribology
相關次數: 點閱:159下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要探討塊狀金屬玻璃(Cu42Zr42Al8Ag8)99.5Si0.5合金系統的磨潤行為,並以熱處理硬化後硬度相當的S45C中碳鋼做為比較。磨耗試片分別為鑄態(Cu42Zr42Al8Ag8)99.5Si0.5塊狀金屬玻璃(以下簡稱鑄態BMG)、743K退火30分鐘(Cu42Zr42Al8Ag8)99.5Si0.5塊狀金屬玻璃(以下簡稱退火後BMG)及熱處理硬化的S45C中碳鋼(以下簡稱熱處理後S45C),以Cameron-Plint TE77往復式磨耗試驗機評估其磨潤性能。試片接觸方式為圓柱對平板(cylinder-on-plate)的線接觸模式,分別於不同滑動速度(0.088m/s、0.176m/s)、不同荷重(50N、100N)及不同狀態(乾摩擦、加水)下,評估三種試片之磨潤性能。此外,使用MN基礎油潤滑的磨耗試驗,則用以比較不同潤滑劑對試片的影響。磨耗試驗結束後,以掃描式電子顯微鏡(SEM)觀察試片磨耗形貌,能量散佈光譜儀(EDS)用來檢測局部區域之元素成份。
    試驗結果顯示,乾磨耗時鑄態BMG與退火後BMG以剝層磨耗為主,熱處理後S45C則主要為黏著磨耗;水潤滑狀態下,三者皆以刮磨磨耗為主。此外,退火後BMG由於硬度較鑄態BMG增加,因而有效提升BMG的耐磨耗能力;鑄態BMG和熱處理後S45C雖然硬度相當,但是以熱處理後S45C的耐磨耗能力較為優異。


    In the thesis, the tribological performances of BMG (Cu42Zr42Al8Ag8)99.5Si0.5 and middle carbon steel after heat treatment (S45C-H.T.) are discussed. Wear test specimens are as-cast BMG, BMG annealing at 743K for 30 minutes and S45C after heat treatment. Wear tests are performed under cylinder-on-plate contact type during different sliding speeds, loadings and lubricant conditions by Cameron-Plint TE77 reciprocal wear machine. After wear tests, the morphology of wear specimens are observed by scanning electron microscopy (SEM), and identified element components in local regions by energy dispersive spectrum (EDS).
    Results show that as-cast BMG and annealing BMG are mainly delamination wear under dry wear test, and S45C-H.T. are adhesive wear; when under water lubrication state, three of them are maily abrasive wear. In addition, annealing BMG has a better wear resistance ability due to hardness value rising; although the hardness value of as-cast BMG is comparable with S45C(H.T.), the wear resistance ability is poorer.

    摘要 Abstract 誌謝 目 錄 表索引 圖索引 第一章前言 第二章文獻回顧 2.1 非晶質合金發展歷史 2.2非晶質合金特性 2.3非晶質合金製造方法【15】 2.4非晶質合金形成法則【38~39】 2.5玻璃形成能力(GFA)準則 2.6磨潤理論 2.7 塊狀金屬玻璃相關磨潤研究 第三章實驗方法與步驟 3.1 實驗儀器 3.2 試片製備 3.3試片規格 3.4 實驗步驟 第四章結果與討論 4.1 DSC 熱分析 4.2 XRD 晶體結構分析 4.3EPMA 元素分析 4.4 TEM 結晶性分析 4.5 相關的物理性質分析 4.6 磨耗試驗 第五章結論與建議 5.1 結論 5.2 建議 參考文獻

    1.C.T. Liu, M.F. Chisholm, M.K. Miller, Oxygen impurity and microalloying effect in a Zr-based bulk metallic glass alloy, Vol.10, pp.1105-1112, (2002)
    2.C. Fan, A. Takeuchi, A. Inoue, Preparation and mechanical properties of Zr-based bulk nanocrystalline alloys containing compound and amorphous phases, Vol.40, pp.42-51, (1999)
    3.K.S. Lee, Y.W. Chang, Deformation Behavior of Zr-based bulk metallic glass in an undercooled liquid state under compressive loading, Vol.11, pp.53-57, (2005)
    4.Y.C. Kim, D.H. Kim, J.C. Lee, Formation of ductile Cu-based bulk metallic glass matrix composite by Ta addition, Vol.44, pp.2224-2227, (2003)
    5.C.L. Qin, W. Zhang, K. Asami, H. Kimura, X.M. Wang, A. Inoue, A novel Cu-based BMG composite with high corrosion resistance and excellent mechanical properties, Vol.54, pp.3717-3719, (2006)
    6.Q. Wang, Y.M. Wang, J.B. Qiang, X.F. Zhang, C.H. Shek, C. Dong, Composition optimization of the Cu-based Cu-Zr-Al alloys, Vol.12, pp.1229-1232, (2004)
    7.J.B. Qiang, W. Zhang, A. Inoue, Formation, Thermal Stability and Mechanical Properties of Ni60Zr20Nb15Al5-xPdx (x=0 similar to 5 at%) Bulk Metallic Glasses, Vol.50, pp.1526-1530, (2009)
