簡易檢索 / 詳目顯示

研究生: Truong Van Dai Hai
Truong Van Dai Hai
論文名稱: 以NiO/TiO2程序於紫外光照射下還原液相中二氧化碳至甲醇之研究
Photocatalytic Reduction of Carbon Dioxide to Methanol in Aqueous Phase under UV Light Irradiation using NiO/TiO2
指導教授: 曾堯宣
Yao Hsuan Tseng
顧 洋
Young Ku
口試委員: 曾堯宣
顧 洋
蔣本基
Yao Hsuan Tseng
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 125
中文關鍵詞: 光催化程序二氧化鈦光還原二氧化碳氧化鎳/二氧化鈦甲醇
外文關鍵詞: initial carbonate concentration, NiO/TiO2 film, photocatalytic reduction of CO2, initial solution pH
相關次數: 點閱:252下載:20
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用氧化鎳以簡易溶膠凝膠法改質二氧化鈦,製備氧化鎳/二氧化鈦之複合型光觸媒,對液相之二氧化碳進行光還原反應。針對觸媒進行材料基本性質分析,分別探討氧化鎳摻雜濃度、溶液初始pH值、反應物的初始濃度對二氧化碳還原效率與甲醇產量的影響。
    在實驗操作於較低的溶液pH值時,有利於二氧化碳還原效率。反應物的初始濃度增加,使水中的二氧化碳含量較多,也會提升二氧化碳轉化率和甲醇產量。實驗結果顯示,比較二氧化鈦、氧化鎳(10 wt%)/二氧化鈦和與氧化鎳(20 wt%)/二氧化鈦,摻雜氧化鎳之複合型光觸媒,可以有效阻止電子電洞對的再結合,提升光催化活性。摻雜的氧化鎳濃度越高,甲醇產量越高。
    實驗中以碳酸鹽做為二氧化碳來源,在溶液初始濃度pH 4的操作條件下,照光後透過光觸媒進行光還原程序,將二氧化碳還原成甲醇。利用不同氧化鎳摻雜濃度合成之光觸媒,在紫外光照射下,進行5個小時的二氧化碳光還原反應,比較甲醇產量。實驗結果可得,二氧化鈦作為光觸媒進行光反應之甲醇產量為66.9 mg/L.gcatalyst,而以氧化鎳(20 wt%)/二氧化鈦為光觸媒的甲醇生產量為358.7 mg/L.gcatalyst,提升了5倍。


    In this study, the NiO/TiO2 films were fabricated by incorporating NiO to TiO2 on glass substrates by a single impregnation method. In order to investigate the characterization of NiO/TiO2 photocatalysts, it were analyzed by various analysis instruments such as X-ray diffraction, field emission scanning electron microscope, UV-vis diffuse reflectance spectrometer and BET surface area analyzer. The effects of initial pH, coupled NiO dosage and initial carbonate concentration on the photocatalytic reduction of CO2 were studied. Compared with pure TiO2 photocatalysts, the prepared NiO/TiO2 film can significantly improve the photocatalytic efficiency under UV light irradiation.
    The photocatalytic methanol-production activity of the prepared samples by reduction of CO2 was investigated using sodium bicarbonate as a precursor solution of CO2 in aqueous phase under UV light irradiation. The results suggested that an acidic system was favorable for the photocatalytic reduction process of CO2. Simultaneously, an increase of the initial carbonate concentration could increase the formation of methanol and conversion of carbonate in aqueous phase. As a result, a NiO loading significantly enhanced the methanol-production activity of TiO2 films. Under the UV light, TiO2 alone showed the productivity of methanol to be only 66.9 mg/L.gcatalyst at optimum conditions. Remarkably, the 10 wt% NiO loaded TiO2 photocatalyst shows maximum production of methanol up to 358.7 mg/L.gcatalyst after 5 hours of UV light irradiation at pH 4. The productivity increased by 5.4 fold when the NiO/TiO2 is used, which demonstrated that the role of doped NiO was significantly important for for enhancing the photocatalytic methanol evolution activity. At the optimal loading of 10 weight% NiO, NiO/TiO2 film showed the highest photocatalytic methanol-production activity. The relative order of photocatalytic reduction of CO2 in aqueous phase using different photocatalysts under UV light irradiation is NiO(10% weight)/TiO2 > NiO(20% weight)/TiO2 > TiO2.

