簡易檢索 / 詳目顯示

研究生: 吳翊甄
Yi-Zhen Wu
論文名稱: 氧化鎳-還原氧化石墨烯-氧化鋅奈米複合結構之光感測器
NiO-Reduced Graphene Oxide-ZnO composite nanostructures for photodetectors
指導教授: 黃柏仁
Bohr-Ran Huang
口試委員: 黃柏仁
Bohr-Ran Huang
周賢鎧
Shyan-Kay Jou
章詠湟
Yung-Huang Chang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 109
中文關鍵詞: 氧化鋅奈米柱還原氧化石墨烯氧化鎳紫外光感測器
外文關鍵詞: ZnO nanorods, Reduced Graphene Oxide, NiO, UV photodetector
相關次數: 點閱:612下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要分為四大部分,第一部分探討氧化鋅奈米柱在晶種層轉速不同下 對紫外光感測的影響,並進一步對其做物性及電性分析;第二部分探討在晶種層 加入還原氧化石墨烯後形成還原氧化石墨烯-氧化鋅奈米複合結構之變化,並觀 察在其晶種層轉速不同下對紫外光感測的影響,再對其做物性以及電性的分析; 第三部分探討在晶種層加入醋酸鎳後形成氧化鎳-氧化鋅奈米複合結構之變化, 並觀察在其晶種層轉速不同下對紫外光感測的影響,再對其做物性以及電性之分 析;第四部份探討在晶種層加入還原氧化石墨烯以及醋酸鎳後形成氧化鎳-還原 氧化石墨烯-氧化鋅奈米複合結構之變化,接著量測其晶種層在轉速不同下對紫 外光感測之變化,並對其做物性及電性之分析。
    經過實驗及分析後發現加入 P 型材料:還原氧化石墨烯,結構的改變讓比表 面積與空乏區增大,暗電流下降進而使紫外光感測器之亮暗響應提高,其紫外光 亮暗響應從 517.95 提高至 1880.73。
    除了還原氧化石墨烯,在第三部分的實驗還嘗試加入另一種 P 型材料:氧化 鎳,用一樣的原理來增加空乏區寬度,進而電阻上升,暗電流下降,氧化鎳-氧 化鋅奈米柱之紫外光亮暗響應提高至 5776.02。
    最後綜合還原氧化石墨烯與氧化鎳之優點與氧化鋅奈米結構結合,以再次提 升紫外光響應,氧化鎳-還原氧化石墨烯-氧化鋅奈米柱之紫外光亮暗響應提高至 31116.6。


    In this study, we report UV photodetectors (PDs) based on the combination of ZnO nanorods (ZNR), reduced graphene oxide (rGO) and nickel oxide (NiO) via a simple solution process. More briefly, we divide this study into four parts. The first part is about ZNR growth using different seed layer spin speed based UV PDs. The second part comprises the UV PDs based on rGO-ZNR with different seed layer spin speed and the third part explains UV PDs based on NiO-ZNR with different seed layer spin speed. The fourth part describes the UV PDs with the combinations of NiO-rGO-ZNR. From the overall studies, it was revealed that the as-prepared NiO-rGO-ZNR based PDs exhibit highly enhanced switch (IPhoto/IDark) ratio of 31,116.6 compared to those of NiO-ZNR (5776.02), rGO-ZNR (1880.73) and ZNR (517.95) based PDs. In addition, photo-responsivity (R), quantum efficiency (Q.E) and UV/Visible rejection ratio were also calculated using the responsivity vs wavelength curves. Obviously, the NiO-rGO-ZNR PDs shows the enhanced R (0.072 A/W), Q.E (24.38 %) and UV/Vis rejection ratio (4.49) compared to those of other PDs.

