簡易檢索 / 詳目顯示

研究生: 諶又瑄
You-Syuan - Chen
論文名稱: 氧化鋅奈米管/銅基金屬玻璃薄膜複合結構之光感特性分析
Synthesize and Characterization of ZnO Nanotubes/Cu-based Metallic Glass Thin Film hybrid Photodetectors
指導教授: 黃柏仁
Bohr-Ran Huang
口試委員: 許正良
Cheng-Liang Hsu
朱瑾
Jinn P. Chu
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2016
畢業學年度: 105
語文別: 中文
論文頁數: 130
中文關鍵詞: 紫外光感測器銅基金屬玻璃薄膜氧化鋅奈米管
外文關鍵詞: Cu-based metallic glass thin film, ZnO nanotubes, UV photodetector
相關次數: 點閱:368下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文分為三部分,第一部分探討銅基金屬玻璃薄膜的基本性質分析,及氧化鋅奈米柱與奈米管結構之紫外光感測器;第二部分探討不同厚度的銅基金屬玻璃薄膜在氧化鋅奈米結構表面上之紫外光感測催化影響,並進行物性與電性分析;第三部分探討不同厚度的銅基金屬玻璃薄膜在氧化鋅奈米結構底層之修飾影響,並進行物性與電性分析,藉由接面所產生的内建電場改善光感測器的效能。
    研究發現,氧化鋅奈米管較氧化鋅奈米柱擁有較大的比表面積與空乏區,進而使紫外光感測器之訊雜比提升,其紫外光亮暗響應從252.8提升至2.03×103。在氧化鋅奈米結構表面濺鍍銅基金屬玻璃薄膜可以使其界面產生蕭特基能障接面,進而降低暗電流;且由米氏散射理論計算結果顯示,奈米粒子的散射與吸收強度趨勢為一致的,在表面電漿共振時,當銅基金屬玻璃薄膜及氧化鋅奈米材料的共振波段重疊時,能大幅提升光的吸收,當光入射於銅基金屬玻璃薄膜時,可以提升光行走路徑,但也因銅基金屬玻璃薄膜的覆蓋,部分的光被金屬所吸收,使得光被侷限於界面處,導致光電流下降,但整體光電流下降幅度較暗電流下降幅度來的小,因而訊雜比提升,銅基金屬玻璃薄膜/氧化鋅奈米柱之紫外光亮暗響應為6.72×103,銅基金屬玻璃薄膜/氧化鋅奈米管之紫外光亮暗響應為7.1×103。因此,將銅基金屬玻璃薄膜置於氧化鋅奈米結構底層,利用蕭特基能障接面,大幅度降低暗電流且不影響光電流,因而有效地提升訊雜比,氧化鋅奈米柱/銅基金屬玻璃薄膜之紫外光亮暗響應為9.16×103,氧化鋅奈米管/銅基金屬玻璃薄膜之紫外光亮暗響應為1.99×104。最後,藉由退火改變銅基金屬玻璃薄膜的特性之後成長氧化鋅奈米結構,與氧化鋅奈米柱相比,可以提升近800倍之訊雜比,氧化鋅奈米柱/退火150°C銅基金屬玻璃薄膜之紫外光亮暗響應為2.45×104,氧化鋅奈米管/退火150°C銅基金屬玻璃薄膜之紫外光亮暗響應為2×105。


    UV photodetectors are desirable to detect the UV radiation level that can affect the human body, also it is utilized in multiple areas such as industrial, army, ecological and biological applications. ZnO materials based UV devices have fascinated extensive attention due to their easy synthesized method, and attractive optical and electrical properties. However, recently the performance of ZnO based photodetectors (PDs) behaviors significantly depends on their hybrid combinations that overcome the poor performance of bare ZnO based devices. In order to improve the ZnO based UV device properties, herein we fabricated UV PDs using ZnO and metallic glass thin films (TFMG). Initially, we have systematically analyzed the basic properties of Cu-based TFMG (Cu-TFMG) and ZnO materials based UV PDs. It was found that ZnO nanotubes (ZnTs) have larger specific surface area and depletion width than ZnO nanorods (ZnRs), therefore the IPhoto/IDark ratio of the UV PDs is increased from 252.8 to 2.03×103. Later, the Cu-TFMG were coated on ZnO nanostructures with different thickness, 3nm, 6nm, 10nm and 15nm respectively. The Cu-TFMG on ZnO nanotubes (ZnTs) based UV photodetectors exhibit better the IPhoto/IDark ratio (7.11×103) than Cu-TFMG on ZNRs (6.72×103).
