簡易檢索 / 詳目顯示

研究生: 高蒂雅
Deepa Kathiravan
論文名稱: ZnO-based Hybrid Nanomaterials for Multifunctional Sensing Applications
ZnO-based Hybrid Nanomaterials for Multifunctional Sensing Applications
指導教授: 黃柏仁
Bohr-Ran Huang
口試委員: 黃柏仁
周賢鎧
Yonhua Tzeng
Kung-Hwa Wei
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 153
中文關鍵詞: ZnO NTs/N-UNCDZnO NTs/grapheneself-assembled heterostructureLa-coated ZnO NRsZnO-sericindetection of acetone in waterUV photodetectorH2 sensor
外文關鍵詞: ZnO NTs/N-UNCD, ZnO NTs/graphene, self-assembled heterostructure, La-coated ZnO NRs, ZnO-sericin, detection of acetone in water, UV photodetector, H2 sensor
相關次數: 點閱:306下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • In this dissertation, ZnO nanorods (NRs) and nanotubes (NTs) have utilized as a common material to form hybrids for high-performance sensors. Each study has separated into different chapters, which focuses on the preparation of ZnO-based hybrid for specific sensor applications including the detection of acetone, H2 and UV light. First, the synthesis of nitrogen-incorporated ultra-nanocrystalline diamond (N-UNCD)/ZnO NTs nanohybrid and utilized for the detection of acetone in water using a novel strategy. No other reports are focused on the detection of acetone in water. The fascinating combination of these wide band gap semiconductor materials exhibit high sensor response (89 mV/mL), high stability and long-term reliability (tested after 60 days). Second, the self-assembled hierarchical interfaces of ZnO NTs and graphene with three novel heterostructures (SH1, SH2 andSH3) and utilizes as hydrogen sensors. This is the first study which focuses on ZnO NTs and graphene heterostructure with self-assembled morphologies for hydrogen sensor. The systematic investigation revealed that SH1 sensor exhibits an ultrahigh sensor response even at a low detection level of 10 ppm (14.3%) to 100 ppm (28.1%) compared to those of the SH2 and SH3 sensors. Third, the preparation of low-cost biofilms with the use of ZnO and silk-sericin protein (SSP) for the detection of H2 and UV sensors. This is the first study which presents the formation mechanism of ZnO and SSP based biofilms. The biofilm exhibits an ultra-fast response of 31.24% at 100 ppm while the UV sensor shows an effective switch-ratio (Iphoto/Idark) of 100 when compared to the as-prepared ZnO. Later, the preparation of La-coated ZnO NRs with the discontinuous lattice coating of La3+ on the surface of ZnO NRs and utilizes as multifunctional sensors to detect UV light and H2 gas. Moreover, this is the first study to focuses on the detection of H2 gas using La-coated ZnO NRs. An ultra-high H2 response of 63.8% was achieved even at a low detection level (ppm) with an ultra-fast response (15 s) and recovery time (9 s). Also, excellent UV sensing properties were observed with a high switch ratio (Iphoto/Idark) of 256.3. The salient features of this study are its reliability, simple synthesis method, and long-term stability, which makes each hybrid a promising candidate for new generation hydrogen sensors, acetone sensors, and UV photodetectors.


    In this dissertation, ZnO nanorods (NRs) and nanotubes (NTs) have utilized as a common material to form hybrids for high-performance sensors. Each study has separated into different chapters, which focuses on the preparation of ZnO-based hybrid for specific sensor applications including the detection of acetone, H2 and UV light. First, the synthesis of nitrogen-incorporated ultra-nanocrystalline diamond (N-UNCD)/ZnO NTs nanohybrid and utilized for the detection of acetone in water using a novel strategy. No other reports are focused on the detection of acetone in water. The fascinating combination of these wide band gap semiconductor materials exhibit high sensor response (89 mV/mL), high stability and long-term reliability (tested after 60 days). Second, the self-assembled hierarchical interfaces of ZnO NTs and graphene with three novel heterostructures (SH1, SH2 andSH3) and utilizes as hydrogen sensors. This is the first study which focuses on ZnO NTs and graphene heterostructure with self-assembled morphologies for hydrogen sensor. The systematic investigation revealed that SH1 sensor exhibits an ultrahigh sensor response even at a low detection level of 10 ppm (14.3%) to 100 ppm (28.1%) compared to those of the SH2 and SH3 sensors. Third, the preparation of low-cost biofilms with the use of ZnO and silk-sericin protein (SSP) for the detection of H2 and UV sensors. This is the first study which presents the formation mechanism of ZnO and SSP based biofilms. The biofilm exhibits an ultra-fast response of 31.24% at 100 ppm while the UV sensor shows an effective switch-ratio (Iphoto/Idark) of 100 when compared to the as-prepared ZnO. Later, the preparation of La-coated ZnO NRs with the discontinuous lattice coating of La3+ on the surface of ZnO NRs and utilizes as multifunctional sensors to detect UV light and H2 gas. Moreover, this is the first study to focuses on the detection of H2 gas using La-coated ZnO NRs. An ultra-high H2 response of 63.8% was achieved even at a low detection level (ppm) with an ultra-fast response (15 s) and recovery time (9 s). Also, excellent UV sensing properties were observed with a high switch ratio (Iphoto/Idark) of 256.3. The salient features of this study are its reliability, simple synthesis method, and long-term stability, which makes each hybrid a promising candidate for new generation hydrogen sensors, acetone sensors, and UV photodetectors.

    Abstract………………………………………………………………………...i Acknowledgments…………………………………………………………….ii Outline………………………………………………………………………….iii List of Figures………………………………………………………………….vii List of Tables…………………………………………………………………..xiv Chapter 1 Introduction 1.1 Overview of ZnO to nanohybrid-ZnO in sensor applications……1 1.2 Motivation……………………………………………………………3 1.3 Organization of this dissertation…………………………………4 Chapter 2 Literature review 2.1 Materials and applications……………………………………………5 2.1.1 Introduction of ZnO NRs/NTs …………………………………5 2.1.2 Introduction of nanodiamond materials…………………11 2.1.3 Introduction of graphene materials…………………………15 2.1.4 Introduction of SSP- A natural biopolymer…………………18 2.1.5 Introduction of La2O3 nanomaterials……………………………20 2.2 Acetone sensor applications…………………………………………21 2.3 Hydrogen sensor applications…………………………………………22 2.4 Ultra-violet photodetector applications………………………………24 Chapter 3 Experimental techniques and characterizations 3.1 Synthesis of materials……………………………………………………25 3.1.1 Synthesis of ZnO NRs/NTs…………………………………………26 3.1.2 Synthesis of Nanodiamonds and ZnO NTs/Nanodiamond hybrid…28 3.1.3 Synthesis of graphene and ZnO NTs/graphene heterostructures……30 3.1.4 Synthesis of SSP and ZnO-SSP biofilms…………………………31 3.1.5 Synthesis of La-doped ZnO NRs…………………………………32 3.2 Characterization of materials 3.2.1 Field emission scanning electron microscopy (FESEM) analysis…32 3.2.2 Transmission Electron microscopy (TEM) analysis………………32 3.2.3 Atomic force microscopy (AFM) analysis……………………………32 3.2.4 Raman studies…………………………………………………………33 3.2.5 X-ray photoelectron spectroscopy (XPS) analysis……………………33 3.2.6 UV-Visible spectroscopy investigations………………………………33 3.2.7 X-ray diffraction (XRD) spectrum analysis…………………………33 3.3 Electrochemical sensor fabrication and measurement system…………34 3.4 Gas sensor fabrication and measurement system………………………35 3.5 UV-photodetector fabrication and measurement system……………35 Chapter 4 Hybrid assembly of ZnO NTs and Nanodiamond for the detection of acetone in water 4.1 Research Background……………………………………………………37 4.2 Results and Discussion 4.2.1 Morphology and structural characterization…….…….…….……….39 4.2.2 Acetone sensing properties…….…….…….…….…….…….………42 4.2.3 Possible sensing mechanism…….…….…….…….…….…….………46 4.3 Summary…….…….…….…….…….…….…….…….…….…….……….53 Chapter 5 Hierarchical ZnO NTs and graphene interfaces of hydrogen sensing properties at room temperature 5.1 Research Background…….…….…….…….…….…….…….…………54 5.2 Results and Discussion…….…….…….…….…….…….…….…….……56 5.2.1 Morphology and structural characterization…….…….…….……….56 5.2.2 Hydrogen sensing properties…….…….…….…….…….…….…….63 5.2.3 Sensing mechanism…….…….…….…….…….…….…….…….….67 5.2.4 Stability measurements…….…….…….…….…….…….…….…….70 5.3 Summary…….…….…….…….…….…….…….…….…….…….………75 Chapter 6 Preparation of biofilms using SSP and ZnO for multisensing properties at room temperature 6.1 Research Background…….…….…….…….…….…….…….…….…….76 6.2 Results and Discussion…….…….…….…….…….…….…….…….……78 6.2.1 Morphology and structural characterization…….…….…….………..79 6.2.2 Gas sensing properties…….…….…….…….…….…….…….………86 6.2.3 UV sensing properties…….…….…….…….…….…….…….…….…90 6.2.4 Hydrogen and UV Sensing Mechanism…….…….…….…….……….94 6.3 Summary…….…….…….…….…….…….…….…….…….…….……….100 Chapter 7 Concurrent Enhancement in H2 and UV Sensing Properties of La3+-doped ZnO NRs 7.1 Research Background…….…….…….…….…….…….…….…….……101 7.2 Results and Discussion…….…….…….…….…….…….…….…….……101 7.2.1 Morphology and structural characterization…….…….…….……….103 7.2.2 H2 sensing properties…….…….…….…….…….…….…….……….109 7.2.3 UV sensing properties…….…….…….…….…….…….…….………116 7.2.4 UV and H2 sensing mechanism…….…….…….…….…….…….…...118 7.3 Summary…….…….…….…….…….…….…….…….…….…….……….122 Chapter 8 Conclusion and Future work…….…….…….…….…….……….123 8.1 Concluding remarks…….…….…….…….…….…….…….…….………123 8.2 Future work…….…….…….…….…….…….…….…….…….…….……125 References…….…….…….…….…….…….…….…….…….…….…….……126 Authors Biography............................152 List of Publications…….…….…….…….…….…….…….…….…….……...153