    中文摘要....................................................................................................................... I 英文摘要..................................................................................................................... II 致謝............................................................................................................................ III 目錄............................................................................................................................ IV 圖目錄..................................................................................................................... VIII 表目錄...................................................................................................................... XII 第一章 緒論............................................................................................................ 1 1.1 前言............................................................................................................... 1 1.2 研究動機....................................................................................................... 2 第二章 文獻回顧................................................................................................... 3 2.1 氧化鋅材料特性簡介................................................................................... 3 2.1.1 氧化鋅基本性質與結構.................................................................... 3 2.1.2 氧化鋅發光機制................................................................................ 5 2.1.3 氧化鋅一維結構水熱成長機制簡介................................................ 9 2.2 還原氧化石墨烯特性簡介......................................................................... 11 2.2.1 還原氧化石墨烯的基本性質與結構.............................................. 11 2.2.2 還原氧化石墨烯成長機制與製備方法.......................................... 12 2.2.3 還原氧化石墨烯的特性.................................................................. 15 2.3 氧化鎳之特性簡介..................................................................................... 15 2.4 紫外光感測器理論..................................................................................... 16 2.5 氧化鋅紫外光感測器................................................................................. 18 IV 第三章 實驗方法................................................................................................. 21 3.1 實驗設計與流程......................................................................................... 21 3.2 製備之材料介紹......................................................................................... 23 3.3 基板清洗..................................................................................................... 24 3.4 水熱法成長氧化鋅奈米柱......................................................................... 25 3.4.1 氧化鋅晶種層-製備 ...................................................................... 25 3.4.2 成長還原氧化石墨烯...................................................................... 26 3.4.3 還原氧化石墨烯-氧化鋅晶種層-製備........................................... 26 3.4.4 氧化鎳-氧化鋅晶種層-製備........................................................... 27 3.4.5 氧化鎳-還原氧化石墨烯-氧化鋅晶種層-製備 ............................. 28 3.4.6 成長氧化鋅奈米柱.......................................................................... 29 3.5 儀器設備與材料分析方法......................................................................... 30 3.5.1 場發射掃描式電子顯微鏡(FE-SEM) ........................................... 30 3.5.2 能量分散光譜儀(Energy Dispersive Spectrometer,EDS) ........... 31 3.5.3 X 射線繞射儀(X-ray diffraction,XRD) ........................................ 32 3.5.4 光激發螢光光譜儀(Photoluminescence,PL)............................... 33 3.5.5 光感測器(Photodetector,PD)........................................................ 34 第四章氧化鋅奈米結構之光感測特性...................................................... 35 4.1 不同轉速晶種層成長氧化鋅奈米柱之特性分析..................................... 