    Furthermore, the effects of different thicknesses of Cu-TFMG under the ZnO nanostructures are investigated thoroughly. The IPhoto/IDark ratio of ZnRs/Cu-TFMG is 9.16×103, and it is interesting that the IPhoto/IDark ratio of ZnTs/Cu-TFMG is increased excellently upto 1.99×104. On the other hand, the properties of ZnO/Cu-TFMG are improved by simple annealing and IPhoto/IDark ratios are increase overwhelmingly. The IPhoto/IDark ratio of ZnRs/TFMG (150°C) is 2.45×104 and the IPhoto/IDark ratio of ZnTs/Cu-TFMG (150°C) is 2×105, which is nearly 800 times better than as grown ZnRs. It is believed that the sputtering Cu-TFMG with ZnO nanostructures can form a Schottky barrier junction at the interface, thereby reducing dark current. When the light is incident on the ZnTs/Cu-TFMG, it is possible to increase the light path and increase the photoresponse excellently. However, when UV apply on Cu-TFMG/ZnTs, light was absorbed by TFMG. So that light is confined at the interface, resulting in photo current decrease.
    The ZnTs/Cu-TFMG combination is believed to be an outstanding combination for harvesting photons and creating electron–hole pairs. The proposed ZnTs/Cu-TFMG photodetectors exhibits excellent photoresponse and fast switching speed in the UV region, and is a new promising hybrid material for high-performance optoelectronic devices.

    目錄 中文摘要 Ⅰ 英文摘要 Ⅱ 致謝 Ⅳ 目錄 Ⅴ 圖目錄 IX 表目錄 XV 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 第二章 文獻回顧 3 2.1 氧化鋅材料特性簡介 3 2.1.1 氧化鋅基本性質與結構 3 2.1.2 氧化鋅發光機制 4 2.1.3 氧化鋅一維結構成長方法 7 2.1.3.1 水熱法成長機制 7 2.1.3.2 氧化鋅奈米管成長機制 8 2.2 金屬玻璃薄膜特性與應用 11 2.3 紫外光感測器理論 16 2.4 氧化鋅紫外光感測器 18 2.5 金屬表面電漿共振原理 20 第三章 實驗方法 23 3.1 實驗設計與流程 23 3.2 製備之材料介紹 26 3.3 基板清洗 27 3.4 水熱法(Hydrothermal method)成長氧化鋅奈米柱與奈米管 28 3.4.1 製備氧化鋅晶種層 28 3.4.2 成長氧化鋅奈米柱及奈米管 28 3.5 濺鍍(Sputtering)沉積銅基金屬玻璃薄膜 30 3.6 紫外光感測器元件電極製作 31 3.7 分析儀器設備簡介 32 3.7.1 場發射掃描式電子顯微鏡(FE-SEM) 32 3.7.2 能量分散光譜儀(Energy Dispersive Spectrometer,EDS) 33 3.7.3 X射線繞射儀(X-ray diffraction,XRD) 33 3.7.4 拉曼光譜儀(Raman spectrum) 34 3.7.5 光激發螢光光譜儀(Photoluminescence,PL) 34 3.7.6 原子力顯微鏡(Atomic Force Microscope,AFM) 35 3.7.7 可見光紫外光分光光譜儀(UV/VIS Spectrophotometer) 36 3.7.8 光感測器(Photodetector,PD) 36 第四章 氧化鋅奈米結構及銅基金屬玻璃薄膜之特性分析 38 4.1 氧化鋅奈米柱之特性分析 38 4.1.1 表面型態分析 38 4.1.2 X-ray繞射儀分析 40 4.1.3 拉曼光譜儀分析 41 4.1.4 光激發螢光頻譜儀分析 43 4.1.5 氧化鋅奈米柱之紫外光感測分析 44 4.2 氧化鋅奈米管之特性分析 48 4.2.1 表面型態分析 48 4.2.2 X-ray繞射儀分析 50 4.2.3 拉曼光譜儀分析 51 4.2.4 光激發螢光頻譜儀分析 53 4.2.5 氧化鋅奈米管之紫外光感測分析 55 4.3 銅基金屬玻璃薄膜之特性分析 