    Acknowledgement I 中文摘要 III Abstract III Table of Contents V List of Figures IX List of Tables XIII List of Symbols XV Chapter 1 1 Introduction 1 1.1 Background 1 1.2 Objectives and Scopes 2 Chapter 2 5 Literature Review 5 2.1 Photocatalytic Reduction of CO2 5 2.1.1 Fundamentals of Photocatalytic CO2 Reduction 5 2.1.2 Reaction Mechanism of Photocatalytic CO2 Reduction 7 2.1.3 Photoreactors for Photocatalytic Reduction of CO2 in Aqueous Phase 10 2.2 Photocatalyst for Photocatalytic Reduction of CO2 15 2.2.1 Titanium Dioxide 15 2.2.2 Titanium Dioxide-based Photocatalyst 16 2.2.3 Coupling Photocatalyst 19 2.2.4 Preparation of Photocatalyst 23 2.2.5 Development of Catalyst Supports for Photocatalytic CO2 Reduction 27 2.2.6 Performance Evaluation of Photocatalytic CO2 Conversion 29 2.3 Influence of Operating Factors on Photocatalytic CO2 Reduction in Liquid Phase 33 2.3.1 Effect of Reductant 33 2.3.2 Effect of Calcination Temperature 34 2.3.3 Effect of pH 35 Chapter 3 42 Materials and Experiments 42 3.1 Materials 42 3.2 Experimental Instruments and Apparatus 42 3.2.1 Experimental Instruments 42 3.2.2 Experimental Apparatus 43 3.3 Experimental Produces 45 3.3.1 Experimental Framework 45 3.3.2 Preparation of NiO/TiO2 Film 46 3.3.3 Characterization Analysis of NiO/TiO2 Photocatalyst 49 3.3.4 Photocatalytic Reduction of CO2 using NiO/TiO2 Films 54 Chapter 4 55 Results and Discussion 55 4.1 Background Experiments 55 4.1.1 Adsorption of CO2 on Photocatalysts in Liquid Phase 56 4.1.2 Photolysis of CO2 in Liquid Phase 56 4.1.3 Characterization of Initial TiO2 Powder 57 4.2 Characterization of Photocatalysts 59 4.2.1 Field Emission Scanning Electron Microscopy Analysis 59 4.2.2 X-ray Diffraction Analysis 64 4.2.3 UV-visible Diffuse Reflectance Spectra Analysis 65 4.2.4 Specific Surface Area Measurement 67 4.3 Photocatalytic Reduction of CO2 in Aqueous Phase using NiO/TiO2 Film 69 4.3.1 Effect of Initial pH 69 4.3.2 Effect of Initial Carbonate Concentration 74 4.3.3 Effect of NiO Dosage 78 4.4 Kinetic Analysis of CO2 Reduction in Liquid Phase using NiO/TiO2 82 Chapter 5 83 Conclusion and Recommendation 83 5.1 Conclusion 83 5.2 Recommendations 84 References 87 Appendix 96

    Abou, M. A., He, C., Su, M., Xia, D., Lin, L., and Deng, H., “Photocatalytic Reduction of CO2 to Hydrocarbons using AgBr/TiO2 Nanocomposites under Visible Light,” Catal. Today, Vol. 175, pp. 256-263 (2011).
    Ahmad Beigi, A., Fatemi, S., and Salehi, Z., "Synthesis of Nanocomposite CdS/TiO2 and Investigation of Its Photocatalytic Activity for CO2 Reduction to CO and CH4 under Visible Light Irradiation," J. CO2 Util., Vol. 7, pp. 23-29 (2014).
    Bouras, P., Stathatos, E., and Lianos, P., “Pure Versus Metal-ion-doped Nanocrystalline Titania for Photocatalysis,” Appl. Catal., B, Vol. 73(1), pp. 51-59 (2007).