35 4.1.1 表面型態分析.................................................................................. 35 4.1.2X-ray繞射儀分析............................................................................ 38 4.1.3 光激發螢光頻譜儀分析.................................................................. 39 4.2 不同轉速晶種層成長氧化鋅奈米柱之紫外光感測分析......................... 41 V 第五章 還原氧化石墨烯-氧化鋅奈米結構之光感測特性.................... 46 5.1 不同轉速晶種層成長還原氧化石墨烯-氧化鋅奈米柱之特性分析....... 46 5.1.1 表面型態分析.................................................................................. 46 5.1.2X-ray繞射儀分析............................................................................ 50 5.1.3 光激發螢光頻譜儀分析.................................................................. 52 5.2 不同轉速晶種層成長還原氧化石墨烯-氧化鋅奈米柱之紫外光感測分析 ...................................................................................................................................... 54 第六章 氧化鎳-氧化鋅奈米結構之光感測特性....................................... 60 6.1 不同轉速晶種層成長氧化鎳-氧化鋅奈米柱之特性分析....................... 60 6.1.1 表面型態分析.................................................................................. 60 6.1.2X-ray繞射儀分析............................................................................ 64 6.1.3 光激發螢光頻譜儀分析.................................................................. 65 6.2 不同轉速晶種層成長氧化鎳-氧化鋅奈米柱之紫外光感測分析........... 66 第七章 氧化鎳-還原氧化石墨烯-氧化鋅奈米結構之光感測特性..... 71 7.1 不同轉速晶種層成長氧化鎳-還原氧化石墨烯-氧化鋅奈米柱之特性分析 .................................................................................................................................... 71 7.1.1 表面型態分析.................................................................................. 71 7.1.2X-ray繞射儀分析............................................................................ 75 7.1.3 光激發螢光頻譜儀分析.................................................................. 77 7.2 不同轉速晶種層成長氧化鎳-還原氧化石墨烯-氧化鋅奈米柱之紫外光感 測分析........................................................................................................................ 79 第八章結論與未來展望.................................................................................. 85 VI 8.1 結論............................................................................................................. 85 8.2 未來展望..................................................................................................... 87 參考文獻................................................................................................................. 88 圖目錄 圖2-1 氧化鋅之(a)纖鋅礦結構;(b)閃鋅礦結構;(c)岩鹽結構 ........................ 5 圖2-2 氧化鋅能階示意圖...................................................................................... 6 圖2-3 V(singly ionized oxygen vacancy)模型(a)自由載子濃度低;(b)自由載 子 濃度高.................................................................................................................. 8 圖2-4 氧化鋅 Green emission 強度、VO *的數量和自由載子濃度隨溫度變化關 係圖...................................................................................................................... 8 圖2-5 異質成核生長示意圖................................................................................ 10 圖2-6 石墨烯氧化及還原結構(a)石墨烯氧化物之化學結構 (b)還原後的分子 模型.................................................................................................................... 11 圖2-7 石墨、化學處理、震盪分散、還原圖.................................................... 13 圖2-8 氧化鎳晶體結構(面心立方) ..................................................................... 16 圖2-9 氧敏化機制................................................................................................ 19 圖2-10 氧氣吸附與脫附示意圖............................................................................ 20 圖3-1 (a)氧化鋅奈米結構實驗流程圖、(b) 還原氧化石墨烯-氧化鋅奈米結構 實驗流程圖、(c) 氧化鎳-氧化鋅奈米結構實驗流程圖、(d) 氧化鎳-還原氧化 石墨烯-氧化鋅奈米結構實驗流程圖.............................................................. 21 圖3-2 基板清洗流程圖........................................................................................ 