    Chapter 1

    [1] J. Y. Lao, J. G. Wen, Z. F. Ren, Hierarchical ZnO Nanostructures, Nano Lett., Vol. 2 (11), pp.1287-1291, (2002).
    [2] Z. L. Wang, Nanostructures of zinc oxide, Materials Today, Vol. 28, pp. 1369 7021 (2004).
    [3] Z. L. Wang, Zinc oxide nanostructures: growth, properties and applications, J. Phys.: Condens. Matter, Vol. 16, pp. 829–858 (2004).
    [4]. C. Jagadish and S. Pearton (Eds.), Zinc Oxide Bulk, Thin Films and Nanostructures: Processing, Properties, and Applications, Amsterdam, Elsevier, ch. 2-4, (2006).
    [5] A.B. Djurisic, A.M.C. Ng, X.Y. Chen. ZnO nanostructures for optoelectronics: Material
    Properties and device applications, Progress in Quantum Electronics, Vol. 34, pp. 191–259 (2010).
    [6] A. B. Djurisic, X. Chen, Y. H. Leung, A.M.C. Ng, ZnO nanostructures: growth, properties and applications, J. Mater. Chem., Vol. 22, pp. 6526 (2012).
    [7] S.K. Arya, S. Saha, J. E. R. Vick, V. Gupta, S. Bhansali, S. P. Singh, Recent advances in ZnO nanostructures and thin films for biosensor applications: Review, Anal. Chim. Acta, Vol. 737, pp. 1– 21 (2012).
    [8] S. Chaudhary, A. Umar, K. K. Bhasin, S. Baskoutas, Chemical Sensing Applications of ZnO Nanomaterials, Materials, Vol. 11, pp. 287 (2018).
    [9] R. Najjar, S. Nematdoust, A resistive-type humidity sensor based on polypyrrole and ZnO nanoparticles: hybrid polymers vis-a-vis nanocomposites, RSC Adv., Vol. 6, pp. 112129 (2016).
    [10] M. Ekrami, G.Magna, Z. Emam-djomeh, M.S. Yarmand, R. Paolesse, C. d. Natale, Porphyrin-Functionalized Zinc Oxide Nanostructures for Sensor Applications, Sensors, Vol. 18, pp. 2279 (2018).

    Chapter 2

    [1] L. F. Silva, M. A. Lucchini, J. C. M’Peko, S. Bernardini, K. Aguir, C. Ribeiro, E. Longo, M. Niederberger, ZnO/SnO2 Heterojunctions Sensors with UV-Enhanced Gas-Sensing Properties at Room Temperature, Proc. Vol. 1, pp. 418 (2017).

    [2] K. Deepa, B.R. Huang, A. Saravanan, Multifunctional Sustainable Materials: The Role of Carbon Existing Protein in the Enhanced Gas and UV Sensing Performances of ZnO-based Biofilms, J. Mater. Chem. C, Vol. 5, pp. 5239 (2017).

    [3] N. D. Chinh, N. D. Quang, H. Lee, T. T. Hien, N. M. Hieu, D. Kim, C. Kim, D. Kim, NO gas sensing kinetics at room Temperature under UV Light Irradiation of In2O3 Nanostructures, Sci. Rep., Vol. 6, pp. 35066 (2016).

    [4] B. Miccoli, V. Cauda, A. Bonanno, A. Sanginario, K. Bejtka, F. Bella, M. Fontana, D. Demarchi, One-Dimensional ZnO/Gold Junction for Simultaneous and Versatile Multisensing Measurements, Sci. Rep. Vol. 6, pp. 29763 (2016).

    [5] M. Kwiatkowski, I. Bezverkhyya, M. Skompska, ZnO Nanorods Covered with a TiO2 Layer: Simple Sol–gel Preparation, and Optical, Photocatalytic and Photoelectrochemical properties, J. Mater. Chem. A, Vol. 3, pp. 12748 (2015).

    [6] Y. R. Lim, W. Song, Y. B. Lee, S. K. Kim, J. K. Han, S. Myung, S. S. Lee, K. S. An, Choi, C. J.; Lim, J. Horizontally-Connected ZnO-Graphene Hybrid Films for Multifunctional Devices, App. Sur. Sci., Vol. 379, pp. 238–241 (2016).

    [7] J. Zhang, L. D. Sun, X. C. Jiang, C. S .Liao, and C. H. Yan, Shape Evolution of One-Dimensional Single-Crystalline ZnO Nanostructures in a Microemulsion System, Cryst. Growth Des. Vol. 4, pp. 309-313 (2004).
    [8] C. Wang, B. Mao, E. Wang, Z. Kang, C. Tian, Solution synthesis of ZnO nanotubes via a template-free hydrothermal route, Solid State Communications, Vol. 141, pp. 620–623 (2007).
    [9] Y. Wang, Z. Cui, Synthesis and photoluminescence of well aligned ZnO nanotube arrays by a simple chemical solution method, Journal of Physics: Conference Series, Vol. 152, pp. 012-021 (2009).
    [10] Z.H. Ibupoto, N. Jamal, K. Khun, M. Willander, Development of a disposable potentiometric antibody immobilized ZnO nanotubes based sensor for the detection of C-reactive protein, Sens. Actuators B, Vol. 166–167, pp. 809–814 (2012).
    [11] A. Fulati, S.M.U. Ali, M. Riaz, G. Amin, O. Nur, M. Willander, Miniaturized pH sensors based on zinc oxide nanotubes/nanorods, Sensors, Vol. 9, pp. 8911–8923 (2009).
    [12] Y. Qiu, S. Yang, Kirkendall approach to the fabrication of ultra-thin ZnO nanotubes with high resistive sensitivity to humidity, Nanotechnology, Vol. 19, pp. 265606 (2008).
    [13] S. Cho, D. H. Kim, B.S. Lee, J. Jung, W. R. Yu, S. H. Hong, S. Lee, Ethanol sensors based on ZnO nanotubes with controllable wall thickness via atomic layer deposition, an O2 plasma process and an annealing process, Sens. Actuators, B, Vol. 162, pp. 300−306 (2012).
    [14] R. Ahmad, N. Tripathy, S. H. Kim, A. Umar, A. A. Hajry, Y. B. Hahn, High performance cholesterol sensor based on ZnO nanotubes grown on Si/Ag electrodes, Electrochem. Commun., Vol. 38, pp. 4−7 (2014).
    [15] B. R. Huang, J. A. Lin, Facile synthesis of ZnO nanotubes and their hydrogen sensing properties. Appl. Surf. Sci., Vol. 280, pp. 945−949 (2013).

    [16] P. C. Chang, Z. Fan, d. Wang, W. Y. Tseng, W.A. Chiou, J. Hong, J G. Lu, ZnO nanowires synthesized by vapor trapping CVD method, Chem. Mater., Vol. 16, pp. 5133-5137 (2004).