    8.J. Shin, J. Kwon, J.S. Park, D. Bael, Synthesis of Ni-based bulk metallic glasses for penetrating materials, Vol. 49, pp.1796-1799, (2008)
    9.J.B. Qiang, W. Zhang, A. Inoue, Effects of Al and Ti additions on the thermal stability, glass-forming ability and mechanical properties of Ni60Nb20Zr20 glassy alloy, Vol. 148, pp.114-118, (2008)
    10.B.G. Yoo, K.W. Lee, J.I. Jang, Instrumented indentation of a Pd-based bulk metallic glass: Constant loading-rate test vs constant strain-rate test, Vol. 483, pp.136-138, (2009)
    11.X. Hu, S.C. Ng, Y.P. Feng, Y. Li, Glass forming ability and in-situ composite formation in Pd-based bulk metallic glasses, Vol. 51, pp.561-572, (2003)
    12.X.J. Gu, S.J. Poon, G.J. Shiflet, J.J. Lewandowski, Compressive plasticity and toughness of a Ti-based bulk metallic glass, Vol. 58, pp.1708-1720, (2010)
    13.S.F. Shan, Z.J. Zhan, Y.Z. Jia, C.Z. Fan, B.Q. Zhang, R.P. Liu, W.K. Wang, Improvement of plasticity of Ti-based bulk metallic glasses by phase transition of a cooling medium, Vol. 23, pp.1319-1323, (2009)
    14.Y.J. Huang, J. Shen, J.F. Sun, Z.F. Zhang, Enhanced strength and plasticity of a Ti-based metallic glass at cryogenic temperatures, Vol. 498, pp.203-207, (2008)
    15.惠希東,陳國良,塊體非晶合金,化學工業出版社,(2007)
    16.G.Q. Zhang , X.J. Lib, M. Shao, L.N. Wang, J.L. Yang, L.P. Gao, L.Y. Chen, Wear behavior of a series of Zr-based bulk metallic glasses, Vol. 475, pp.124-127, (2008)
    17.E. Fleury, S.M. Lee, H.S. Ahn, W.T. Kim, D.H. Kim, Tribological properties of bulk metallic glasses, Vol. 375, pp.276-279, (2004)
    18.Jatin Bhatt, S. Kumar, C. Dong, B.S. Murty, Tribolocial behavior of Cu60Zr30Ti10 Bulk Metallic Glass, Vol.458, pp.290-294, (2007)
    19.C.Y. Tam, C.H. Shek, Abrasive wear of Cu60Zr30Ti10 bulk metallic glass, Vol. 384, pp.138-142, (2004)
    20.T. Gloriant, Microhardness and abrasive wear resistance of metallic glasses and nanostructured composite materials, Vol. 316, pp.96-103, (2003)
    21.N. Nishiyama, M. Ishida, N. Togashi, A. Inoue, Properties of bulk glassy alloys as a tribo-materials, Vol. 18, pp.89-92, (2008)
    22.C.Y. Tam, C.H. Shek, Abrasion resistance of Cu based bulk metallic glasses, Vol. 347, pp.268-272, (2004)
    23.Zeynep Parlar, Mustafa Bakkal, Albert J. Shih, Sliding Tribological Characteristics of Zr-based Bulk Metallic Glass, Vol. 16, pp.34-41, (2008)
    24.http://www.liquidmetal.com/technology/default.asp
    25.吳學陞,工業材料, (1999)
    26.W. Klement, R.H. Wilens, P. Duwez, Non-crystalline Structure in Solidified Gold–Silicon Alloys, Vol.187, pp.869-870, (1960)
    27.H.S. Chen, J.T. Krause, E. Coleman, Elastic constants, hardness and their implications to flow properties of metallic glasses, Vol.18, pp.157-171, (1975)
    28.H.S. Chen, D. Turnbull, Formation, stability and structure of palladium-silicon based alloy glasses, Vol.17, pp.1021-1031, (1969)
    29.A. Inoue, T. Zhang, T. Masumoto, Al-La-Ni Amorphous Alloys with a Wide Supercooled Liquid Region, Vol.30, pp.965-972, (1989)