25 圖3-3 製備氧化鋅晶種層示意圖........................................................................ 26 圖3-4 氧化鋅晶種層熱退火溫度曲線................................................................ 26 圖3-5 製備還原氧化石墨烯-氧化鋅晶種層示意圖 .......................................... 27 圖3-6 製備氧化鎳-氧化鋅晶種層示意圖 .......................................................... 28 圖3-7 製備氧化鎳-還原氧化石墨烯-氧化鋅晶種層示意圖 ............................. 29 圖3-8 水熱成長氧化鋅奈米結構之儀器架構圖................................................ 30 圖3-9 高解析度場發射掃描式電子顯微鏡........................................................ 31 VIII 圖3-10 X-ray 繞射儀 (BRUKER, D8 DISCOVER) ......................................... 33 圖3-11 光訊號轉電訊號之示意圖........................................................................ 34 圖3-12 光感測器量測系統示意圖........................................................................ 34 圖4.1-1 水熱成長氧化鋅奈米柱之 SEM 圖 (a) ZNR(100 rpm)、(b) ZNR(250 rpm)、(c) ZNR(500 rpm)、 (d)ZNR(750rpm)、(e)ZNR(1000rpm).................................................. 35 圖4.1-2 水熱成長氧化鋅奈米柱之 EDS 分析圖 (a) ZNR (100 rpm)、(b) ZNR(250 rpm)、(c) ZNR(500 rpm)、 (d)ZNR(750rpm)、(e)ZNR(1000rpm).................................................. 37 圖4.1-3 不同轉速晶種層成長氧化鋅奈米柱之 X-ray 繞射分析圖 .................... 38 圖4.1-4 氧化鋅缺陷能帶結構圖............................................................................ 39 圖4.1-5 不同轉速晶種層成長氧化鋅奈米柱之光激發螢光頻譜分析圖............ 40 圖4.2-1 不同轉速晶種層成長氧化鋅奈米柱之電流-電壓曲線圖 ...................... 42 圖4.2-2 不同轉速晶種層成長氧化鋅奈米柱之電流-時間曲線圖 (a) ZNR (100 rpm)、(b) ZNR(250 rpm)、(c) ZNR(500 rpm)、 (d) ZNR(750 rpm)、(e) ZNR(1000 rpm) ................................................ 43 圖4.2-3 晶種層轉速 500 rpm 時成長氧化鋅奈柱之響應-波長曲線圖............... 45 圖5.1-1 水熱法成長還原氧化石墨烯-氧化鋅奈米柱之 FE-SEM 圖 (a) rGO-ZNR (100 rpm)、(b) rGO-ZNR(250 rpm)、 (c) rGO-ZNR(500 rpm)、(d) rGO-ZNR(750 rpm)、 (e) rGO-ZNR(1000 rpm)............................................................................ 47 圖5.1-2 水熱法成長還原氧化石墨烯-氧化鋅奈米柱之 EDS 圖 (a) rGO-ZNR (100 rpm)、(b) rGO-ZNR(250 rpm)、 (c) rGO-ZNR(500 rpm)、(d) rGO-ZNR(750 rpm)、 (e) rGO-ZNR(1000 rpm)............................................................................ 49 圖5.1-3 不同轉速晶種層成長還原氧化石墨烯-氧化鋅奈米柱之 XRD 分析圖..51 IX 圖5.1-4 不同轉速晶種層成長還原氧化石墨烯-氧化鋅奈米柱之光激發螢光頻譜 分析圖................................................................................................................ 53 圖5.2-1 不同轉速晶種層成長還原氧化石墨烯-氧化鋅奈米柱之電流-電壓曲線 圖........................................................................................................................ 56 圖5.2-2 不同轉速晶種層成長還原氧化石墨烯-氧化鋅奈米柱的電流-時間曲線 圖........................................................................................................................ 57 圖5.2-3 晶種層轉速 500 rpm 成長 rGO-ZNR 之響應-波長曲線圖 .................... 59 圖5.2-4 氧化鋅奈米柱與還原氧化石墨烯氧化鋅奈米柱能帶比較圖................ 59 圖6.1-1 水熱法成長氧化鎳-氧化鋅奈米柱之 FE-SEM 圖 (a)NiO-ZNR (100 rpm)、(b) NiO-ZNR (250 rpm)、 (c) NiO-ZNR (500 rpm)、(d) NiO-ZNR (750 rpm) (e) NiO-ZNR (1000 rpm) ........................................................................... 61 圖6.1-2 水熱法成長氧化鎳-氧化鋅奈米柱之 EDS 分析圖 (a)NiO-ZNR (100 rpm)、(b) NiO-ZNR (250 rpm)、 (c) NiO-ZNR (500 rpm)、(d) NiO-ZNR (750 rpm) (e) NiO-ZNR (1000 rpm) ........................................................................... 63 圖6.1-3 不同轉速晶種層成長氧化鎳-氧化鋅奈米柱之之 X-ray 繞射分析圖 ... 64 圖6.1-4 不同轉速晶種層成長氧化鎳-氧化鋅奈米柱之光激發螢光頻譜圖 ...... 65 圖6.2-1 不同轉速晶種層成長氧化鎳-氧化鋅奈米柱之電流-電壓曲線圖 (a)NiO-ZNR (100 rpm)、(b) NiO-ZNR (250 rpm)、 (c) NiO-ZNR (500 rpm)、(d) NiO-ZNR (750 rpm) (e)NiO-ZNR(1000rpm) ......................................................................... 67 圖6.2-2 不同轉速晶種層成長氧化鎳-氧化鋅奈米柱之電流-時間曲線圖 (a)NiO-ZNR (100 rpm)、(b) NiO-ZNR (250 rpm)、 (c) NiO-ZNR (500 rpm)、(d) NiO-ZNR (750 rpm)、 (e) NiO-ZNR (1000 rpm) ........................................................................... 68 X 圖6.2-3 晶種層轉速 500 rpm 成長氧化鎳-氧化鋅奈米柱之響應-波長曲線圖 . 