    [17] P. Karnati, A. Haque, M. F. N. Taufique, K. Ghosh, A systematic study on the structural and optical properties of vertically aligned zinc oxide nanorods grown by high pressure assisted pulsed laser deposition technique, Nanomaterials, Vol. 8, pp. 62 (2018).
    [18] L. Li, S. Pan, X. Dou, Y. Zhu, X. Huang, Y. Yang, G. Li, L. Zhang, Direct electrodeposition of zno nanotube arrays in anodic alumina membranes, J. Phys. Chem. C, Vol. 111, pp. 7288-7291 (2007).
    [19] V. Gaddam, R. R. Kumar, M. Parmar, M. M. Nayak, K. Rajanna, Synthesis of ZnO nanorods on a flexible Phynox alloy substrate: influence of growth temperature on their properties, RSC Adv., Vol. 5, pp. 89985 (2015).
    [20] Y. Sun, D. J. Riley, M. N. R. Ashfold, Mechanism of ZnO nanotube growth by hydrothermal methods on ZnO film-coated Si substrates, J. Phys. Chem. B, Vol. 110, pp. 15186-15192 (2006).
    [21] T. H. Chang, P. Y. Hsieh, S. Kunuku, S. C. Lou, D. Manoharan, K. C. Leou, I. N. Lin and N. H. Tai, High Stability Electron Field Emitters Synthesized via the Combination of Carbon Nanotubes and N₂-Plasma Grown Ultrananocrystalline Diamond Films. ACS Appl. Mater. Interfaces, Vol. 7, pp. 27526−27538 (2015).
    [22] J. Shalini, Y. C. Lin, T. H. Changa, K. J. Sankarana, H. C. Chena, I. N Lin, C. Y. Lee, N. H Tai, Ultra-nanocrystalline diamond nanowires with enhanced electrochemical properties, Electrochimica Acta, Vol. 92, pp. 9–19 (2013).
    [23] K. G. Samudrala, S. M. Moore, and Y. K. Vohra, Fabrication of Diamond Based Sensors for Use in Extreme Environments, Materials, Vol. 8, pp. 2054-2061 (2015).
    [24] S. Kunuku, K. J. Sankaran, C. L. Dong, N. H. Tai, K. C. Leou and I. N. Lin, Development of long lifetime cathode materials for microplasma application, RSC Adv., Vol. 4, pp. 47865–47875 (2014).
    [25] R. S. Sussmann, CVD Diamond for Electronic Devices and Sensors, Wiley publications, London, UK, (2009).
    [26] M. Davydova, P. Kulha, A. Laposa, K. Hruska, P. Demo, A. Kromka, Beilstein, Gas sensing properties of nanocrystalline diamond at room temperature, J. Nanotech., Vol. 5, pp. 2339–2345 (2014).
    [27] J. N. Tiwari, V. Vij, K. C. Kemp, and K. S. Kim, Engineered Carbon-Nanomaterial-Based Electrochemical Sensors for Biomolecules., ACS Nano, Vol. 10, pp. 46−80 (2016).
    [28] C. Zhu, G. Yang, H. Li, D. Du, and Y. Lin, Electrochemical Sensors and Biosensors Based on Nanomaterials and Nanostructures, Anal. Chem, Vol. 87, pp. 230−249 (2015).
    [29] E. Salih, M. Mekawy, R. Y. A. Hassan, I. M. Sherbiny, Synthesis, characterization and electrochemical-sensor applications of zinc oxide/graphene oxide nanocomposite, J. Nanostruct. Chem, Vol. 6, pp. 137–144 (2016).
    [30] C. J. H. Wort and R. S. Balmer, Resistive switching in transition metal oxides, Materials today, Vol. 11, pp. 22-28 (2008).
    [31] A. Poghossian, M.H. Abouzar, P. Christiaens, O. A. Williams, K. Haenen and P. Wagner, Sensing charged macromolecules with nanocrystalline diamond-based field-effect capacitive sensors, J. Contemp. Phys. Vol. 43, pp. 77-81 (2008).
    [32] D. Pradhan, I. N. Lin, Grain-Size-Dependent Diamond−Nondiamond Composite Films: Characterization and Field-Emission Properties, ACS Appl. Mater. Interfaces, Vol. 7, pp. 1444−1450 (2009).
    [33] I. N. Lin, H. C. Chen, C. S. Wang, Y. R. Lee, C. Y. Lee, Nanocrystalline diamond microstructures from Ar/H2/CH4-plasma chemical vapour deposition, Cryst. Eng. Comm., Vol. 13, pp. 6082−6089 (2011).
    [34] O. Auciello, A. Sumant, Status review of the science and technology of ultrananocrystalline diamond (UNCD™) films and application to multifunctional devices, Diamond & Related Materials, Vol. 19, pp. 699–718 (2010).
    [35] S. Jiao, A. Sumant, M.A. Kirk, D. M. Gruen, A. R. Krauss, and O. Auciello, Synthesis, characterization and electrochemical-sensor applications of zinc oxide/graphene oxide nanocomposite, J. Appl. Phys., Vol. 90, pp. 118 (2001).
    [36] T. Godish, W T. Davish, and J S. Fu, CRC press, U.S.A, 5th edn, 2015, 12, 437-487.
    [37] L.H. Keith, Handbook of Spectroscopy, Lewis publications, New York, (1976).
    [38] C. D. Klaassen, Casarett & Doull's Toxicology: The Basic Science of Poisons, McGraw-Hill Publishing Co., New York, Vol. 8 (2013).
    [39] A. Qureshi, Y. Gurbuz, M. Howell, W. P. Kang, J. L. Davidson, Nanocrystalline Diamond Films for Biosensor Applications, Diamond & Related Materials, Vol. 19, pp. 457–461 (2010).
    [40] J. Shalini, K. J. Sankaran, C-Y. Lee, N-H Tai, I-Nan Lin. An amperometric urea bisosensor based on covalent immobilization of urease on N2 incorporated diamond nanowire electrode, Biosensors and Bioelectronics, Vol. 56, pp. 64–70 (2014).
    [41] E. Boysen, N. C. Muir, D. Dudley, C. Peterson, Nanotechnology for Dummies, 2 nd Edition, Wiley publications (2011).
    [42] M. Fujihara et al, Clean and polymer-free transfer of CVD-grown graphene films on hexagonal boron nitride substrates, Jpn. J. Appl. Phys., Vol. 56, pp. 055102 (2017).
    [43] P. Li et al, Graphene-based transparent electrodes for hybrid solar cells. Frontiers in Materials, Vol. 26, pp. 1-7 (2014).
    [44] F. Rigoni et al, Transfer of CVD-grown graphene for room temperature gas sensors, Nanotechnology, Vol. 28, pp. 414001 (2017).
    [45] Y.H. Kim, Chemically fluorinated graphene oxide for room temperature ammonia detection at ppb levels, J. Mater. Chem. A, Vol. 5, pp. 19116 (2017).
    [46] X. Wang, Heteroatom-doped graphene materials: syntheses, properties and applications, Chem. Soc. Rev., Vol. 43, pp. 7067 (2014).
    [47] Z. Zhang, Hydrogen gas sensor based on metal oxide nanoparticles decorated graphene transistor, Nanoscale, Vol. 7, pp. 10078 (2015).
    [48] C. Goksen, A. S. Seylan, G. M. Rusen, Treatment of silk production wastewaters by membrane processes for sericin recovery. J. Mem. Sci., Vol. 325, pp. 920-931(2008).
    [49] H. J. Jin, D. L. Kaplan, Mechanism of silk processing in insects and spiders, Nature, Vol. 424 pp. 1057– 1061 (2003).
    [50] W. Zheng, Z. Yeshun, Z. Jinxiang, H. Lei, L. Jia, L. Yongkui, Z. Guozheng, C. Subhas, W. Lin, Exploring natural silk protein sericin for regenerative medicine: an injectable, photo- luminescent, cell-adhesive 3D hydrogel. Sci. Rep. Vol. 4, pp. 7064 (2014).
    [51] C. Feng et al, Facile synthesis and gas sensing properties of La2O3–WO3 nanofibers, Sensors and Actuators B, Vol. 221, pp. 434–442 (2015).
    [52] S. J. Choi et al. Selective Detection of acetone and hydrogen sulfide for the diagnosis of diabetes and halitosis using SnO2 nanofibers functionalized with reduced graphene oxide nanosheets, ACS Appl. Mater. Interfaces, Vol. 6, pp. 2588−2597 (2014).
    [53] K. Deepa et al. Highly sensitive pH dependent acetone sensor based on ultrananocrystalline diamond materials at room temperature, RSC Adv., Vol. 6, pp. 102821 (2016).
    [54] T. C. Lin, B. R. Huang, Palladium Nanoparticles modified carbon nanotube/nickel composite rods (Pd/CNT/Ni) for hydrogen sensing. Sens. Actuators B, Vol. 162, pp. 108−113 (2012).

    [55] L. Huang, Z. Zhang, Z. Li, B. Chen, X. Ma, L. Dong, L. M. Peng, Multifunctional Graphene Sensors for Magnetic and Hydrogen Detection. ACS Appl. Mater. Interfaces, Vol. 7, pp. 9581−9588 (2015).

    [56] Y. Pak, S. M. Kim, H. Jeong, C. G. Kang, J. S. Park, H. Song, R. Lee, N. Myoung, B. H. Lee, S. Seo, Palladium-decorated hydrogen-gas sensors using periodically aligned graphene nanoribbons. ACS Appl. Mater. Interfaces, Vol. 6, pp. 13293−13298 (2014).

    [57] D. Yang, L. Valentín, J. Carpena, W. Otano, O. Resto, L. F. Fonseca, Temperature-activated reverse sensing behavior of Pd nanowire hydrogen sensors. Small, Vol. 9, pp. 188−192 (2013).

    [58] H. Gu, Z. Wang, Y. Hu, Hydrogen Gas Sensors Based on Semiconductor Oxide Nanostructures. Sensors, Vol. 12, pp. 5517−5550 (2012).
    [59] L. Sang, M. Liao, M. Sumiya, A comprehensive review of semiconductor ultraviolet photodetectors: from thin film to one-dimensional nanostructures, Sensors, Vol. 13, pp. 10482-10518 (2013).
    [60] C. Soci et al, ZnO Nanowire UV photodetectors with high internal gain, Nano Lett., Vol.7, pp. 1003-1009 (2004).

    Chapter 4

    [1] Q. Qi, T. Zhang, L. Liu, X. Zheng, Q. Yu, Y. Zeng, H. Yang, Selective acetone sensor based on dumbbell-like ZnO with rapid response and recovery, Sens. Actuators, B, Vol. 134, pp. 166–170 (2008).

    [2] N. H. A. Hardan, M.J. Abdullah, A. Aziz, H. Ahmad, L.Y. Low, ZnO thin films for VOC sensing applications, Vacuum, Vol. 85, pp. 101-106 (2010).

    [3] C. S Lee, Z. Dai, S.Y. Jeong, C. H. Kwak, B. Y. Kim, D. H. Kim, H. W. Jang, J. S. Park and J. H Lee, Monolayer Co3O4 Inverse Opals as Multifunctional Sensors for Volatile Organic Compounds, Chem. Eur. J. Vol. 22, pp. 7102 – 7107 (2016).

    [4] X. Wang, R. Xu, X. Sun, Y. Wang, X. Ren, B. Du, D. Wu, Q. Wei, Using reduced graphene oxide-Ca:CdSe nanocomposite to enhance photoelectrochemical activity of gold nanoparticles functionalized tungsten oxide for highly sensitive prostate specific antigen detection, Biosens. Bioelectron, Vol. 96, pp. 239–245 (2017).

    [5] S. Canneaux, N.S. Gomez, E. Henon, F. Bohr, S. Dobe, Theoretical study of the reaction OH + acetone: a possible kinetic effect of the presence of water? Phys. Chem. Chem. Phys., Vol. 6 pp. 5172–5177 (2004).

    [6] X. Li, Y. Wang, L. Shi, H. Ma, Y. Zhang, B. Du, D. Wu, Q. Wei, A novel ECL biosensor for the detection of concanavalin A based on glucose functionalized NiCo2S4 nanoparticles-grown on carboxylic graphene as quenching probe, Biosens. Bioelectron, Vol. 96, pp. 113–120 (2017).