    Cao, S., Low, J., Yu, J., and Jaroniec, M., "Polymeric Photocatalysts Based on Graphitic Carbon Nitride," Adv Mater, Vol. 27, pp. 2150-2176 (2015).
    Chang, X., Wang, T., and Gong, J., " CO2 Photo-Reduction: Insights into CO2 Activation and Reaction on Surfaces of Photocatalysts," Energy Environ. Sci., Vol. 9, pp. 2177-2196 (2016).
    Chen, D., Zhang, X., and Lee, A. F., "Synthetic Strategies to Nanostructured Photocatalysts for CO2 Reduction to Solar Fuels and Chemicals," J. Mater. Chem. A, Vol. 3, pp. 14487-14516 (2015).
    Corma, A., and Garcia, H., "Photocatalytic Reduction of CO2 for Fuel Production: Possibilities and Challenges," Journal of Catalysis, Vol. 308, pp. 168-175 (2013).
    Dimitrijevic, N. M., Vijayan, B. K., Poluektov, O. G., Rajh, T., Gray, K. A., He, H., and Zapol, P., “Role of Water and Carbonates in Photocatalytic Transformation of CO2 to CH4 on Titania,” J. Am. Chem. Soc., Vol. 133, pp. 3964-3971 (2011).
    Dong, C., Xing, M., and Zhang, J., "Economic Hydrophobicity Triggering of CO2 Photoreduction for Selective CH4 Generation on Noble-Metal-Free TiO2-SiO2," J. Phys. Chem. Lett., Vol. 7, pp. 2962-2966 (2016).
    Fan, J., Liu, E. Z., Tian, L., Hu, X. Y., He, Q., and Sun, T., “Synergistic Effect of N and Ni2+ on Nanotitania in Photocatalytic Reduction of CO2,” J. Environ. Eng., Vol. 137, pp. 171-176 (2010).
    Goren, Z., Willner, I., Nelson, A., and Frank, A., “Selective Photoreduction of Carbon Dioxide/bicarbonate to Formate by Aqueous Suspensions and Colloids of Palladium-titania,” J. Phys. Chem., Vol. 94, pp. 3784-3790 (1990).
    Fujishima, A., Zhang, X., and Tryk, D. A., “TiO2 Photocatalysis and Related Surface Phenomena,” Surf. Sci. Rep., Vol. 63, pp. 515-582 (2008).
    Habisreutinger, S. N., Schmidt-Mende, L., and Stolarczyk, J. K., "Photocatalytic Reduction of CO2 on TiO2 and Other Semiconductors," Angew. Chem. Int. Ed., Vol. 52, pp. 7372-7408 (2013).
    He, H., Liu, C., Dubois, K. D., Jin, T., Louis, M. E., and Li, G., “Enhanced Charge Separation in Nanostructured TiO2 Materials for Photocatalytic and Photovoltaic Applications,” Ind. Eng. Chem. Res., Vol. 51, pp. 11841-11849 (2012).
    Indrakanti, V. P., Kubicki, J. D., and Schobert, H. H., “Photoinduced Activation of CO2 on Ti-based Heterogeneous Catalysts: Current State, Chemical Physics-based Insights and Outlook,” Energy Environ. Sci., Vol. 2, pp. 745-758 (2009).
    Kitano, M., Matsuoka, M., Ueshima, M., and Anpo, M., “Recent Developments in Titanium Oxide-based Photocatalysts,” Appl. Catal., A, Vol. 325, pp. 1-14 (2007).
    Kočí, K., Matějová, L., Reli, M., Čapek, L., Matějka, V., Lacný, Z., Obalová, L., “Sol-gel Derived Pd Supported TiO2-ZrO2 and TiO2 Photocatalysts; Their Examination in Photocatalytic Reduction of Carbon Dioxide,” Catal. Today, Vol. 230, pp. 20-26 (2014).