57 4.3.1 元素比例分析 57 4.3.2 X-ray繞射儀分析 60 4.3.3 表面形貌分析 61 4.3.4 光學及電性分析 63 第五章 銅基金屬玻璃薄膜/氧化鋅之光感測特性 65 5.1 銅基金屬玻璃薄膜/氧化鋅奈米柱之特性分析 65 5.1.1 表面型態及銅基金屬玻璃薄膜覆蓋比例分析 65 5.1.2 TEM分析 67 5.1.3 X光繞射儀分析 69 5.1.4 拉曼光譜儀分析 70 5.1.5 光激發螢光頻譜儀分析 72 5.1.6 銅基金屬玻璃薄膜/氧化鋅奈米柱之紫外光感測分析 74 5.2 銅基金屬玻璃薄膜/氧化鋅奈米管之特性分析 79 5.2.1 表面型態及銅基金屬玻璃薄膜覆蓋比例分析 79 5.2.2 TEM分析 81 5.2.3 X光繞射儀分析 83 5.2.4 拉曼光譜儀分析 84 5.2.5 光激發螢光頻譜儀分析 86 5.2.6 銅基金屬玻璃薄膜/氧化鋅奈米管之紫外光感測分析 87 第六章 氧化鋅/銅基金屬玻璃薄膜之光感測特性 90 6.1 氧化鋅奈米柱/銅基金屬玻璃薄膜複合結構之特性分析 90 6.1.1 表面型態分析 90 6.1.2 X光繞射儀分析 94 6.1.3 拉曼光譜儀分析 96 6.1.4 光激發螢光頻譜儀分析 98 6.1.5 氧化鋅奈米柱/銅基金屬玻璃薄膜複合結構之紫外光感測分析 100 6.2 氧化鋅奈米管/銅基金屬玻璃薄膜複合結構之特性分析 105 6.2.1 表面型態分析 105 6.2.2 X光繞射儀分析 109 6.2.3 拉曼光譜儀分析 111 6.2.4 光激發螢光頻譜儀分析 113 6.2.5 氧化鋅奈米管/銅基金屬玻璃薄膜複合結構之紫外光感測分析 115 6.3 不同紫外光感測之穩定度分析 120 第七章 結論與未來展望 122 7.1 結論 122 7.2 未來展望 124 參考文獻 125

    [1] 徐育婷, 研製氧化鋅材料之共振腔增強式金屬-半導體-金屬紫外光檢測器, 碩士論文, 國立成功大學微電子工程研究所 (2010).
    [2] Fan Gao et al, Ultraviolet electroluminescence from Au-ZnO nanowire Schottky type light-emitting diodes, Appl. Phys. Lett. 108 (2016) 261103.
    [3] Mengxiao Chen et al, Tuning Light Emission of a Pressure-Sensitive Silicon/ZnO Nanowires Heterostructure Matrix through Piezo-phototronic Effects, ACS Nano 10 (2016) 6074-6079.
    [4] Arnab Ghosh et al, Tuning the work function of randomly oriented ZnO nanostructures by capping with faceted Au nanostructure and oxygen defects: enhanced field emission experiments and DFT studies, Nanotechnology 27 (2016) 125701.
    [5] Jheng-Ming Huang et al, Enhanced electrical properties and field emission characteristics of AZO/ZnO-nanowire core–shell structures, Phys. Chem. Chem. Phys. 18 (2016) 15251-15259.
    [6] Adhimoorthy Saravanan et al, Fast Photoresponse and Long Lifetime UV Photodetectors andField Emitters Based on ZnO/Ultrananocrystalline Diamond Films, Chem. Eur.J. 21 (2015) 16017-16026.
    [7] Cheng-Liang Hsu et al, A dual-band photodetector based on ZnO nanowires decorated with Au nanoparticles synthesized on a glass substrate, RSC Adv. 6 (2016) 74201-74208.
    [8] Hong-Yu Chen et al, Realization of a self-powered ZnO MSM UV photodetector with high responsivity using an asymmetric pair of Au electrodes, J. Mater. Chem. C. 2 (2014) 9689-9694.
    [9] Yuanyao Dou et al, Enhanced performance of dye-sensitized solar cell using Bi2Te3 nanotube/ZnO nanoparticle composite photoanode by the synergistic effect of photovoltaic and thermoelectric conversion, Journal of Power Sources 307 (2016) 181-189.
