簡易檢索 / 詳目顯示

研究生: 張婷惟
TING-WEI CHANG
論文名稱: 表面紋理對鈦基金屬玻璃薄膜於不同基材之磨潤性能的影響
Effects of Tribological Performance of Surface Texture coated with Ti-based Thin Film Metallic Glass on Different Substrates
指導教授: 林原慶
Yuan-Ching Lin
口試委員: 朱瑾
Jinn P. Chu
郭俞麟
Yu-Lin Kuo
鍾俊輝
Chun-Hui Chung
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 130
中文關鍵詞: 金屬玻璃薄膜表面紋理磨潤性能奈米壓痕ANSYS軟體
外文關鍵詞: Thin Film Metallic Glass, Surface Texture, Tribological performance, Nanoindentation, ANSYS
相關次數: 點閱:311下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討基材表面紋理對於7075-T6鋁合金以及AISI 1045中碳鋼基材的鈦基金屬玻璃薄膜磨潤行為之影響,分別披覆不同厚度(200nm和400nm)之鈦基金屬玻璃薄膜(Ti43Zr15Cu37Nb3Co2)於不同基材,在冷凍油環境下進行磨耗試驗,藉以評估表面紋理,提升薄膜附著力之可行性。此外,利用X射線光電子能譜儀(XPS)觀察各種金屬玻璃中的成分,再藉由磨耗試驗、奈米壓痕試驗以及刮痕試驗來量測薄膜之機械性質及附著強度,並利用ANSYS軟體,分析7075-T6鋁合金以及AISI 1045中碳鋼基材上披覆鈦基金屬玻璃薄膜的應力分佈,用以找出影響試片磨耗性能之關鍵因素。
    磨耗試驗結果顯示,交叉紋路表面的基材披覆200nm鈦基金屬玻璃薄膜之試片具有最佳的耐磨耗能力,這是由於表面紋理能產生機械互鎖效應增加其附著能力,而金屬玻璃薄膜可以增加磨潤性能與減少磨耗之損失。
    此外,基材與薄膜間之楊氏係數比值愈大,使薄膜承受的張應力相對較小,而不易破裂使耐磨耗能力較佳。


    In this study, surface coating with different thickness (200 and 400nm) of Ti-based (Ti43Zr15Cu37Nb3Co2) thin film metallic glass (TFMG) were successfully deposited on the 7075 aluminum alloy and AISI 1045 medium carbon steel to the improve the tribological properties of the substrate. Wear tests were conducted in the environment with refrigerant oil to evaluate the tribological performance of the coating. In addition, the chemical composition of the specimens were identified by X-Ray photoelectron spectroscope. The wear, nanoindentation and scratch test were used to characterize wear resistance, mechanical properties and adhesion strength of thin film, respectively. ANSYS package was used to analyze the stress distribution of the Ti-based TFMG on the 7075 aluminum alloy and AISI 1045 medium carbon steel substrates, separately. The crucial factors of influence on tribological performance can thus be identified.
    According to the wear test results, surface of the specimen with cross texture coated with 200nm-thickness Ti-based TFMG presented the best wear resistance properties than the other specimens for the same substrate. It is attributed that the surface texture can increase adhesion strength due to the mechanical locking effect, thereby TFMG coating can increase tribological performance.
    Besides, a high ratio of the Young's modulus of the substrate and coating results low tensile stress, and thus thin film was not easy to crack presenting the better wear resistance.

    摘要 I ABSTRACT II 致謝 III 目 錄 IV 表索引 VII 圖索引 VIII 第一章 前言 1 1-1研究動機 1 1-2研究目的 2 第二章 文獻回顧 3 2-1 金屬玻璃(非晶質合金)發展歷史 3 2-2 金屬玻璃(非晶質合金)形成法則【19】 4 2-3 玻璃形成能力 (Glass Forming Ability, GFA) 5 2-4 表面改質處理技術 6 2-5 金屬玻璃(非晶質合金)特性 7 2-6 金屬玻璃薄膜之疲勞性質研究 8 2-7 塊狀金屬玻璃的磨潤行為研究 8 2-8磨潤理論 9 2-8-1 磨耗機構 (Wear mechanism) 9 2-8-2潤滑模式分類【36,37】10 2-9 固體表面與接觸形態 13 2-9-1表面粗糙度 13 2-9-2接觸應力計算 14 2-10表面紋理之微液動壓效應探討【46~49】16 第三章 實驗方法與步驟 24 3-1試片規格 25 3-2 實驗材料 25 3-3 實驗設備 26 3-4 分析儀器 28 3-5 實驗步驟 32 3-5-1 鍍膜步驟及參數 32 3-5-2 磨耗實驗程序 33 3-5-3 ANSYS分析流程 34 第四章 結果與討論 44 4-1 薄膜成分分析 45 4-2 熱性質分析 45 4-3 薄膜結構分析 46 4-4 薄膜厚度觀察 46 4-5 奈米壓痕試驗 47 4-6 ANSYS模擬分析結果 48 4-6-1披覆鈦基金屬玻璃膜層之ANSYS模擬分析結果 48 (1)基材為7075-T6鋁合金 48 4-6-2比較不同薄膜厚度之應力綜合評估 53 4-6-3比較不同基材條件下披覆薄膜之應力綜合評估 53 4-7表面粗糙度檢測 54 4-7-1不同試片披覆鈦基金屬玻璃薄膜之表面粗糙度分析 54 4-8 刮痕試驗 (Scratch test) 56 4-8-1表面紋路效應之附著力分析 57 4-8-2基材效應之附著力分析 58 4-9不同表面紋理在不同膜厚之磨潤行為分析 59 4-9-1摩擦行為分析 59 4-9-2耐磨耗能力分析 62 4-9-3表面磨耗形貌分析 65 4-9-4表面紋路效應之磨潤行為分析 68 4-9-5基材效應對磨潤行為之影響 69 第五章 結論與建議 125 5-1 結論 125 5-2未來方向與建議 126 第六章 參考文獻 127