    Koirala, A. R., Docao, S., Lee, S. B., and Yoon, K. B., “Fate of Methanol under One-pot Artificial Photosynthesis Condition with Metal-loaded TiO2 as Photocatalysts,” Catal. Today, Vol. 243, pp. 235-250 (2015).
    Krejčíková, S., Matějová, L., Kočí, K., Obalová, L., Matěj, Z., Čapek, L., and Šolcová, O., “Preparation and Characterization of Ag-doped Crystalline Titania for Photocatalysis Applications,” Appl. Catal., B, Vol. 111, pp. 119-125 (2012).
    Kwak, B. S., Vignesh, K., Park, N. K., Ryu, H. J., Baek, J. I., and Kang, M., “Methane Formation from Photoreduction of CO2 with Water using TiO2 including Ni Ingredient,” Fuel, Vol. 143, pp. 570-576 (2015).
    Lee, K. Y., Sato, K., and Mohamed, A. R., "Facile Synthesis of Anatase-Rutile TiO2 Composites with Enhanced CO2 Photoreduction Activity and the Effect of Pt Loading on Product Selectivity," Mater. Lett., Vol. 163, pp. 240-243 (2016).
    Li, K., An, X., Park, K. H., Khraisheh, M., and Tang, J., "A Critical Review of CO2 Photoconversion: Catalysts and Reactors," Catalysis Today, Vol. 224, pp. 3-12 (2014).
    Li, K., Peng, B., and Peng, T., "Recent Advances in Heterogeneous Photocatalytic CO2 Conversion to Solar Fuels," ACS Catal., Vol. 6, pp. 7485-7527 (2016).
    Li, L., Salvador, P. A., and Rohrer, G. S., "Photocatalysts with Internal Electric Fields," Nanoscale, Vol. 6, pp. 24-42 (2014).
    Lin, J., Shen, J., Wang, R., Cui, J., Zhou, W., Hu, P., Liu, D., Liu, H., Wang, J., Boughton, R. I., and Yue, Y., "Nano-P-N Junctions on Surface-Coarsened TiO2 Nanobelts with Enhanced Photocatalytic Activity," J. Mater. Chem., Vol. 21, pp. 5106-5113 (2011).
    Li Puma, G., Bono, A., Krishnaiah, D., and Collin, J. G., “Preparation of Titanium Dioxide Photocatalyst Loaded onto Activated Carbon Support using Chemical Vapor Deposition: A review Paper,” J. Hazard. Mater., Vol. 157, pp. 209-219 (2008).
    Li, X., Liu, H., Luo, D., Li, J., Huang, Y., Li, H., Zhu, L., “Adsorption of CO2 on Heterostructure CdS(Bi2S3)/TiO2 Nanotube Photocatalysts and Their Photocatalytic Activities in the Reduction of CO2 to Methanol under Visible Light Irradiation,” Chem. Eng. J., Vol. 180, pp. 151-158 (2012).
    Low, J., Cheng, B., and Yu, J., “Surface Modification and Enhanced Photocatalytic CO2 Reduction Performance of TiO2,” Appl. Surf. Sci., Vol. 392, pp. 658-686 (2017).
    Lyu, L., Jin, F., Zhong, H., Chen, H., and Yao, G., “A Novel Approach to Reduction of CO2 into Methanol by Water Splitting with Aluminum over a Copper Catalyst,” RSC Adv., Vol. 5(40), pp. 31450-31453 (2015).
    Ma, Y., Wang, X., Jia, Y., Chen, X., Han, H., and Li, C., "Titanium Dioxide-Based Nanomaterials for Photocatalytic Fuel Generations," Chem. Rev., Vol. 114, pp. 9987-10043 (2014).
    Mao, J., Li, K., and Peng, T., "Recent Advances in the Photocatalytic CO2 Reduction over Semiconductors," Catal. Sci. Technolog., Vol. 3, pp. 2481-2498 (2013).
    Mao, J., Peng, T., Zhang, X., Li, K., and Zan, L., “Selective Methanol Production from Photocatalytic Reduction of CO2 on BiVO4 under Visible Light Irradiation,” Catal. Commun., Vol. 28, pp. 38-41 (2012).