    [7] L. Wang, K. Kalyanasundaram, M. Stanacevic, P. Gouma, Nanosensor Device for Breath Acetone Detection, Sens. Let., Vol. 8, pp. 1-4 (2010).
    [8] P. P. Sahay, Zinc oxide thin film gas sensor for detection of acetone, J. Mat. Sci. Vol. 45, pp. 4383 – 4385 (2005).
    [9] G.P. Evans, D.J. Buckley, N.T. Skipper, I.P. Parkin, Single-walled carbon nanotube composite inks for printed gas sensors: enhanced detection of NO2, NH3, EtOH and acetone, RSC Adv., Vol. 4, pp. 51395 (2014).
    [10]. Z. Zang, X. Zeng, J. Du, M. Wang, and X. Tang, Femtosecond laser direct writing of microholes on roughened ZnO for output power enhancement of InGaN light-emitting diodes, Opt. Lett., Vol. 41, pp. 3463-3466 (2016).
    [11] Z.H. Ibupoto, N. Jamal, K. Khun and M. Willander, Development of a disposable potentiometric antibody immobilized ZnO nanotubes based sensor for the detection of C-reactive protein, Sens. Actuators, B, Vol. 166–167, pp. 809–814 (2012).
    [12] A. Fulati, S. M. U. Ali, M. Riaz, G. Amin, O. Nur and M. Willander, Miniaturized pH sensors based on zinc oxide nanotubes/nanorods, Sensors, Vol. 9, pp. 8911-8923 (2009).

    [13] Y. Qiu and S. Yang, Kirkendall approach to the fabrication of ultra-thin ZnO nanotubes with high resistive sensitivity to humidity, Nanotechnol. Vol. 19, pp. 265606 (2008).

    [14] O. Auciello, A. Sumant, Status review of the science and technology of ultrananocrystalline diamond (UNCD™) films and application to multifunctional devices, Diamond Relat. Mater. Vol. 19, pp. 699-718 (2010).
    [15] O. A. Shendrova, D.M. Gruen, UNCD: Synthesis, properties and applications, Elsevier, U.K, (2012).
    [16] J. Birrell, J.A. Carlisle, O. Auciello, D.M. Gruen, J.M Gibson, Morphology and electronic structure in nitrogen-doped ultrananocrystalline diamond, App. Phys. Let., Vol. 81, pp. 2245-2237 (2002).
    [17] C. M. Posada et.al, Nitrogen incorporated ultrananocrystalline diamond based field emitter array for a flat panel x-ray source, J. Appl. Phys. Vol. 115, pp. 134506 (2014).

    [18] S. A. Skoog.et al, Nitrogen-incorporated Ultrananocrystalline diamond microneedle arrays for electrochemical bio-sensing, Diamond Relat. Mater., Vol. 54, pp. 39–46 (2015).

    [19] J. Shalini, K. J. Sankaran, C. L. Dong, C. Y Lee, N.H. Tai and I-Nan Lin, In situ detection of dopamine using nitrogen incorporated diamond nanowire electrode, Nanoscale, Vol. 5, pp. 1159–1167 (2013).
    [20] J. Shalini, Y. C. Lin, T. H. Changa, K. J. Sankarana, H. C. Chena, I. N Lin, C. Y. Lee, N. H Tai, Ultra-nanocrystalline diamond nanowires with enhanced electrochemical properties, Electrochim. Acta, Vol. 92, pp. 9–19 (2013).

    [21] A. Saravanan, B. R. Huang, K. J. Sankaran, N.H. Tai, I. N. Lin, Highly Conductive Diamond−Graphite Nanohybrid Films with Enhanced Electron Field Emission and Microplasma Illumination Properties, ACS Appl. Mater. Interfaces, Vol. 25, pp. 14035–14042 (2015).
    [22] D. D. Sang, H. D. Li, S. H. Cheng, Q. L. Wang, Q. Yu, and Y. Z. Yang, Electrical transport behavior of n-ZnO nanorods/p-diamond heterojunction device at high temperatures, J. Appl. Phys., Vol. 112, pp. 03610 (2012).

    [23] A. Saravanan, B. R. Huang, C. J. Lin, G. Keiser, I. N. Lin, Fast photoresponse and long lifetime UV photodetectors and field emitters based on ZnO/Ultrananocrystalline Diamond Films, Chem. Eur. J., Vol. 21, pp. 16017–1602 (2015).
    [24] D. Sang, H. Li, S. Cheng, Q. Wang, J. Liu, Q. Wang, S. Wang, C. Han, K. Chen and Y. Pan, Ultraviolet photoelectrical properties of a n-ZnO nanorods/p-diamond heterojunction, RSC Adv., Vol. 5, pp. 49211–49215 (2015).
    [25] W.Y. Chung.et al. A signal processing ASIC for ISFET-based chemical sensors, Microelectron. J, Vol. 34, pp. 667–675 (2004).
    [26] P. D. Batista, An embedded measurement system for the electrical characterization of EGFET as a pH sensor, Meas. Sci. Technol., Vol. 25, pp. 027001 (2014).

    [27] Z. Zang, X. Tang, Enhanced fluorescence imaging performance of hydrophobic colloidal ZnO nanoparticles by a facile method, J. Alloys Compd., Vol. 619, pp. 98–101 (2015).

    [28] Y. Xi, J. Song, S. Xu, R. Yang, Z. Gao, C. Hu, and Z. L. Wang, Growth of ZnO nanotube arrays and nanotube based piezoelectric nanogenerators, J. Mater. Chem., Vol. 19, pp. 9260-9264 (2009).

    [29] K.J. Sankaran, B.R. Huang, A. Saravanan, D. Manoharan, N.H. Tai and I. N. Lin, Nitrogen Incorporated Ultrananocrystalline diamond microstructures from bias-enhanced microwave N2/CH4-plasma chemical vapor deposition, Plasma Processes Polym. Vol.13, pp. 419–428 (2016).

    [30] J. Diaz, G. Paolicelli, S. Ferrer, F. Comin, Separation of the sp3 and sp2 components in the C 1s photoemission spectra of amorphous carbon films, Phys. Rev. B., Vol. 54, pp. 8064−8069 (1996).

    [31] K. Panda, B. Sundaravel, B. K. Panigrahi, P. Magudapathy, D. N. Krishna, K. G. M. Nair, Huang-Chin Chen and I-Nan Lin, Structural and electronic properties of nitrogen ion implanted ultra nanocrystalline diamond surfaces, J. Appl. Phys., Vol. 110, pp. 044304 (2011).

    [32] M. Hussain, M. Ali. Abbasi, Z. H. Ibupoto, O. M. Nur and M. Willander, The improved piezoelectric properties of ZnO nanorods with oxygen plasma treatment on the single layer graphene coated polymer substrate, Phys. Status Solidi A, Vol. 2, pp. 455-459 (2014).
    [33] S. L. Mensah, V.K. Kayastha, I. N. Ivanov, D. B. Geohegan, Y.K. Yap, Formation of single crystalline ZnO nanotubes without catalysts and templates, App. Phys. Lett., Vol. 90, pp. 113108 (2007).

    [34] Y.Q. Fu, L.G. Gancedo, H.F. Pang, S. Porro, Y.W. Gu, J. K. Luo, X. T. Zu, F. Placido, J. I. B. Wilson, A.J. Flewitt, W.I. Milne, Microfluidics based on ZnO/nanocrystalline diamond surface acoustic wave devices, Biomicrofluidics, Vol. 6, pp. 024105 (2012).

    [35] S. L. Romero and M. Garcia, Photoluminescence and structural properties of ZnO nanorods growth by assisted hydrothermal method, World J. Condens. Matter Phys. Vol. 13, pp. 152-157 (2013).

    [36] Y. M. Foong, A. T. T. Koh, S. R. Lim, J. Hsieh, D.H.C. Chua, Materials properties of ZnO/diamond-like carbon (DLC) nanocomposite fabricated with different source of targets, Diamond Relat. Mater., Vol. 25, pp. 103–110 (2012).

    [37] Y. S. Chiu, C. Y. Tseng and C.T. Lee, Nanostructured EGFET pH Sensors with surface-passivated ZnO thin-film and Nanorod arrays, IEEE Sens. J. Vol. 12, pp. 930-934 (2012).

    [38] P. Song, Q. Wang, Z. Yang, Preparation, characterization and acetone sensing properties of Ce-doped SnO2 hollow spheres, Sens. Actuators, B, Vol. 173, pp. 839–846 (2012).
    [39]. D. Wu, Y. Liu, Y. Wang, L. Hu, H. Ma, G. Wang, Q. Wei, Label-free Electro-chemiluminescent immunosensor for detection of prostate specific antigen based on aminated graphene quantum dots and carboxyl graphene quantum dots, Sci. Rep. Vol. 6, pp. 20511 (2015).

    [40] Y. Liu, H. Ma, Y. Zhang, X. Pang, D. Fan, D. Wu, Q. Wei, Visible light photoelectrochemical aptasensor for adenosine detection based on CdS/PPy/g-C3N4 nanocomposites, Biosens. Bioelectron, Vol. 86, pp. 439–445(2016).
    [41] Idrissi, K. Polok, B. Marekha, I. D. Waele, M. Bria, and W. Gadomski, Inhomogeneous Distribution in Methanol/Acetone Mixture: Vibrational and NMR Spectroscopy Analysis, J. Phys. Chem. B, Vol. 118, pp. 1416−1425 (2014).
    [42] K. Coutinho, N. Saavedra and S. Canuto, Theoretical analysis of the hydrogen bond interaction between acetone and water, J. Molecular Structure (Theochem), Vol. 466, pp. 69–75 (1999).

    [43] Y. Bonakhova, M. V. Pozharov, T. V. Zakharova, E.K. Khvorostova, A. V. Markin, D. W. Lachenmeier, T. Kuballa, S. P. Mushtakova, Association/hydrogen bonding of acetone in polar and non-polar solvents: nmr and nir spectroscopic investigations with chemometrics, J. Solution Chem., Vol. 43, pp. 1963–1980 (2014).

    [44] V. V. Navarkhele, Dielectric study of binary mixtures at 298K temperature, J. Chem. Pharm. Res., 7, 600-605 (2015).