    [10] WenzheNiu et al, Photoresponse enhancement of Cu2O solar cell with sulfur-doped ZnO buffer layer to mediate the interfacial band alignment, Solar Energy Materials & Solar Cells 144 (2016) 717-723.
    [11] Mingli Yin and Shengzhong Liu, Controlled ZnO hierarchical structure for improved gas sensing performance, Sensors and Actuators B 209 (2015) 343-351.
    [12] Wooseok Kim et al, Generation of oxygen vacancies in ZnO nanorods/films and their effects on gas sensing properties, Sensors and Actuators B 209 (2015) 989-996.
    [13] Zhi-Feng Shi et al, Photoluminescence performance enhancement of ZnO/MgO heterostructured nanowires and their applications in ultraviolet laser diodes, Phys. Chem. Chem. Phys. 17 (2015) 13813-13820.
    [14] Ü. Özgür et al, A comprehensive review of ZnO materials and devices, J. Appl. Phys. 98 (2005) 041301.
    [15] A. Ashrafi and C. Jagadish, Review of zincblende ZnO: Stability of metastable ZnO phases, J. Appl. Phys. 102 (2007) 071101.
    [16] Vladimir L. Solozhenko et al, Kinetics of the wurtzite-to-rock-salt phase transformation in ZnO at high pressure, J. Phys. Chem. A. 115 (2011) 4354-4358.
    [17] Hadis Morkoç andÜmit Özgür, General properties of ZnO. Zinc Oxide Fundamentals, Materials and Device Technology (2009) 1-76.
    [18] 趙偉迪, 氧化鋅奈米線應用於發光二極體之研製, 博士論文, 國立台灣師範大學機電科技學系 (2009).
    [19] K. Vanheusden et al, Mechanisms behind green photoluminescence in ZnO phosphor powders, Journal of Applied Physics (1996).
    [20] Bixia Lin, Zhuxi Fu and Yunbo Jia, Green luminescent center in undoped zinc oxide films deposited on silicon substrates, Applied Physics Letters (2001).
    [21] Zheng Wei Pan, Zu Rong Dai, Zhong Lin Wang, Nanobelts of Semiconducting Oxides, Science 291 (2001) 1947-1949.
    [22] Longxing Su et al, High-performance zero-bias ultraviolet photodetector based on p-GaN/n-ZnO heterojunction, Appl. Phys. Lett. 105 (2014) 072106 .
    [23] Satyendra Kumar Singh et al, Performance analysis of RF-sputtered ZnO/Si heterojunction UV photodetectors with high photo-responsivity, Superlattices and Microstructures 91 (2016) 62-69.
    [24] Adib Abou Chaaya et al, ZnO 1D nanostructures designed by combining atomic layer deposition and electrospinning for UV sensor applications, J. Mater. Chem. A. 2 (2014) 20650-20658.
    [25] Shahin K. Shaikh et al, Chemical bath deposited ZnO thin film based UV photoconductive detector, Journal of Alloys and Compounds 664 (2016) 242-249.
    [26] Zhang H et al, Straight and thin ZnO nanorods: hectogram-scale synthesis at low temperature and cathodoluminescence, J. Phys. Chem. B. 110 (2006) 827-830.
    [27] Sheng Xu et al, Optimizing and Improving the Growth Quality of ZnO Nanowire Arrays Guided by Statistical Design of Experiments, ACS Nano 3 (2009) 1803-1812.
    [28] M. Andrés Vergés, A. Mifsud and C. J. Serna, Formation of rod-like zinc oxide microcrystals in homogeneous solutions, Journal of the Chemical Society, 86.6 (1990) 959-963.
    [29] Lionel Vayssieres et al, Purpose-built anisotropic metal oxide material: 3D highly oriented microrod array of ZnO, The Journal of Physical Chemistry B105.17 (2001) 3350-3352 .
    [30] Y.H. Yang et al, ZnO nanowire and amorphous diamond nanocomposites and field emission enhancement, Chem. Phys. Lett. 252 (2005) 248-251.
    [31] Di Liu et al, Controlled synthesis of 1D ZnO nanostructures via hydrothermal process, Materials Research Bulletin 49 (2014) 665-671 .