    Marszewski, M., Cao, S., Yu, J., and Jaroniec, M., "Semiconductor-Based Photocatalytic CO2 Conversion," Mater. horizons, Vol. 2, pp. 261-278 (2015).
    Matějová, L., Kočí, K., Reli, M., Čapek, L., Hospodková, A., Peikertová, P., Kotarba, A., “Preparation, Characterization and Photocatalytic Properties of Cerium Doped TiO2: On the Effect of Ce loading on the Photocatalytic Reduction of Carbon Dioxide,” Appl. Catal., B, Vol. 152, pp. 172-183 (2014).
    Okumura, H., Endo, S., Joonwichien, S., Yamasue, E., and Ishihara, K. N., "Magnetic Field Effect on Heterogeneous Photocatalysis," Catal. Today, Vol. 258, pp. 634-647 (2015).
    Ola, O., and Maroto-Valer, M. M., “Review of Material Design and Reactor Engineering on TiO2 Photocatalysis for CO2 Reduction,” J. Photochem. Photobiol., C, Vol. 24, pp. 16-42 (2015).
    Pan, H., Steiniger, A., Heagy, M. D., and Chowdhury, S., “Efficient Production of Formic Acid by Simultaneous Photoreduction of Bicarbonate and Oxidation of Glycerol on Gold-TiO2 Composite under Solar Light,” J. CO2 Util., Vol. 22, pp. 117-123 (2017).
    Pan, P. W., and Chen, Y. W., “Photocatalytic Reduction of Carbon Dioxide on NiO/InTaO4 under Visible Light Irradiation,” Catal. Commun., Vol. 8, pp. 1546-1549 (2007).
    Pathak, P., Meziani, M. J., Castillo, L., and Sun, Y. P., “Metal-coated Nanoscale TiO2 Catalysts for Enhanced CO2 Photoreduction,” Green Chem., Vol. 7, pp. 667-670 (2005).
    Qin, S., Xin, F., Liu, Y., Yin, X., and Ma, W., “Photocatalytic Reduction of CO2 in Methanol to Methyl Formate over CuO-TiO2 Composite Catalysts,” J. Colloid Interface Sci., Vol. 356, pp. 257-261 (2011).
    Sreethawong, T., Ngamsinlapasathian, S. and Yoshikawa S., “Surfactant-aided Sol–gel Synthesis of Mesoporous-assembled TiO2-NiO mixed Oxide Nanocrystals and Their Photocatalytic Azo Dye Degradation Activity,” Chem. Eng. J., Vol. 192, pp. 292-300 (2012).
    Sharma, A., and Lee, B. K., “Photocatalytic Reduction of Carbon Dioxide to Methanol using Nickel-loaded TiO2 Supported on Activated Carbon Fiber,” Catal. Today, Vol. 287, pp. 122-134 (2017).
    Siripala, W., Ivanovskaya, A., Jaramillo, T. F., Baeck, S. H., and McFarland, E. W., "A Cu2O/TiO2 Heterojunction Thin Film Cathode for Photoelectrocatalysis," Sol. Energy Mater. Sol. Cells, Vol. 77, pp. 229-237 (2003).
    Sun, B., Zhou, G., Gao, T., Zhang, H., and Yu, H., "NiO Nanosheet/TiO2 Nanorod-Constructed P-N Heterostructures for Improved Photocatalytic Activity," Appl. Surf. Sci., Vol. 364, pp. 322-331 (2016).
    Tao, J., Gong, Z., Yao, G., Cheng, Y., Zhang, M., Lv, J., Shi, S., He, G., Jiang, X., Chen, X., and Sun, Z., "Enhanced Optical and Photocatalytic Properties of Ag Quantum Dots-Sensitized Nanostructured TiO2/ZnO Heterojunctions," J. Alloys Compd., Vol. 688, pp. 605-612 (2016).