    [45] X. Li, S. Yu, T. Yan, Y. Zhang, B. Du, D. Wu, Q. Wei, A sensitive electrochemiluminescence immunosensor based on Ru(bpy)32+ in 3D CuNi oxalate as luminophores and graphene oxide–polyethylenimine as released Ru(bpy)32+ initiator, Biosens. Bioelectron., Vol. 89, pp. 1020–1025 (2017).

    Chapter 5

    [1] Lin, T. C.; Huang, B. R. Palladium Nanoparticles Modified Carbon Nanotube/Nickel Composite Rods (Pd/CNT/Ni) for Hydrogen Sensing. Sens. Actuators, B, Vol. 162, pp. 108–113 (2012).
    [2] Huang, L.; Zhang, Z.; Li, Z.; Chen, B.; Ma, X.; Dong, L.; Peng, L. M. Multifunctional Graphene Sensors for Magnetic and Hydrogen Detection. ACS Appl. Mater. Interfaces, Vol. 7, pp. 9581−9588 (2015).
    [3] Pak, Y.; Kim, S. M.; Jeong, H.; Kang, C. G.; Park, J. S.; Song, H.; Lee, R.; Myoung, N.; Lee, B. H.; Seo, S. Palladium-Decorated Hydrogen-Gas Sensors Using Periodically Aligned Graphene Nanoribbons. ACS Appl. Mater. Interfaces, Vol. 6, pp. 13293–13298 (2014).
    [4] Yang, D.; Valentín, L.; Carpena, J.; Otano, W.; Resto, O.; Fonseca, L. F. Temperature-Activated Reverse Sensing Behavior of Pd Nanowire Hydrogen Sensors. Small, Vol. 9, pp. 188–192 (2013).
    [5] Wang, Y. T.; Whang, W. T.; Chen, C. H. Hollow V2O5 Nano Assemblies for High-Performance Room-Temperature Hydrogen Sensors. ACS Appl. Mater. Interfaces, Vol. 7, pp. 8480−8487 (2015).

    [6] Wang, Z.; Li, Z.; Jiang, T.; Xu, J.; Wang, C. Ultrasensitive Hydrogen Sensor based on Pd0‑loaded SnO2 Electro Spun Nanofibers at Room Temperature. ACS Appl. Mater. Interfaces, Vol. 5, pp. 2013−2021 (2013).

    [7] Gu, H.; Wang, Z.; Hu, Y. Hydrogen Gas Sensors Based on Semiconductor Oxide Nanostructures. Sensors, Vol. 12, pp. 5517-5550 (2012).
    [8] Vijayalakshmi, K.; Karthick, K. Growth of Highly c-Axis Oriented Mg: ZnO Nanorods on Al2O3 Substrate Towards High-Performance H2 Sensing. Int. J. Hydrogen Energy, Vol. 39, pp. 7165-7172 (2014).
    [9] Alam, M. F. B.; Phan, D. T.; Chung, G. S. Palladium Nanocubes Decorated on a One-Dimensional ZnO Nanorods Array for use as a Hydrogen Gas Sensor. Mater. Lett, Vol. 156, pp. 113–117 (2015).
    [10] Xu, H.; Fan, W.; Rosa, A. L.; Zhang, R. Q.; Frauenheim, T. Hydrogen and Oxygen Adsorption on ZnO Nanowires: A First-Principles Study. Phys. Rev. B, Vol. 79, pp. 073402-1-073402-4 (2009).
    [11] David, T. M.; Sagayaraj, P.; Wilson, P.; Ramesh, C.; Murugesan, N.; Prabhu, E.; Murthy, A. S. R.; Annapoorani, S. Room Temperature Hydrogen Sensing of Pt Loaded TiO2 Nanotubes Powders Prepared via Rapid Breakdown Anodization. J. Electrochem. Soc., Vol. 163, pp. 15-18 (2016).
    [12] Gupta, A.; Pandey, S. S.; Bhattacharya, S. High Aspect ZnO Nanostructures based Hydrogen Sensing. AIP Conf. Proc., Vol. 291, pp. 1536 (2013).
    [13] Cho, S.; Kim, D. H.; Lee, B. S.; Jung, J.; Yu, W. R.; Hong, S. H.; Lee, S. Ethanol Sensors based on ZnO Nanotubes with Controllable Wall Thickness via Atomic Layer Deposition, an O2 Plasma Process and An Annealing Process. Sens. Actuators, B, Vol. 162, pp. 300–306 (2012).
    [14] Ahmad, R.; Tripathy, N.; Kim, S. H.; Umar, A.; Hajry, A. A.; Hahn, Y. B. High Performance Cholesterol Sensor Based on ZnO Nanotubes Grown on Si/Ag Electrodes. Electrochem. Commun, Vol. 38, pp. 4–7 (2014).
    [15] Huang, B. R.; Lin, J. A Facile Synthesis of ZnO Nanotubes and their Hydrogen Sensing Properties. Appl. Surf. Sci., Vol. 280, pp. 945–949 (2013).
    [16] Khan, M.; Tahir, M. N.; Adil, S. F.; Khan, H. U.; Rafiq, M.; Siddiqui, H.; Al-warthan, A. A.; Tremel, W. Graphene based Metal and Metal Oxide Nanocomposites: Synthesis, Properties and their Applications. J. Mater. Chem. A, Vol. 3, pp. 18753-18808 (2015).
    [17] Wang, T.; Huang, D.; Yang, Z.; Xu, S.; He, G.; Li, X.; Hu, N.; Yin, G.; He, D.; Zhang, L.; A Review on Graphene-Based Gas/Vapor Sensors with Unique Properties and Potential Applications. Nano-Micro Lett., Vol. 8, pp. 95-119 (2015).
    [18] Zhang, Z.; Xue, Q.; Du, Y.; Ling, C.; Wei, X. Highly Enhanced Sensitivity of Hydrogen Sensors using Novel Palladium-Decorated Graphene Nanoribbon Film/SiO2/Si Structures, J. Mater. Chem. A, Vol. 2, pp. 15931–15937 (2014).
    [19] Kaniyoor, A.; Jafri, R. I.; Arockiadoss, T.; Ramaprabhu, S. Nanostructured Pt Decorated Graphene and Multi Walled Carbon Nanotube based Room Temperature Hydrogen Gas Sensor. Nanoscale, Vol. 1, pp. 382–386 (2009).
    [20] Abideen, Z. U.; Kim, H. W.; Kim, S. S.; An Ultra-Sensitive Hydrogen Gas Sensor using Reduced Graphene Oxide-Loaded ZnO Nanofibers. Chem. Commun. Vol. 51, pp. 15418—15421 (2015).
    [21] Esfandiar, A.; Ghasemi, S.; Irajizad, A.; Akhavan, O.; Gholami, M. R. The Decoration of TiO2/Reduced Graphene Oxide by Pd and Pt Nanoparticles for Hydrogen Gas Sensing. Int. J. Hydrogen Energy, Vol. 37, pp. 15423-15432 (2012).
    [22] Zhang, Z.; Zou, X.; Xu, L.; Liao, L.; Liu, W.; Ho, J.; Xiao, X.; Jiang, C.; Li, J. Hydrogen Gas Sensor Based on Metal Oxide Nanoparticles Decorated Graphene Transistor. Nanoscale, Vol 7, pp. 10078–10084 (2015).
    [23] Renitta, A.; Vijayalakshmi, K. Highly Sensitive Hydrogen Safety Sensor Based on Cr Incorporated ZnO Nano-Whiskers Array Fabricated on ITO Substrate. Sens. Actuators, B, Vol. 237, pp. 912–923 (2016).
    [24] Hong, J.; Lee, S.; Seo, J.; Pyo, S.; Kim, J.; Lee, T. A Highly Sensitive Hydrogen Sensor with Gas Selectivity Using a PMMA Membrane-Coated Pd Nanoparticle/Single-Layer Graphene Hybrid. ACS Appl. Mater. Interfaces, Vol. 7, pp. 3554–356 (2016).
    [25] Anand, K.; Singh, O.; Singh, M. P.; Kaur, J.; Singh, R. C.; Hydrogen Sensor Based on Graphene/ZnO Nanocomposite. Sens. Actuators, B, Vol. 195, pp. 409–415 (2014).

    [26] Guo, W.; Xu, S.; Wu, S.; Wang, N.; Loy, M. M. T.; Du, S. Oxygen-Assisted Charge Transfer Between ZnO Quantum Dots and Graphene. Small, Vol. 9, pp. 3031–3036 (2013).

    [27] Yi, J.; Lee, J. M.; Park, W. Vertically aligned ZnO Nanorods and Graphene Hybrid Architectures for High-Sensitive Flexible Gas Sensors. Sens. Actuators, B, Vol. 155, pp. 264–269 (2011).

    [28] Yuxiang, L.; Baiyi, Z.; Yanan, G.; Kun, L.; Haibo, Z.; Xincun, D. Surface Superoxide Complex Defects-Boosted Ultrasensitive ppb-Level NO2 Gas Sensors. Small, Vol. 12, pp. 1420–1424 (2016).

    [29] Jiang, Q.; Yuru, G.; Baiyi, Z.; Yuxiang, L.; Xincun, D. Transition-Metal-Doped p-Type ZnO Nanoparticle-Based Sensory Array for Instant Discrimination of Explosive Vapors. Small, Vol. 12, pp. 1369–1377 (2016).

    [30] Zhaofeng, W.; Chaoyu, Z.; Baiyi, Z.; Yushu, L.; Xincun, D. Contactless and Rapid Discrimination of Improvised Explosives Realized by Mn2+ Doping Tailored ZnS Nanocrystals. Adv. Funct. Mater., Vol. 26, pp. 4578–4586 (2016).

    [31] Baiyi, Z.; Bin, L.; Zheng, Y.; Yanan, G.; Xincun, D.; Tao, X. Gas Adsorption Thermodynamics Deduced from the Electrical Responses in Gas-Gated Field-Effect Nanosensors. J. Phys. Chem. C, Vol. 118, pp. 14703−14710 (2014).