    [32] Lionel Vayssieres et al, Purpose-Built Anisotropic Metal Oxide Material: 3D Highly Oriented Microrod Array of ZnO, J. Phys. Chem. B. 105 (2001) 3350.
    [33] Changwei Zou, Feng Liang and Shuwen Xue, Synthesis and oxygen vacancy-related photocatalytic properties of ZnO nanotubes grown by thermal evaporation, Res Chem Intermed 41 (2015) 5167-5176.
    [34] Fan Zhou et al, Effects of etching parameters on ZnO nanotubes evolved from hydrothermally synthesized ZnO nanorods, Ceramics International 42 (2016) 4788-4796.
    [35] Yijun Zhang et al, Well-ordered ZnO nanotube arrays and networks grown by atomic layer deposition, Applied Surface Science 340 (2015) 120-125.
    [36] Lionel Vayssieres et al, Three-dimensional array of highly oriented crystalline ZnO microtubes, Chemistry of Materials 13.12 (2001) 4395-4398.
    [37] A Wei et al, Growth mechanism of tubular ZnO formed in aqueous solution, Nanotechnology 17 (2006) 1740-1744.
    [38] Guang-Wei She et al, Controlled synthesis of oriented single-crystal ZnO nanotube arrays on transparent conductive substrates, Applied physics letters 92.5 (2008) 053111-053111.
    [39] Feng Xu et al, In situ electrochemically etching-derived ZnO nanotube arrays for highly efficient and facilely recyclable photocatalyst, Applied Surface Science 258.20 (2012) 8160-8165.
    [40] Lifen Xu et al, Single-Crystalline ZnO Nanotube Arrays on Conductive Glass Substrates by Selective Disolution of Electrodeposited ZnO Nanorods, J. Phys. Chem. C. 111 (2007) 4549-4552.
    [41] Ki-Woong Chae et al, Low-temperature solution growth of ZnO nanotube arrays, Beilstein journal of nanotechnology 1.1 (2010) 128-13.
    [42] Wahyu Diyatmika et al, Thin film metallic glasses in optoelectronic,magnetic, and electronic applications: A recent update, Current Opinion in Solid State and Materials Science 19 (2015) 95-106.
    [43] J. P. Chu et al, Thin film metallic glasses: Preparations, properties, and applications, JOM 62.4 (2010) 19-24.
    [44] A. Inoue., Bulk Amorphous Alloys, Trans Tech Publication Ltd, Switzerland (1999).
    [45] Q. Jiang, B. Q. Chi and J. C. Li, A valence electron concentration criterion for glass-formation ability of metallic liquids, Appl. Phys. Lett. 82 (2003) 2984 .
    [46] Akihisa Inoue, Baolong Shen and Akira Takeuchi, Developments and Applications of Bulk Glassy Alloys in Late Transition Metal Base System, Mater. Trans. JIM. 47 (2006) 1275-1285 .
    [47] H.K. Lin et al, Improved bending fatigue behavior of flexible PET/ITO film with thin metallic glass interlayer, Materials Letters 113 (2013) 182-185 .
    [48] Bohr-Ran Huang et al, Long-term stability of a horizontally-aligned carbon nanotube field emission cathode coated with a metallic glass thin film, Carbon 50 (2012) 1619-1624.
    [49] Pyo Jin Jeon et al, Black Phosphorus−Zinc Oxide Nanomaterial Heterojunction for p−n Diode and Junction Field-Effect Transistor, Nano Lett. 16 (2016) 1293-1298.
    [50] Kewei Liu, Makoto Sakurai and Masakazu Aono, ZnO-Based Ultraviolet Photodetectors, Sensors 10 (2010) 8604-8634.
    [51] Vinh Quang Dang et al, High-Performance Flexible Ultraviolet (UV) Phototransistor Using Hybrid Channel of Vertical ZnO Nanorods and Graphene, ACS Appl. Mater. Interfaces 7 (2015) 11032-11040.
    [52] E Monroy, F Omnès and F Calle, Wide-bandgap semiconductor ultraviolet photodetectors, Semicond. Sci. Tech. 18 (2003) R33.
    [53] 曾世凱, 氧化鋅一維結構成長、元件組裝及紫外光偵測器製作之研究, 博士論文, 國立成功大學材料科學及工程學系 (2012).
    [54] Simon M. Sze and Ming-Kwei Lee, Semiconductor devices: Physics and technology, John Wiley & Sons, New York (1985).