    Tseng, I. H., Chang, W. C., and Wu, J. C. S., “Photoreduction of CO2 using Sol-gel Derived Titania and Titania-supported Copper Catalysts,” Appl. Catal., B, Vol. 37, pp. 37-48 (2002).
    Tseng, I. H., Wu, J. C. S., and Chou, H. Y., “Effects of Sol-gel Procedures on the Photocatalysis of Cu/TiO2 in CO2 Photoreduction,” J. Catal., Vol. 221, pp. 432-440 (2004).
    Wang, Y., Wang, Q., Zhan, X., Wang, F., Safdar, M., and He, J., "Visible Light Driven Type II Heterostructures and Their Enhanced Photocatalysis Properties," Nanoscale, Vol. 5, pp. 8326-8339 (2013).
    White, J. L., Baruch, M. F., Pander Iii, J. E., Hu, Y., Fortmeyer, I. C., Park, J. E., Zhang, T., Liao, K., Gu, J., Yan, Y., Shaw, T. W., Abelev, E., and Bocarsly, A. B., "Light-Driven Heterogeneous Reduction of Carbon Dioxide: Photocatalysts and Photoelectrodes," Chem. Rev., Vol. 115, pp. 12888-12935 (2015).
    Xi, G., Ouyang, S., and Ye, J., "General Synthesis of Hybrid TiO2 Mesoporous "French Fries" toward Improved Photocatalytic Conversion of CO2 into Hydrocarbon Fuel: A Case of TiO2/ZnO," Chem. Eur. J., Vol. 17, pp. 9057-9061 (2011).
    Xu, X., Gao, Z., Cui, Z., Liang, Y., Li, Z., Zhu, S., Yang, X., and Ma, J., "Synthesis of Cu2O Octadecahedron/TiO2 Quantum Dot Heterojunctions with High Visible Light Photocatalytic Activity and High Stability," ACS Appl. Mater. Interfaces, Vol. 8, pp. 91-101 (2016).
    Xue, L. M., Zhang, F. H., Fan, H. J., and Bai, X. F., “Preparation of C doped TiO2 Photocatalysts and Their Photocatalytic Reduction of Carbon Dioxide,” Adv. Mater. Res., Vol. 185, pp. 1842-1846 (2011).
    Yang, H. C., Lin, H. Y., Chien, Y. S., Wu, J. C. S., and Wu, H. H., “Mesoporous TiO2/SBA-15, and Cu/TiO2/SBA-15 Composite Photocatalysts for Photoreduction of CO2 to Methanol,” Catal. Lett., Vol. 131, pp. 381-387 (2009).
    Yuan, L., and Xu, Y.-J., "Photocatalytic Conversion of CO2 into Value-Added and Renewable Fuels," Applied Surface Science, Vol. 342, pp. 154-167 (2015).
    Yui, T., Kan, A., Saitoh, C., Koike, K., Ibusuki, T., and Ishitani, O., "Photochemical Reduction of CO2 Using TiO2: Effects of Organic Adsorbates on TiO2 and Deposition of Pd onto TiO2," ACS Appl. Mater. Interfaces, Vol. 3, pp. 2594-2600 (2011).
    Zhang, Q., Li, Y., Ackerman, E. A., Gajdardziska-Josifovska, M., and Li, H., “Visible Light Responsive Iodine-doped TiO2 for Photocatalytic Reduction of CO2 to Fuels,” Appl. Catal., A, Vol. 400(1), pp. 195-202 (2011).
    Zhao, Z., Fan, J., Wang, J., and Li, R., “Effect of Heating Temperature on Photocatalytic Reduction of CO2 by N-TiO2 Nanotube Catalyst,” Catal. Commun., Vol. 21, pp. 32-37 (2012).
    Zhou, S., Liu, Y., Li, J., Wang, Y., Jiang, G., Zhao, Z., Wei, Y., “Facile in situ Synthesis of Graphitic Carbon Nitride (g-C3N4)-N-TiO2 Heterojunction as an Efficient Photocatalyst for the Selective Photoreduction of CO2 to CO,” Appl. Catal., B, Vol. 158, pp. 20-29 (2014).

    QR CODE