70 圖7.1-1 水熱法成長氧化鎳‐還原氧化石墨烯‐氧化鋅奈米柱之 FE-SEM 分析圖 (a) NiO-rGO-ZNR (100 rpm)、(b) NiO-rGO-ZNR (250 rpm)、 (c) NiO-rGO-ZNR(500 rpm)、(d) NiO-rGO-ZNR (750 rpm)、 (e)NiO-rGO-ZNR(1000rpm)................................................................ 72 圖7.1-2 水熱法成長氧化鎳‐還原氧化石墨烯‐氧化鋅奈米柱之 EDS 分析圖 (a) NiO-rGO-ZNR (100 rpm)、(b) NiO-rGO-ZNR (250 rpm)、 (c) NiO-rGO-ZNR(500 rpm)、(d) NiO-rGO-ZNR (750 rpm)、 (e)NiO-rGO-ZNR(1000rpm)................................................................ 74 圖7.1-3 不同轉速晶種層成長氧化鎳‐還原氧化石墨烯‐氧化鋅奈米柱之 X-ray 繞 射分析圖............................................................................................................ 76 圖7.1-4 不同轉速晶種層成長氧化鎳‐還原氧化石墨烯‐氧化鋅奈米柱之光激發 螢光頻譜分析圖................................................................................................ 78 圖7.2-1 不同轉速晶種層成長氧化鎳‐還原氧化石墨烯‐氧化鋅奈米柱之電流‐電 壓曲線圖............................................................................................................ 81 圖7.2-2 不同轉速晶種層成長氧化鎳-還原氧化石墨烯-氧化鋅奈米柱之電流-時 間曲線圖 (a) NiO-rGO-ZNR (100 rpm)、(b) NiO-rGO-ZNR (250 rpm)、 (c) NiO-rGO-ZNR (500 rpm)、(d) NiO-rGO-ZNR (750 rpm)、 (e) NiO-rGO-ZNR (1000 rpm) ................................................ 82 圖7.2-3 晶種層轉速 500 rpm 之晶種層成長 NiO-rGO-ZNR 之響應-波長曲線圖 .............................................................................................................................. 84 XI 表目錄 表2-1 氧化鋅參數表................................................................................................. 4 表3-1 氧化鋅水熱法之濃度比例參數................................................................... 30 表 4-1 不同轉速之晶種層成長氧化鋅奈米柱(ZNR)紫外光感測之光電流、暗電流 與亮暗響應整理表.................................................................................................... 43 表 5-1 不同轉速之晶種層成長還原氧化石墨烯-氧化鋅奈米柱(rGO-ZNR)紫外光 感測之光電流、暗電流與亮暗響應整理表............................................................ 56 表 6-1 不同轉速之晶種層成長氧化鎳-氧化鋅奈米柱(NiO-ZNR)紫外光感測之光 電流、暗電流與亮暗響應整理表............................................................................ 68 表 7-1 不同轉速之晶種層成長氧化鎳-還原氧化石墨烯-氧化鋅奈米柱 (NiO-rGO-ZNR)紫外光感測之光電流、暗電流與亮暗響應整理表.................... 81

    參考文獻
    [1]. AyratM.DimievandJamesM.Tour.MechanismifGrapheneOxideFormation. ACS NANO 2014.
    [2]. KousukeIhokura.andJesphWaston.TheStnnicOxideGasSensorPrinciplesand Applications, CRC Press 1994.
    [3]. YanpingZhang,HaiboLi,LikunPan,TingLuZhuoSun.Capacitivebehaviorof graphene-ZnO composite film for supercapacitors. Journal of Electroanalytical Chemistry. 2009.
    [4]. AndrewMills, StephenLe Hunte. An overview of semiconductor photocatalysis. Journal of Photochemistry and Photobiology. A: Chemistry 1997.
    [5]. Ved Prakash Verma, Santanu Das, Indranil Lahiri, Wonbong Choi. Large-area graphene on polymer film for flexible and transparent anode in field emission device. Applied physics leters 2010.
    [6]. MichaelGrätzel. Dye-sensitized solar cells. Journal of Photochemistry and Photobiology C: Photochemistry 2003.
    [7]. Klingshirn,C.TheLuminescenceofZnOunderHighOne‐andTwo‐Quantum Excitation. physica status solidi 1975.
    [8]. S.LiangaH.ShengaY.LiuaZ.HuoaY.LuaH.Shen.ZnOSchottkyultraviolet photodetectors Journal of Crystal Growth. 2001.
    [9]. Shu-Yi Tsai Min-Hsiung Hon Yang-Ming Lu Fabrication of transparent
    p-NiO/n-ZnO heterojunction devices for ultraviolet photodetectors. Solid-State
    Electronics. 2011.
    [10].Seung Hwan Ko, Daeho Lee, Hyun Wook Kang, Koo Hyun Nam, Joon Yeob Yeo,
    Suk Joon Hong, Costas P. Grigoropoulos, and Hyung Jin Sung. Nanoforest of Hydrothermally Grown Hierarchical ZnO Nanowires for a High Efficiency
    88
    Dye-Sensitized Solar Cell. Nano Lett. 2011.
    [11].K. KeisaC. BaueraG. BoschlooaA. HagfeldtaK. WestermarkbH. RensmobH.
    Siegbahn. Nanostructured ZnO electrodes for dye-sensitized solar cell
    applications. Journal of Photochemistry and Photobiology A: Chemistry.2002.