    [32] Zheng, Y.; Linjuan, G.; Baiyi, Z.; Yanan, G.; Tao, X.; Xincun, D. CdS/ZnO Core/Shell Nanowire-Built Films for Enhanced Photodetecting and Optoelectronic Gas-Sensing Applications. Adv. Optical Mater., Vol. 2, pp. 738–745 (2014).

    [33] Pradhan, D.; Lin, I. N. Grain-Size-Dependent Diamond-Nondiamond Composite Films: Characterization and Field-Emission Properties. ACS Appl. Mater. Interfaces, Vol. 7, pp. 1444-1450 (2009).

    [34] Abdullah, H.; Omar, A.; Yarmo, M. A.; Shaari, S.; Taha, M. R. Structural and Morphological Studies of Zinc Oxide Incorporating Single-Walled Carbon Nanotubes as a Nanocomposite Thin Film. J. Mater. Sci.: Mater. Electron., Vol. 24, pp. 3603–3610 (2013).

    [35] Wang, H.; Li, M.; Jia, L.; L. Li.; Wang, G.; Zhang, Y.; Li, G. Surfactant-Assisted In-Situ Chemical Etching for the General Synthesis of ZnO Nanotubes Array. Nanoscale Res. Lett., Vol. 7, pp. 1102–1106 (2010).

    [36] Tapas, K. G.; Shirshendu, G.; Dipak, R.; Indranil, R.; Gunjan, S.; Sourav, S.; Amartya, B.; Krishnendu, P.; Sanatan, C.; Mukut, C.; Dipankar, C. Physical and Electrical Characterization of Reduced Graphene Oxide Synthesized Adopting Green Route. Bull. Mater. Sci., Vol. 39, pp. 543–550 (2016).

    [37] Fuxue, W.; Xiaolong, C.; Dawei, Y.; Zhaomin, Z.; Shaoqing, X.; Xiaofeng, G. Synthesis and Luminescence Characteristics of ZnO Nanotubes. J. Semicond., Vol. 35, pp. 093004 (2014).

    [38] Kumar, R.; Dossary, O. A.; Kumar, G.; Ahmad, U. Zinc Oxide Nanostructures for NO2 Gas–Sensor Applications: A Review. Nano-Micro Lett., Vol. 7, pp. 97–120 (2015).

    [39] Hsueh, T. J.; Chang, S. J.; Hsu, C. L.; Lin, Y. R.; Chend, I. C. ZnO Nanotube Ethanol Gas Sensors. J. Electrochem. Soc., Vol. 155, pp. 152-155 (2008).

    [40] Ghoreishi, F. S.; Ahmadi, V.; Samadpour, M. Synthesis and Characterization of Graphene-ZnO Nanocomposite and its Application in Photovoltaic Cells. J. Nanostruct., Vol. 3, pp. 453- 459 (2013).

    [41] Son, D.; Kwon, B. W.; Park, D. H.; Seo, W. S; Yi, Y.; Angadi, B.; Lee, C. L.; Choi, W. K. Emissive ZnO-Graphene Quantum Dots for White-Light-Emitting Diodes. Nat. Nanotechnol., Vol. 7, pp. 465-471 (2012).
    [42] Chowdhuri, A; Gupta, V.; Sreenivas, K.; Kumar, R.; Mozumdar, S.; Patanjali, P. K. Response Speed of SnO2-based H2S Gas Sensors with CuO Nanoparticles. Appl. Phys. Lett., Vol. 84, pp. 1180-1182 (2004).
    [43] Han, S. S.; Jung, H.; Jung, D. H.; Choi, S. H; Park, N. Stability of Hydrogenation States of Graphene and Conditions for Hydrogen Spillover. Phys. Rev. B, Vol. 85, pp. 155408 (2012).
    [45] Park, S. High-Response and Selective Hydrogen Sensing Properties of Porous ZnO Nanotubes. Curr. Appl. Phys., Vol. 16, pp. 1263-1269 (2016).

    Chapter 6

    [1] Pak, Y.; Kim, S. M.; Jeong, H.; Kang, C. G.; Park, J. S.; Song, H.; Lee, R.; Myoung, N.; Lee, B. H.; Seo, S. Palladium-Decorated Hydrogen-Gas Sensors Using Periodically Aligned Graphene Nanoribbons. ACS Appl. Mater. Interfaces, Vol. 6, pp. 13293–13298 (2014).

    [2] Wang, Y. T.; Whang, W. T.; Chen, C. H. Hollow V2O5 Nano Assemblies for High-Performance Room-Temperature Hydrogen Sensors. ACS Appl. Mater. Interfaces, Vol. 7, pp. 8480−8487 (2015).

    [3] Vijayalakshmi, K.; Karthick, K. Growth of Highly c-Axis Oriented Mg: ZnO Nanorods on Al2O3 Substrate towards High-Performance H2 Sensing. Int. J. Hydrogen Energy, Vol. 39, pp. 7165-7172 (2014).
    [4] Shivani, S.; Kapil, S.; Neena, J. A Hydrogen Gas Sensor using a Pt-Sputtered MWCNTs/ZnO Nanostructure. Meas. Sci. Technol., Vol. 25, pp. 085103 (2014).
    [5] Boruah, B. D.; Mukherjee, A.; Sridhar, S.; Misra, A. Highly Dense ZnO Nanowires Grown on Graphene Foam for Ultraviolet Photodetection. ACS Appl. Mater. Interfaces, Vol. 7, pp. 10606–11 (2015).
    [6] Yang, Z.; Wang, M.; Song, X.; Yan, G.; Ding, Y.; Bai, J. High-Performance ZnO/Ag Nanowire/ZnO Composite Film UV Photodetectors with Large Area and Low Operating Voltage. J. Mater. Chem. C., Vol. 2, pp. 4312–4319 (2014).

    [7] Ates, E. S.; Kucukyildiz, S.; and Unalan, H. E.; Zinc Oxide Nanowire Photodetectors with Single-Walled Carbon Nanotube Thin-Film Electrodes. ACS Appl. Mater. Interfaces, Vol. 4, pp. 5142−5146 (2012).

    [8] Tianyou, Z.; Xiaosheng, F.; Meiyong, L.; Xijin, X.; Haibo, Z.; Bando, Y.; Dmitri, G. A Comprehensive Review of One-Dimensional Metal-Oxide Nanostructure Photodetectors. Sensors, Vol. 9, pp. 6504-6529 (2009).
    [9] Sukon, P. Semiconductor Metal Oxides as Hydrogen Gas Sensors. Procedia Eng., Vol. 87, pp. 795 – 802 (2014).
    [10] Aleksandra, B. D.; Xinyi, C.; Leung, Y. H.; Alan, M. C. N. ZnO Nanostructures: Growth, Properties and Applications. J. Mater. Chem., Vol. 22, pp. 6526 (2012).

    [11] Guo, L.; Zhang, H.; Zhao, D.; Li, B.; Zhang, Z.; Jiang, M.; Shen, D.; High Responsivity ZnO Nanowires based UV Detector Fabricated by the Dielectrophoresis Method, Sens. Actuators, B, Vol. 12, pp. 166–167 (2012).
    [12] Hong, F.; Shucong, X.; Xianmin, C.; Daoxi, L.; Yaoyu, Y.; Haiyong, H.; Dezhou, W.; Yanbai, S. Ultra-Long Zn2SnO4-ZnO Microwires based Gas Sensor for Fydrogen Detection. App. Surf. Sci., Vol. 400, pp. 440–445 (2017).
    [13] Vardan, G.; Elisabetta, C.; Iskandar, K.; Guido, F.; Giorgio, S.; Reduced Graphene Oxide/ZnO Nanocomposite for Application in Chemical Gas Sensors. RSC Adv., Vol. 6, pp. 34225 (2016).
    [14] Lupan, O.; Chai, G.; Chow, L. Novel Hydrogen Gas Sensor Based on Single ZnO Nanorod. Microelectron. Eng., Vol. 85, pp. 2220− 2225 (2008).
    [15] Alam, M. F. B.; Phan, D. T.; Chung, G. S. Palladium Nanocubes Decorated on a One-Dimensional ZnO Nanorods Array for use as a Hydrogen Gas Sensor. Mater. Lett., Vol. 156, pp. 113–117 (2015).
    [16]. Anand, K.; Singh, O.; Singh, M. P.; Kaur, J.; Singh, R. C.; Hydrogen Sensor Based on Graphene/ZnO Nanocomposite. Sens. Actuators, B, Vol. 195, pp. 409–415 (2014).

    [17] Huang, H.; Gong, H.; Chow, C. L.; Guo, J.; White, T. J.; Tse, M. S.; Tan, O. K. Low-Temperature Growth of SnO2 Nanorod Arrays and Tunable n-p-n Sensing Response of a ZnO/SnO2 Heterojunctions for Exclusive Hydrogen Sensors. Adv. Funct. Mater., Vol. 21, pp. 2680−2686 (2011).
    [18] Huang, B. R.; Lin, J. C. A Facile Synthesis of ZnO Nanotubes and their Hydrogen Sensing Properties. Appl. Surf. Sci., Vol. 280, pp. 945–945 (2013).
    [19] Shewale, P. S.; Lee, N. K.; Lee, S. H.; Kang, K. Y.; Yu, Y. S.; Ti Doped ZnO Thin Film based UV Photodetector: Fabrication and Characterization. J. Alloys Compd., Vol. 624, pp. 251–257 (2015).
    [20] Lin, J. C.; Huang, B. R.; Lin, T. C. Bilayer Structure of ZnO Nanorod/Nanodiamond Film Based Ultraviolet Photodetectors. J. Electrochem. Soc., Vol. 160, pp. 509- 512 (2013).
    [21] Liu, C.; Piyadasa, A.; Piech, M.; Dardona, S.; Rena, Z.; Gao, P. X.; Tunable UV Response and High Performance of Zinc Stannate Nanoparticle Film Photodetectors, J. Mater. Chem. C, Vol. 4, pp. 6176-6184 (2016).