    30.A. Inoue, A. Kato, T. Zhang, S.G. Kim, T. Masumoto, Mg-Cu-Y Amorphous Alloys with High Mechanical Strengths Produced by a Metallic Mold Casting Method, Vol.32, pp.609-616, (1991)
    31.A. Peker, W.L. Johnson, A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10.0Be22.5, Vol.63, pp.2342-2344, (1993)
    32.M. Telford, The case for bulk metallic glass, Vol.7, pp.36-43, (2004)
    33.A. Inoue, Stabilization of metallic supercooled liquid and bulk amorphous alloys, Vol.48, pp.279-306, (2000)
    34.A. Inoue, Bulk Amorphous Alloys - Practical Characteristics and Applications, Vol.6, pp.82, (1999)
    35.W. Zhang, A. Inoue, Formation and Mechanical Strength of New Cu-Based Bulk Glassy Alloys with Large Supercooled Liquid Region, Vol.45, pp.1210-1213, (2004)
    36.N. Nishiyama, K. Amiya, A. Inoue, Bulk Metallic Glasses for Industrial Products, Vol.45, pp.1245-1250, (2004)
    37.X.Y. Li, E. Akiyama, H. Habazaki, A. Kawashima, K. Asami, K. Hashimoto, Electrochemical and XPS studies of the corrosion behavior of sputter-deposited amorphous Fe–Cr–Ni–Nb alloys in 6 M HCl, Vol.41, pp.1095-1118, (1999)
    38.A. Inoue, High strength bulk amorphous alloys with low critical cooling rates, Vol.36, pp.866-875, (1995)
    39.S. Linderoth, N.H. Pryds, M. Ohnuma, A.S. Pedersen, M. Eldrup, N. Nishiyama, A. Inoue, On the stability and crystallisation of bulk amorphous Mg–Cu–Y–Al alloys, Vol.304-306, pp.656-659, (2001)
    40.Richard Zallen, The physics of amorphous solids, A Wiley-Interscience, Canada, 1983.
    41.D. Turnbull, Under what conditions can a glass be formed, Contemporary Physics, Vol.10, pp.473-488, (1969)
    42.Z.P. Lu, Y. Li, S.C. Ng, Reduced glass transition temperature and glass forming ability of bulk glass forming alloys, Vol.270, pp.103-114, (2002)
    43.Z.P. Lu, C.T. Liu, A new glass-forming ability criterion for bulk metallic glasses, Vol.50, pp.3501-3512, (2002)
    44.K.H.Zum Gahr, Microstructure and wear of materials, Amsterdam, Elsevier, New York, (1987)
    45.DIN50320:Verschleiβ-Begriffe, Analyse Von Verschlei β Vorgangen, Gliederung des Verschlei β gebietes. Beuth Verlag, Berlin, (1979)
    46.G.W. Stachowiak, A.W. Batchelor, Engineering tribology, Amsterdam, Elsevier, Boston, (2005)
    47.A.F. Smith, The influence of surface oxidation and sliding speed on the unlubricated wear of 316 stainless steel at low load, Vol.105, pp.91-107, (1985)
    48.N.P. Suh, H.C. Sin, The genesis of friction, Vol.69, pp.91-114, (1981)
    49.D. Dowson, G.R. Higginson, Elastohydrodynamic in lubrication, Pergamon Press, (1977)
    50.李易遂,添加微量矽元素對(Cu42Zr42Al8Ag8)99.5Si0.5塊狀非晶質合金熱性質與機械性質影響之研究,義守大學材料科學與工程學系碩士論文,(2009)
    51.D.A. Porter, K.E. Easterling, and M. Sherif, Phase Transformations in Metals and Alloys, CRC Press, (2008)
    52.劉喜政,鋼之熱處理,全華書局, (1992)
    53.J. Schiøtz, F.D. Di Tolla, K.W. Jacobsen, Softening of nanocrystalline metals at very small grain sizes, Vol.391, pp.561-563, (1998)
    54.J. Schiøtz, T. Vegge, F.D. Di Tolla, K.W. Jacobsen, Atomic-scale simulations of the mechanical deformation of nanocrystalline metals, Vol.60, pp.11971-11983, (1999)
    55.Y.C. Lin, S.W. Wang, T.M. Chen, A study on the wear behavior of hardened medium carbon steel, Vo.120, pp.126-132

    QR CODE