    [12]. Jiaqiang Xua, Qingyi Pan, Yu'anShun, Zhizhuang Tian. Grain size control and
    gas sensing properties of ZnO gas sensor, Sensors and Actuators B 2000.
    [13]. M. W. Ahn, K.S. Park, J.-H. Heo, J.-G. Park, D.-W. Kim, K. J. Choi, J.-H. Lee, and S.-H. Hong. Gas sensing properties of defect-controlled ZnO-nanowire gas
    sensor. Appl. Phys. Lett.2008.
    [14].Honghui Guo, Jianzhang Zhou, ZhonghuaLin. ZnO nanorod light-emitting
    diodes fabricated by electrochemical approaches. Electrochemistry
    Communications. 2008.
    [15].Xuan Fang., Jin hua Li., Phosphorus-Doped p-Type ZnO Nanorods and ZnO
    Nanorod p-n Homojunction LED Fabricated by Hydrothermal Method. Phys.
    Chem. C 2009.
    [16].S.J. Peartona., D.P.Norton., K.lp., Y.W.Heo., T.Steiner. Recent progress in
    processing and properties of ZnO. Superlattices and Microstructures 2003. [17].Morkoc., General properties of ZnO. Zinc Oxide Fundamentals, Materials and
    Device Technology 2009.
    [18]. 趙偉迪,氧化奈米線應用於發光二極體之研製,博士論文,國立台灣師大學
    機電科技學系,2009.
    [19]. K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, and B. E.
    Gnade. Mechanisms behind green photoluminescence in ZnO phosphor powders.
    Appl. Phys. 1996.
    [20]. K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, and B. E.
    Gnade. Mechanisms behind green photoluminescence in ZnO phosphor powders. 89
    Appl. Phys. 1996.
    [21].Jong-SooLee., Kwangsue Park., Myung-IL Kang., IL-Woo Park., Soo-Won Kim.,
    Woon Kap Cho., Hyon Soo Han., SangsigKim ZnO nanomaterials synthesized
    from thermal evaporation of ball-milled ZnO powders. 2003.
    [22]. Geng, C.; Jiang, Y.; Yao, Y.; Meng, X.; Zapien J. A.; Lee C. S.; Lifshitz, Y.; Lee,
    S. T. AdV. Funct. Mater. 2004.
    [23].Lyu, S. C.; Cheol, Y. Z.; Lee, J.; Ruh, H.; Lee, H. J. Chem. Mater.
    [24]. HONGYI MI1. Et al, TFTs Made of MOCVD ZnO With ALD Al2O3 Gate
    Dielectric.Electron devices society VOLUME 4, NO. 2, MARCH 2016. [25].S Shaikh et al, Chemical bath deposited ZnO thin film based UV
    photoconductive detector, Journal of Alloys and Compounds 664 (2016)
    242-249.
    [26].D. C. Look and D. C. Reynolds Characterization of homoepitaxial p-type ZnO
    grown by molecular beam epitaxy.Appl. Phys. Lett. 81, 1830 (2002)
    [27]. Sun, Y.; Fuge, G. M.; Ashfold, M. N. R. Chem. Phys. Lett. 2004, 396, 21-26
    [28]. Adib Abou Chaaya et al, ZnO 1D nanostructures designed by combining atomic
    layer deposition and electrospinning for UV sensor applications, J. Mater. Chem.
    A. 2 (2014) 20650-20658.
    [29]. M. Andres-Verges, A. Mifsud, C.J. Serna, Formation of rod-like zinc oxide
    microcrystals in homogeneous solutions, Journal of the Chemical Society,
    Faraday Transactions 86 (1990) 959–963.
    [30].Vayssieres, Lionel, et al. Purpose-built anisotropic metal oxide material: 3D
    highly oriented microrod array of ZnO. The Journal of Physical Chemistry
    B105.17 (2001) 3350-3352.
    [31].Y.H.Yang et al, ZnO nanowire and amorphous diamond nanocomposites and
    field emission enhancement. Chemical Physics Letters Volume 403, Issues 4–6, 90
    25 February 2005, Pages 248-251
    [32].Galina V. Dubacheva. Functional monolayers from carbon nanostructures –
    fullerenes, carbon nanotubes, and graphene – as novel materials for solar energy
    conversion. Coordination Chemistry Reviews 256 (2012) 2628–2639 [33].Brodie, B. Note sur un Nouveau Procede pour la Purification et la Pesagregation
    du Graphite. Ann. Chim. Phys.1855, 45, 351–353.