    1.Inoue, Akihisa. "Stabilization of metallic supercooled liquid and bulk amorphous alloys." Acta materialia 48.1 (2000): 279-306.
    2.Inoue, Akihisa. "Stabilization and high strain-rate superplasticity of metallic supercooled liquid." Materials Science and Engineering: A 267.2 (1999): 171-183.
    3.Pang, Shujie, et al. "Formation of bulk glassy Ni-(Co-) Nb-Ti-Zr alloys with high corrosion resistance." Materials Transactions 43.7 (2002): 1771-1773.
    4.Katagiri, H., et al. "An attempt at preparation of corrosion-resistant bulk amorphous Ni–Cr–Ta–Mo–P–B alloys." Corrosion science 43.1 (2001): 183-191.
    5.Kawamura, Yoshihito, et al. "Workability of the supercooled liquid in the Zr 65 Al 10 Ni 10 Cu 15 bulk metallic glass." Acta Materialia 46.1 (1998): 253-263.
    6.Zhang, G. Q., et al. "Wear behavior of a series of Zr-based bulk metallic glasses." Materials Science and Engineering: A 475.1 (2008): 124-127.
    7.Fleury, E., et al. "Tribological properties of bulk metallic glasses." Materials Science and Engineering: A 375 (2004): 276-279.
    8.Bhatt, Jatin, et al. "Tribological behaviour of Cu 60 Zr 30 Ti 10 bulk metallic glass." Materials Science and Engineering: A 458.1 (2007): 290-294.
    9.Tam, C. Y., and C. H. Shek. "Abrasive wear of Cu 60 Zr 30 Ti 10 bulk metallic glass." Materials Science and Engineering: A 384.1 (2004): 138-142.
    10.Gloriant, Thierry. "Microhardness and abrasive wear resistance of metallic glasses and nanostructured composite materials." Journal of non-crystalline solids 316.1 (2003): 96-103.
    11.Nishiyama, Nobuyuki, et al. "Properties of bulk glassy alloys as a Tribo-material." Rev. Adv. Mater. Sci 18.1 (2008): 89-92.
    12.Klement, W., R. H. Willens, and P. O. L. Duwez. "Non-crystalline structure in solidified gold–silicon alloys." Nature 187.4740 (1960): 869-870.
    13.Chen, H. S., and D. Turnbull. "Formation, stability and structure of palladium-silicon based alloy glasses." Acta metallurgica 17.8 (1969): 1021-1031.
    14.Chen, H. S., J. T. Krause, and E. Coleman. "Elastic constants, hardness and their implications to flow properties of metallic glasses." Journal of Non-Crystalline Solids 18.2 (1975): 157-171.
    15.Inoue, Akihisa, Tao Zhang, and Tsuyoshi Masumoto. "Al–La–Ni amorphous alloys with a wide supercooled liquid region." Materials transactions, JIM 30.12 (1989): 965-972.
    16.Inoue, A., et al. "Mg–Cu–Y amorphous alloys with high mechanical strengths produced by a metallic mold casting method." Materials Transactions, JIM 32.7 (1991): 609-616.
    17.Peker, Atakan, and William L. Johnson. "A highly processable metallic glass: Zr41. 2Ti13. 8Cu12. 5Ni10. 0Be22. 5." Applied Physics Letters 63.17 (1993): 2342-2344.
    18.M. Telford, The case for bulk metallic glass, Vol.7(2004):36-43
    19.Inoue, Akihisa. "High strength bulk amorphous alloys with low critical cooling rates (overview)." Materials Transactions, JIM 36.7 (1995): 866-875.
    20.Zallen, Richard. "The formation of amorphous solids." The physics of amorphous solids (1983): 1-32.
    21.Mei, Jinna. Titanium-Based Bulk Metallic Glasses: Glass Forming Ability and Mechanical Behavior. Diss. Université Joseph-Fourier-Grenoble I, 2009.
    22.Lu, Z. P., Y. Li, and S. C. Ng. "Reduced glass transition temperature and glass forming ability of bulk glass forming alloys." Journal of non-crystalline solids 270.1 (2000): 103-114.