    [55] Yasutaka Takahashi et al, Photoconductivity of ultrathin zinc oxide film, Jpn. J. Appl. Phys. 33 (1994) 6611.
    [56] C. Soci et al, ZnO nanowire UV photodetectors with high internal gain, Nano Lett. 7 (2007) 1003-1009 .
    [57] Yizheng Jin et al, Solution-Processed Ultraviolet Photodetectors Based on Colloidal ZnO Nanoparticles, Nano Letters 8 (2008) 1649 .
    [58] L. Liao et al, Size Dependence of Gas Sensitivity of ZnO Nanorods, J. Phys. Chem. C. 111 (2007) 1900-1903.
    [59] Abu Z. Sadek et al, Characterization of ZnO nanobelt-based gas sensor for H2, NO2, and hydrocarbon sensing, IEEE Sens. J. 7 (2007) 919-924 .
    [60] Mohammad R. Alenezi, Simon J. Henley and S. R. P. Silva, On-chip Fabrication of High Performance Nanostructured ZnO UV Detectors, SCIENTIFIC REPORTS 5 (2015) 8516.
    [61] Cheng-Liang Hsu and Shoou-Jinn Chang, Doped ZnO 1D Nanostructures: Synthesis, Properties, and Photodetector Application, small 10 (2014) 4562–4585 .
    [62] 李奕攸, 奈米金屬粒子表面電漿子應用於太陽能電池製作與分析, 博士論文, 國立台北科技大學光電工程系 (2016).
    [63] D. Derkacs et al, Nanoparticle-induced light scattering for improved performance of quantum-well solar cells, Appl. Phys. Lett. 93 (2008) 091107.
    [64] Wu, Jia-Ying et al, Study of field-aided effect in MOS-structure n-on-p silicon solar cell, Optics and Photonics Taiwan, International Conference (2012), PI-FR-I-(4)-7.
    [65] Jheng-Jie Liu et al, Performance improvement of triple-junctions GaAs-based solar cell using SiO2-nanopillars/SiO2/TiO2 graded-index anti-reflection coating, IEEE International Nanoelectronics Conference (2013) 452-454.
    [66] Yi-Yu Lee et al, Current matched improving of triple-junctions GaAs-based solar cell using periodic patterns incorporated with indium nanoparticle plasmonics, IEEE International Nanoelectronics Conference (2013) 511-513.
    [67] Vaidyanathan Subramanian , Eduardo E. Wolf and Prashant V. Kamat, Catalysis with TiO2/gold nanocomposites. Effect of metal particle size on the Fermi level equilibration, J. Am. Chem. Soc. 126 (2004) 4943-4950 .
    [68] Chen T et al, Tailoring the photoluminescence of ZnO nanowires using Au nanoparticles, Nanotechnology 19 (2008) 435711.
    [69] H. Y. Lin et al, Enhancement of band gap emission stimulated by defect loss, Opt.Express. 14 (2006) 2372.
    [70] 高義典, 以Hotwire 系統輔助LPCVD法製程鈦/銅摻雜氧化鋅奈米柱之研究, 碩士論文, 國立臺南大學電機工程學系 (2013).
    [71] Debajyoti Das and Praloy Mondal, Photoluminescence phenomena prevailing in c-axis oriented intrinsic ZnO thin films prepared by RF magnetron sputtering, RSC Adv. 4 (2014) 35735–35743.
    [72] Kumar R et al, Fast response and recovery of hydrogen sensing in Pd–Pt nanoparticle–graphene composite layers, Nanotechnology 22 (2011) 275719.
    [73] Faezeh Karegar et al, Light-Emitting n-ZnO Nanotube/n+-GaAs Heterostructures Processed at Low Temperatures, IEEE PHOTONICS TECHNOLOGY LETTERS 27 (2015) 1041-1135.
    [74] Yuming Dong et al, Simple one-pot synthesis of ZnO/Ag heterostructures and the application in visiblelight-responsive photocatalysis, RSC Adv. 4 (2014) 7340–7346.
    [75] Na Zhang et al, In situ enhancement of NBE emission of Au–ZnO composite nanowires by SPR, CrystEngComm 15 (2013) 3301–3304.
    [76] J. P. Chu et al, Annealing-induced full amorphization in a multicomponent metallic film, PHYSICAL REVIEW B 69 (2004) 113410.

    QR CODE