    [34]. K.S Novoselov A. K Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V.Dubonos, I.V.
    Grogorieva, A.A. Forsov Science, 306(2004), P666-669.
    [35]. Y.V. Stebunov, O.A. Aftenieva, A.V. Arsenin, V.S. Volkov ACS Appl. Mater.
    Interfaces, 7 (2015), pp. 21727-21734.
    [36]. Y. Liu, Y. Li, J.Y. Liu, C.H. Deng, X.M. Zhang J. Am. Soc. Mass. Spectr., 22
    (2011), p. 2188-2198.
    [37].F. Li, X. Jiang, J.J. Zhao, S.B. Zhang. Nano Energy, 16 (2015), p. 488-515 [38].P. Kalluru, R. Vankayala, C.S. Chiang, K.C. Hwang Biomaterials, 95 (2016), p.
    1-10.
    [39].H. He et al., Chem. Phys. Lett., 287, 53 (1998) [40].M. Chhowalla et al., Nature Chem. (2010)
    [41]. W.S Hummers, R.E Offeman, J. Am. Chem. Soc., Preparation of Graphitic Oxide
    ACS Publications 80 (1958) 1339-1339.
    [42]. Y. Xu et al., J. Am. Chem. Soc., Flexible graphene films via the filtration of
    water-soluble noncovalent functionalized graphene sheets ACS Publications 130
    (2008) 5856.
    [43]. http://www.chemhui.com/16875.html.
    [44]. P. Olejnik, A. Świetlikowska, M. Gniadek, B. Pałys. Phys. Chem. C, 118 (2014),
    p. 29731-29738
    [45]. D.H. Du, P.C. Li, J.Y. Ouyang. ACS Appl. Mater. Interfaces, 7 (2015), p.
    91
    26952-26958
    [46].W.F. Chen, L.F. Yan, P.R. Bangal. Carbon, 48 (2010), p. 1146-1152
    [47].W.F. Chen, L.F. Yan, P.R. Bangal. Carbon, 48 (2010), pp. 1146-1152
    [48].A. Bayat, E. Saievar-Iranizad. Synthesis of green-photoluminescent single layer
    graphene quantum dots: Determination of HOMO and LUMO energy states.
    Journal of Luminescence 192 (2017) 180-183.
    [49].Determination of HOMO and LUMO energy states Steurer, P.; Wissert, R.;
    Thomann, R.; Mulhaupt, R. Macromol. Rapid Commun., 2009, 30(4): 316. [50].Hannes, C. S.; Li, J. L.; Michael, J. M.; Hiroaki, S.; Margarita, H. A.; Douglas, H. A.; Robert, K. P.; Roberto, C.; Dudley, A. S.; Ilhan, A. A. J. Phys. Chem. B, 2006,
    110(17): 8535.
    [51]. WufengChen. et al, Carbon Volume 48, Issue 4, April 2010, Pages 1146-1152.
    [52]. Chun Kiang Chua. Chemical reduction of graphene oxide: a synthetic chemistry
    viewpoint. Chem. Soc. Rev., 2014, 43, 291-312.
    [53].K.K.H.De Silva. Chemical reduction of graphene oxide using green reductants.
    Carbon Volume 119, August 2017, Pages 190-199.
    [54]. L. G. Guex et al, Experimental review: chemical reduction of graphene oxide to
    reduced graphene oxide by aqueous chemistry. Nanoscale, 2017, 9, 9562-9571.
    [55]. SelvarajChinnathambi. Sensors and Actuators B: Chemical Volume 264, 1 July 2018,
    Pages 38-44.
    [56]. M. Nur Hossain. Scientific Reports | 7: 3184 | DOI:10.1038/s41598-017-03601-3
    [57]. http://www.cnreagent.com/source/syziliao_201.html.
    [58]. https://en.wikipedia.org/wiki/Nickel(II)_oxide.
    [59]. A. Mallikarjuna Reddya. et al, Annealing Effect on the Physical Properties of dc
    Reactive Magnetron Sputtered Nickel Oxide Thin Films. Physics Procedia 49 ( 2013 ) 9 - 14.