    23.Lu, Z. P., and C. T. Liu. "A new glass-forming ability criterion for bulk metallic glasses." Acta materialia 50.13 (2002): 3501-3512.
    24.黃振賢,金屬熱處理,文京圖書有限公司,2004
    25.Inoue, Akihisa. "Stabilization of metallic supercooled liquid and bulk amorphous alloys." Acta materialia 48.1 (2000): 279-306.
    26.Inoue, Akihisa. "Stabilization of metallic supercooled liquid and bulk amorphous alloys." Acta materialia 48.1 (2000): 279-306.
    27.Inoue, Akihisa, and Koji Hashimoto, eds. Amorphous and nanocrystalline materials: Preparation, properties, and applications. Vol. 3. Springer Science & Business Media, 2013.
    28.Yu, Chia-chi. "Bending Ductility and Fatigue Property Enhancements of Zr-based Bulk Metallic Glass by Various Surface Modifications." (2014).
    29.Chou, Chau-Chang, et al. "Wear behavior of Er-bearing Cu-based amorphous/crystal BMG composite under oil lubrication." Intermetallics 19.8 (2011): 1216-1221.
    30.材料破損分析. 五南圖書出版公司, 2007.
    31.K.H.Zum Gahr, Microstructure and wear of materials, Amsterdam, Elsevier, New York, (1987)
    32.Stachowiak, Gwidon, and Andrew W. Batchelor. Engineering tribology. Butterworth-Heinemann, 2013.
    33.Gahr, K. "Microstructure and wear of materials, tribology series." (1987).
    34.Chen, Jiun-nan. "A Study on Tribological Behavior of (Cu42Zr42Al8Ag8) 99.5 Si0. 5 Bulk Metallic Glass." (2010).
    35.Smith, A. F. "The influence of surface oxidation and sliding speed on the unlubricated wear of 316 stainless steel at low load." Wear 105.2 (1985): 91-107.
    36.D. Dowson, G.R. Higginson, “Elasto-hydrodynamic in lubrication”, Pergamon Press, 1977.
    37.李克讓,磨潤工程-潤滑概論,三民書局,1986。
    38.HSING-CHIH, H. S. U. "A Study on Tribology Behavior of The Surface Modified for 7075 Aluminum alloy under CO2 Refrigerant Environment." (2013).
    39.Chen, Jiun-nan. "A Study on Tribological Behavior of (Cu42Zr42Al8Ag8) 99.5 Si0. 5 Bulk Metallic Glass." (2010).
    40.Rabinowicz, Ernest. "An adhesive wear model based on variations in strength values." Wear 63.1 (1980): 175-181.
    41.Hertz, H. "Üeber die berührung fester elastische Körper und über die Harte." Verhandlungen des Vereins zur Beförderung des Gewerbefleisses (1882).
    42.Hamrock, Bernard J., and Duncan Dowson. "Ball bearing lubrication: the elastohydrodynamics of elliptical contacts." (1981).
    43.Hertz, Heinrich. Miscellaneous papers. Macmillan, 1896.
    44.Hsieh, Ming-Che. "Effects of Solid Lubricants and Biodiesel on Tribological Performance of Engine Oils." (2015).
    45.Chen, Hung-Shiau. "Effects of Distilled Process on Tribological Performance of Waste Cooking Oil Methyl Easters." (2016).
    46.Costa, H. L., and I. M. Hutchings. "Hydrodynamic lubrication of textured steel surfaces under reciprocating sliding conditions." Tribology International 40.8 (2007): 1227-1238.
    47.Mourier, Louis, et al. "Action of a femtosecond laser generated micro-cavity passing through a circular EHL contact." Wear 264.5 (2008): 450-456.
    48.Wang, Xiaolei, et al. "Preliminary investigation of the effect of dimple size on friction in line contacts." Tribology International 42.7 (2009): 1118-1123.
    49.Yan-qing, Wang, et al. "Tribological properties of surface dimple-textured by pellet-pressing." Procedia Earth and Planetary Science 1.1 (2009): 1513-1518.
    50.林榮盛, "潤滑學",全華科技圖書股份有限公司, 1987.
    51.Rahaman, M. L., et al. "Surface roughness effect on the friction and wear of bulk metallic glasses." Wear 332 (2015): 1231-1237.

    QR CODE