    [22] Lan, C.; Li, C.; Wang, S.; Yin, Y.; Guo, H.; Liu, N.; and Liu, Y. ZnO–WS2 Heterostructures for Enhanced Ultraviolet Photodetectors. RSC Adv., Vol. 6, pp. 67520–67524 (2016).

    [23] Yun-Yue, L.; Chun-Wei, C.; Wei-Che, Y.; Wei-Fang, S.; Chen-Hao, K.; Jih-Jen, W. Near-ultraviolet Photodetector based on Hybrid Polymer/Zinc Oxide Nanorods by Low Temperature Solution Processes. Appl. Phys. Lett., Vol. 92, pp. 233301 (2008).

    [24] Sang, L.; Meiyong, L.; Masatomo, S. A Comprehensive Review of Semiconductor Ultraviolet Photodetectors: From Thin Film to One-Dimensional Nanostructures. Sensors, Vol. 13, pp. 10482-10518 (2013).
    [25] Lao, C. S.; Park, M. C.; Kuang, Q.; Deng, Y. L.; Sood, A. K.; Polla, D. L.; Wang, Z. L. Giant Enhancement in UV Response of ZnO Nanobelts by Polymer Surface-Functionalization. J. Am. Chem. Soc., Vol. 129, pp. 12096–12097 (2007).

    [26] Gu, H.; Wang, Z.; Hu, Y. Hydrogen Gas Sensors Based on Semiconductor Oxide Nanostructures. Sensors, Vol. 12, pp. 5517-5550 (2012).
    [27] Boris, L.; Stephanie, C.; Olivier, S.; Tilia, P.; Sophie, L. Gas Sensors Based on Electrodeposited Polymers. Metals, Vol. 5, pp. 371-1386 (2015).
    [28] Xiao, L.; Sitian, C.; Hong, L.; Sha, H.; Daqiang, Z.; Huansheng, N. A Survey on Gas Sensing Technology. Sensors, Vol. 12, pp. 9635-9665 (2012).
    [29] Padmawar, M. N.; Pawar, A. P. Silk Sericin and Its Applications. J. Sci. Ind. Res., Vol. 64, pp. 323-329 (2004).
    [30] Mondal, M.; Trivedy, K.; Nirmal Kumar, K. The Silk Proteins, Sericin and Fibroin in Silkworm, Bombyx Mori Linn - A Review, J. Environ. Sci., Vol. 5, pp. 63-76 (2007).
    [31] Goksen, C.; Seylan, A. S.; Rusen, G. M. Treatment of Silk Production Wastewaters by Membrane Processes for Sericin Recovery. J. Mem. Sci., Vol. 325, pp. 920-931 (2008).
    [32] Mingying, Y.; Yajun, S.; Guanshan, Z.; Namita, M.; Liangjun, Z.; Chuanbin, M. Tuning Molecular Weights of Bombyx mori (B. mori) Silk Sericin to Modify Its Assembly Structures and Materials Formation. ACS Appl. Mater. Interfaces, Vol. 6, pp. 13782−13789 (2014).
    [33] Aramwit, P.; Siritientong, T.; Srichana, T. Potential Applications of Silk Sericin, A Natural Protein from Textile Industry By-products. Waste Manage. Res., Vol. 3, pp. 217–224 (2012).
    [34] Zheng, W.; Yeshun, Z.; Jinxiang, Z.; Lei, H.; Jia, L.; Yongkui, Li.; Guozheng, Z.; Subhas, C.; Lin, W. Exploring Natural Silk Protein Sericin for Regenerative Medicine: An Injectable, Photo- luminescent, Cell-Adhesive 3D Hydrogel. Sci. Res., Vol. 4, pp. 7064 (2014).
    [35] Jia, L.; Chao, Qi.; Kaixiong, T.; Jinxiang Z.; Jian Z.; Luming, X.; Xulin, J.; Yunti, Z.; Lei, H.; Qilin, L.; Hongjian, X.; Jinbo, G.; Xiaoming, S.; Guobin, W.; Zheng, W.; Lin, W. Sericin/Dextran Injectable Hydrogel as an Optically Trackable Drug Delivery System for Malignant Melanoma Treatment. ACS Appl. Mater. Interfaces, Vol. 8, pp. 6411−6422 (2016).
    [36] Shengjie, L.; Kai, J.; David, L. K.; Markus, J. B. Ultrathin Free-Standing Bombyx mori Silk Nanofibril Membranes. Nano Lett., Vol. 16, pp. 3795−3800 (2016).
    [37] Ramendra K. P.; Nicholas E. K.; Congzhou W.; Subhas C. K.; Vamsi K. Y. Biopatterning of Silk Proteins for Soft Micro-optics. ACS Appl. Mater. Interfaces, Vol. 7, pp. 8809−8816 (2015).
    [38] Pradyot, K.; Makoto, S.; Masakazu, A. Controlled Fabrication of Silk Protein Sericin Mediated Hierarchical Hybrid Flowers and Their Excellent Adsorption Capability of Heavy Metal Ions of Pb(II), Cd(II) and Hg(II). ACS Appl. Mater. Interfaces, Vol. 8, pp. 2380−2392 (2016).
    [39] Kasimayan, U.; Solaiappan, A.; Ramalinga, V. M.; Tetsuo, S.; Takashi, J. Growth and Improvement of ZnO Nanostructure Using Aged Solution by Flow Coating Process. Adv. Mats. Phys. and Chem., Vol. 3, pp. 194-200 (2013).

    [40] Escribano, R.; Slano, J. J.; Siddique, N.; Sze, N.; Dudev. T. Raman Spectroscopy of Carbon-Containing Particles. Vib. Spectrosc., Vol. 26, pp. 171-186 (2001).

    [41] Hongqiang, W.; Ming, L.; Lichao, J.; Liang, L.; Guozhong, W.; Yunxia, Z.; Guanghai, L. Surfactant-Assisted in situ Chemical Etching for the General Synthesis of ZnO Nanotubes Array. Nanoscale Res. Lett., Vol. 5, pp. 1102–1106 (2010).

    [42] Ferrari, A. C.; Robertson, J. Resonant Raman Spectroscopy of Disordered, Amorphous, and Diamond-like Carbon. Phys. Rev. B: Condens. Matter. Phys., Vol. 64, pp. 075414 (2001).
    Y. Pei, W. Du, Y. Li, W. Shen, Y. Wang, S. Yangab and S. Han, Phys. Chem. Chem. Phys., Vol. 17, pp. 18185 (2015).

    [43] Hao, L.; Kaimo, D.; Zhiwei, S.; Qiong, L.; Guobin, Z.; Hongtao. F.; Liang, L. Novel ZnO Microflowers on Nanorod Arrays: Local Dissolution-Driven Growth and Enhanced Light Harvesting in Dye-Sensitized Solar Cells. Nanoscale Res. Lett, Vol. 9, pp. 183 (2014).

    [44] Yurong, C.; Jun, J.; Danping, M, Nianxin, X.; Juming, Y.; Effect of Silk Sericin on Assembly of Hydroxyapatite Nanocrystals into Enamel Prism-like Structure. J. Mater. Chem., Vol. 19, pp. 5751–5758 (2009).
    [45] Bin, L.; Jing, X.; Sihan, R.; Zhuoran, W.; Chen, D.; Guozhen, S. High-Performance Photodetectors, Photocatalysts, and Gas Sensors based on Polyol Reflux Synthesized Porous ZnO Nanosheets. CrystEngComm, Vol. 14, pp. 4582–4588 (2012).

    Chapter 7

    [1] Comini, E. Integration of Metal Oxide Nanowires in Flexible Gas Sensing Devices. Sensors, Vol. 13, pp. 10659-10673 (2013).
    [2] Shaikh, S. K.; Ganbavle, V. V.; Inamdar, S. I.; Rajpure, K. Y. Multifunctional Zinc Oxide Thin Films for High Performance UV Photodetectors and Nitrogen Dioxide Gas Sensors. RSC Adv., Vol. 6, pp. 25641 (2016).
    [3] Peng, X.; Wang, Z.; Huang, P.; Chen, X.; Fu, X.; Dai, W. Comparative Study of Two Different TiO2 Film Sensors on Response to H2 under UV Light and Room Temperature. Sensors, Vol. 16, pp. 1249 (2016).
    [4] Grottrup, J.; Postica, V.; Ababii, N.; Lupan, O.; Zamponi, C.; Meyners, D.; Mishra, Y. K.; Sontea, V.; Tiginyanu, I.; Adelung, R. Size-dependent UV and Gas Sensing Response of Individual Fe2O3-ZnO: Fe Micro- and Nanowire based Devices. J. Alloys Compd., Vol. 701, pp. 920-925 (2017).

    [5] Woo, H. S.; Chan, W. N.; Kim, I. D.; Lee, J. H. Highly Sensitive and Selective Trimethylamine Sensor using One-dimensional ZnO–Cr2O3 Hetero-Nanostructures. Nanotechnol., Vol. 23, pp. 245501 (2012).

    [6] Silva, L.F; Lucchini, M. A.; M’Peko, J. C.; Bernardini, S.; Aguir, K.; Ribeiro, C.; Longo, E.; Niederberger. M. ZnO/SnO2 Heterojunctions Sensors with UV-Enhanced Gas-Sensing Properties at Room Temperature. Proc., Vol. 1, pp. 418 (2017).

    [7] Deepa, K.; Huang, B. R.; Saravanan, A. Multifunctional Sustainable Materials: The Role of Carbon Existing Protein in the Enhanced Gas and UV Sensing Performances of ZnO-based Biofilms. J. Mater. Chem. C, Vol. 5, pp. 5239 (2017).

    [8] Chinh, N. D.; Quang, N. D.; Lee, H.; Hien, T. T.; Hieu, N. M.; Kim, D.; Kim, C.; Kim, D. NO gas sensing kinetics at room Temperature under UV Light Irradiation of In2O3 Nanostructures. Sci. Rep. Vol. 6, pp. 35066 (2016).