    92
    [60].Hao-Long Chen. et al, Characterization of sputtered NiO thin films .Surface and Coatings Technology 198(1):138-142 August 2005.
    [61].Swagten HJM, Strijkers GJ, Bloemen PJH, Willekens MMH, De Jonge WJM (1996) Phys Rev B 53:1039.
    [62].S.C.Chen. et al, Surface and Coatings Technology Volume 205, Supplement 1, 25 December 2010, Pages S236-S240.
    [63].BSasi. Preparation of transparent and emiconducting NiO films. Vacuum Volume 68, Issue 2, 31 October 2002, Pages 149-154.
    [64].H. Sato et al, Transparent conducting p-type NiO thin films prepared by agnetron sputtering Thin Solid Films, 236 (1993) 27-31.
    [65].YuDuWeinan et al, Preparation of NiO nanoparticles in microemulsion and its gas sensing performance.Materials Letters Volume 68, 1 February 2012, Pages 168-170.
    [66]. James A.Dirksen. NiO thin-film formaldehyde gas sensor. Sensors and Actuators B: Chemical Volume 80, Issue 2, 20 November 2001, Pages 106-115.
    [67].MalkeshkumarPatel. Excitonic metal oxide heterojunction (NiO/ZnO) solar cells for all-transparent module integration. Solar Energy Materials and Solar Cells Volume 170, October 2017, Pages 246-253.
    [68].Andrew Nattestad. Dye-sensitized nickel(II)oxide photocathodes for tandem solar cell applications. Nanotechnology, Volume 19, Number 29.
    [69]. J.F. Li, R. Yan, B. Xiao, D.T. Liang, L.J. Du Environ Sci Technol, 42 (2008), p. 6224-6229.
    [70].X.P. Zhang, G.P. Chen Thin Solid Films, 298 (1997), pp. 53-56 View Record in Scopus.
    [71].Tadatsugu Minami Transparent conducting oxide semiconductors for transparent electrodesSemiconductor Science and Technology, Volume 20, Number 4.
    93
    [72].J.F. Wager Science, 300 (2003), p. 1245.
    [73]. R.H. Kodama, S.A. Makhlouf, A.E. Berkowitz Phys. Rev. Lett., 79 (1997), p.
    1393.
    [74].J.K. Kang, S.W. Rhee Thin Solid Films, 391 (2001), p. 57.
    [75]. J.F. Wang, J.N. Cai, Y.H. Lin, C.W. Nan Appl. Phys. Lett., 87 (2005), p. 202501. [76]. B.A. Reguig, A. Khelil, L. Cattin, M. Morsli, J.C. Bernède Appl. Surf. Sci., 253
    (2007), p. 4330.
    [77]. H. Sato, T. Minami, S. Takata, T. Yamada Thin Solid Films, 236 (1993), p. 27. [78].曾世凱, 氧化鋅一維結構成長、元件組裝及紫外光偵測器製作之研究, 博士
    論文, 國立成功大學材料科學及工程學系 (2012).
    [79].Simon M. Sze and Ming-Kwei Lee, Semiconductor devices: Physics and
    technology, John Wiley & Sons, New York (1985).
    [80].S.K. Shaikh. ZnO nanorod based highly selective visible blind ultra-violet
    photodetector and highly sensitive NO2 gas sensor. Superlattices and
    MicrostructuresVolume 120, August 2018, Pages 170-186.
    [81].Yizheng Jin. Solution-Processed Ultraviolet Photodetectors Based on Colloidal
    ZnO Nanoparticles. Nanoletters 2008 vol 8, No. 6 1649-1653. [82].國立台灣科技大學 X 光繞射儀實驗室
    [83].E. G. Bylander. Surface effects on the low-energy cathodoluminescence of zinc
    oxide, e American Institute of Physics.(1978)
    [84]. Bixia Lin, Zhuxi Fu, and Yunbo JiaGreen luminescent center in undoped zinc
    oxide films deposited on silicon substrates. APPLIED PHYSICS LETTERS
    VOLUME 79, NUMBER 7.
    [85].Yan Hailong. Solution growth of NiO nanosheets supported on Ni foam as
    high-performance electrodes for supercapacitors. Nanoscale Research Letters 9(1):424

    QR CODE