    [9] Miccoli, B.; Cauda, V.; Bonanno, A.; Sanginario, A.; Bejtka, K.; Bella, F.; Fontana, M.; Demarchi, D. One-Dimensional ZnO/Gold Junction for Simultaneous and Versatile Multisensing Measurements. Sci. Rep., Vol. 6, pp. 29763 (2016).

    [10] Kwiatkowski, M.; Bezverkhyya, I.; Skompska, M. ZnO Nanorods Covered with a TiO2 Layer: Simple Sol–gel Preparation, and Optical, Photocatalytic and Photoelectrochemical properties. J. Mater. Chem. A, Vol. 3, pp. 12748 (2015).

    [11] Lim, Y. R.; Song, W.; Lee, Y.B.; Kim, S. K.; Hana, J. K.; Myunga, S.; Leea, S. S.; Ana, K. S.; Choi, C. J.; Lim, J. Horizontally-Connected ZnO-Graphene Hybrid Films for
    Multifunctional Devices. App. Sur. Sci., Vol. 379, pp. 238–241 (2016).

    [12] Jaisutti, R.; Kim, J.; Park, S. K.; Kim, Y. H. Low-Temperature Photochemically Activated Amorphous Indium Gallium-Zinc Oxide for Highly Stable Room-Temperature Gas Sensors. ACS Appl. Mater. Interfaces, Vol. 8, pp. 20192−20199 (2016).

    [13] Postica, V.; Holken, I.; Schneider, V.; Kaidas, V.; Polonskyi, O.; Cretu, v.; Tiginyanu, I.; Faupel, F.; Adelung, R.; Lupan, O. Multifunctional Device based on ZnO: Fe Nanostructured films with enhanced UV and Ultra-Fast Ethanol Vapor Sensing. Mater. Sci. Semicond. Process. Vol. 49, pp. 20–33 (2016).

    [14] Mishra, Y. K.; Gaurav, M.; Cretu, V.; Postica, V.; Lupan, O.; Reimer, T.; Paulowicz, I.; Hrkac, V.; Benecke, W.; Kienle, L.; Adelung, R.; Direct Growth of Freestanding ZnO Tetrapod Networks for Multifunctional Applications in Photocatalysis, UV Photodetection, and Gas Sensing. ACS Appl. Mater. Interfaces, Vol. 7, pp. 14303−14316 (2015).

    [15] Zou, Y.; Chen, S.; Sun, J.; Liu, J.; Che, Y.; Liu, X.; Zhang, J.; Yang, D. Highly Efficient Gas Sensor Using a Hollow SnO2 Microfiber for Triethylamine Detection. ACS Sens., Vol. 2, pp. 897−902 (2017).

    [16] Li, D.; Qin, L.; Zhao, P.; Zhang, Y.; Liu, D.; Liu, F.; Kang, B.; Wang, Y.; Song, H.; Zhang, T.; Lu. G. Preparation and Gas-sensing Performances of ZnO/CuO Rough Nanotubular Arrays for Low-Working Temperature H2S detection. Sens. Actuators, B, Vol. 254, pp. 834–841 (2018).
    [17] Liu, Y. J.; Zhang, H. D.; Zhang, J.; Li, S.; Zhang, J. C.; Zhu, J. W.; Gong, M. G.; Wang, X. X.; Long, Y. Z. Effects of Ce Doping and Humidity on UV Sensing Properties of Electrospun ZnO Nanofibers. J. Appl. Phys., Vol. 122, pp. 105102 (2017).

    [18] Zhu, L.; Li, Y.; Zeng, W. Enhanced Ethanol Sensing and Mechanism of Cr-doped ZnO nanorods: Experimental and Computational Study. Ceram. Int., Vol. 43, pp. 14873–14879 (2017).

    [19] Hsu, C. L.; Chang, S. J. ZnO Doped ZnO 1D Nanostructures: Synthesis, Properties, and Photodetector Application. Small, Vol. 10 (22), pp. 4562–4585 (2014).

    [20] Bhati, V.J.; Ranwa, S.; Fanetti, M.; Valant, M.; Kumar, M. Efficient Hydrogen Sensor based on Ni-Doped ZnO Nanostructures by RF Sputtering. Sens. Actuators, B, Vol. 255, pp. 588–597 (2018).

    [21] Hsu, C. L.; Li, H. H.; Hsueh, T. J. Water- and Humidity-Enhanced UV Detector by Using p‑Type La-Doped ZnO Nanowires on Flexible Polyimide Substrate. ACS Appl. Mater. Interfaces, Vol. 5, pp. 11142−11151 (2013).

    [22] Xua, X.L.; Chenb, Y.; Maa, S.Y.; Lia, W.Q.; Maoaa, Y. Z. Excellent Acetone Sensor of La-Doped ZnO Nanofibers with Unique Bead-like Structures. Sens. Actuators, B, Vol. 213, pp. 222–233 (2015).

    [23] Tian, S.; Zhang, Y.; Zeng, D.; Wang, H.; Li, N.; Xie, C.; Panc, C.; Zhao, X. Surface Doping of La ions into ZnO Nanocrystals to Lower the Optimal Working Temperature for HCHO Sensing Properties. Phys. Chem. Chem. Phys., Vol. 17, pp. 27437 (2015).

    [24] Korake, P.V.; Dhabbe, R.S.; Kadam, A.N.; Gaikwad, Y.B.; Garadkar, K.M. Highly Active Lanthanum Doped ZnO Nanorods for Photodegradation of Metasystox. J. Photochem. Photobiol., B, Vol. 130, pp. 11–19 (2014).

    [25] Zhang, H. D.; Yu, M.; Zhang, J. C.; Sheng, C. H.; Yan, X.; Han, W. P.; Liu, Y. C.; Chen, S.; Shen, G. Z.; Long, Y. Z. Fabrication and Photoelectric
    Properties of La-doped p-type ZnO Nanofibers and Crossed p–n Homojunctions by Electrospinning. Nanoscale, Vol. 7, pp. 10513 (2015).

    [26] Xiong, W.; Yan, H.; Wang, L.; Verbetsky, V.; Zhao, X.; Mitrokhin, S.; Li, B.; Li, J.; Wang, Y. Characteristics of A2B7-type La-Y-Ni-based Hydrogen Storage Alloys Modified by Partially Substituting Ni with Mn. Int. J. Hydrogen Energy, Vol. 42, pp. 10131–10141 (2017).
    [27] Kathiravan, D.; Huang, B. R.; and Saravanan, A.; Self-Assembled Hierarchical Interfaces of ZnO Nanotubes/Graphene Heterostructures for Efficient Room Temperature Hydrogen Sensors. ACS Appl. Mater. Interfaces, Vol. 9, pp. 12064−12072 (2017).
    [28] Zhao, D.; Wang, T.; Heineman, W. R. Advances in H2 Sensors for Bioanalytical Applications. TrAC, Trends Anal. Chem, Vol. 79, pp. 269−275 (2016).
    [29] Zhang, X.; Qin, J.; Xue, Y.; Yu, P.; Zhang, B.; Wang, L.; Liu, R. Effect of aspect ratio and surface defects on the photocatalytic activity of ZnO nanorods. Sci. Rep., Vol. 4, pp. 4596 (2014).
    [30] Humayun, Q.; Kashif, M.; Hashim, U.; Qurashi, A. Selective Growth of ZnO Nanorods on Microgap Electrodes and Their Applications in UV Sensors. Nanoscale Res. Lett., Vol. 9, pp. 29 (2014).
    [31] Li, G.; Li, C.; Xu, Z.; Cheng, Z.; Lin, J. Facile Synthesis, Growth Mechanism and Luminescence Properties of Uniform La(OH)3: Ho3+/Yb3+ and La2O3: Ho3+/Yb3+ Nanorods. CrystEngComm., Vol. 12, pp. 4208–4216 (2010).
    [32] Chretien, S.; Metiu, H. Hydrogen Dissociative Adsorption on Lanthana: Polaron Formation and the Role of Acid−Base Interactions. J. Phys. Chem. C, Vol. 119, pp. 19876−19882 (2015).
    [33] Comfort, E.; Lee, J. U. Large Bandgap Shrinkage from Doping and Dielectric Interface in Semiconducting Carbon Nanotubes. Sci. Rep., Vol. 6, pp. 28520 (2016).
    [34] George, S.; Pokhrel, S.; Ji, Z.; Henderson, B. L.; Xia, T.; Li, L. J.; Zink, J. I.; Nel, A.E.; Madler, L. Role of Fe Doping in Tuning the Band Gap of TiO2 for Photo-Oxidation Induced Cytotoxicity Paradigm. J Am Chem Soc., Vol. 27, pp.133 (2011).
    [35] Huang, B. R.; Lin, J. A Facile Synthesis of ZnO Nanotubes and their Hydrogen Sensing Properties. Appl. Surf. Sci., Vol. 280, pp. 945−949 (2013).
    [36] Yang, X.; Wang, W.; Xiong, J.; Chen, L.; Ma, Y. ZnO: Cd Nanorods Hydrogen Sensor with Low Operating Temperature. Int. J. Hydrogen Energy, Vol. 40, pp. 12604−12609 (2015).
    [37] Kumar, M.; Bhati, V. S.; Ranwa, S.; Singh, J.; Kumar, M. Pd/ZnO Nanorods based Sensor for Highly Selective Detection of Extremely Low Concentration Hydrogen. Sci. Rep., Vol. 7, pp. 236 (2017).

    [38] Huang, H.; Gong, H.; Chow, C. L.; Guo, J.; White, T. J.; Tse, M. S.; Tan, O. K. Low-Temperature Growth of SnO2 Nanorod Arrays and Tunable n–p–n Sensing Response of a ZnO/SnO2 Heterojunction for Exclusive Hydrogen Sensors. Adv. Funct. Mater., Vol. 21, 2680–2686 (2011).

    無法下載圖示 全文公開日期 2024/01/04 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE