簡易檢索 / 詳目顯示

研究生: 林佩玉
Pei-yu Lin
論文名稱: 硫化銅銦沉積於二氧化鈦奈米管及其應用於光催化分解氣相異丙醇之研究
Deposition of Copper Indium Sulfide on TiO2 Nanotube Arrays for the Photocatalytic Degradation of IPA in Air Streams
指導教授: 顧 洋
Young Ku
口試委員: 曾迪華
Dyi-hwa Tseng
申永順
Yung-shuen Shen
蔣本基
Pen-chi Chiang
劉志成
Jhy-chern Liu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 176
中文關鍵詞: 連續式離子層吸附與反應法硫化銅銦電解液之水含量陣列式二氧化鈦奈米管電解液溫度
外文關鍵詞: Successive Ionic Layer Adsorption and Reaction, Copper Indium Sulfide, Water Content of Electrolyte, TiO2 Nanotube Arrays, Electrolyte Temperature
相關次數: 點閱:332下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究乃利用陽極氧化法在含有氟化銨與水之乙二醇電解液中製備陣列式二氧化鈦奈米管光觸媒,並藉由場發式電子顯微鏡、X射線電子能譜儀、X射線繞射光譜儀、定電位/恆電流儀以及螢光光譜儀對光觸媒進行物性及光電特性之分析,以探討電解液溫度及電解液之水含量對以陽極氧化法中製備二氧化鈦奈米管生成機制之影響。隨著電解液溫度提高,二氧化鈦奈米管之管長和管徑隨之變長和變大,壁厚亦隨之變薄;其原因為在較高溫度之電解液中,離子之遷移速率提升,同時加速了氧化與蝕刻之速率。研究結果顯示,在低溫電解液中(3 oC)進行陽極氧化可有效改善二氧化鈦奈米管表面被沉澱物覆蓋之情形。電解液之水含量提高,二氧化鈦奈米管之管長隨之變短,管徑隨之變大,壁厚則隨之變厚;其原因在於電解液水含量較高時,在陽極氧化過程釋放大量的氫離子,加速管口之蝕刻速率,因而限制管長並拓寬管徑。本研究以調節陽極氧化時間以及電解液水含量的方式來控制所製備二氧化鈦奈米管之尺寸(管長和管徑),並研究二氧化鈦奈米管尺寸對光催化降解氣相異丙醇之影響。研究結果顯示,管長愈長及管徑愈小之二氧化鈦奈米管雖有較高之表面積,但光催化仍受限於有效照光面積。由螢光光譜儀分析結果可知,管壁較薄的二氧化鈦奈米管可抑制光電子-電洞對之再結合。
    本研究並利用連續式離子層吸附與反應法將硫化銅銦沉積在二氧化鈦奈米管,藉由X射線電子能譜儀和定電位/恆電流儀,對光觸媒進行物性及光電特性之分析。研究結果顯示,只有在未鍛燒之二氧化鈦奈米管表面可觀察到硫化銅銦薄膜之存在。使用不同的硫前驅物,會使硫化銅銦薄膜之成分配比有所差異。使用低濃度硫前驅物所製備之硫化銅銦薄膜銦配比較高,屬n型半導體;使用高濃度硫前驅物則製備得富銅之硫化銅銦薄膜,屬p型半導體。當銅銦硫之配比愈接近化學計量比(1:1:2),所製備之改質二氧化鈦奈米管展現愈高的光催化效能。研究結果亦指出,將經硫化銅銦薄膜改質的二氧化鈦奈米管,應用在光催化降解氣相異丙醇反應時展現良好的穩定性。


    TiO2 nanotube arrays were fabricated in ethylene glycol containing NH4F and water by anodization process under various conditions. TiO2 nanotube arrays were analyzed by field-emission scanning electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction spectra, Potentiostat/Galvanostat, and photoluminescence spectroscopy in order to investigate characterization of TiO2 nanotube arrays.
    Effects of electrolyte temperature and water content of electrolyte on morphology and formation mechanism of TiO2 nanotube arrays were investigated. The experiment results demonstrate that TiO2 nanotube arrays with longer lengths, larger inner diameters, and thinner wall thicknesses could be fabricated in electrolytes of higher temperature, indicating that the limiting factor for growth of TiO2 nanotube arrays is the diffusion of reactants (oxygen-containing anionic species, fluorine ions) into the tubes or products ( [TiF6]2- ) away from the tubes. The experiment results also suggest that the appearance of “hazy layer” on the top of TiO2 nanotube arrays could be avoided by anodizing at lower temperatures. With the presence of higher water contents, the relatively fast chemical dissolution rate dominates the reaction because a larger amount of H+ ions are created, resulting in TiO2 nanotube arrays with larger inner diameters and shorter tube lengths.
    Strctures (tube length and inner diameter) of TiO2 nanotube arrays were controlled by adjusting anodization time and water content in anodization process. The experimental results show that experiments using TiO2 nanotube arrays with longer tube lengths and smaller inner diameters achieved higher photocatalytic performance. However, the photocatalytic activity of TiO2 nanotube arrays is after all limited by the penetration of illumination. From the PL analysis results of the prepared TiO2 nanotube arrays, bulk recombination is expected to be reduced as wall thickness become thinner, and the photoconversion efficiency is also expected to be enhanced.
    TiO2 nanotube arrays were modified with copper indium sulfide by successive ionic layer adsorption and reaction (SILAR) method. The modified TiO2 nanotube arrays were mainly analyzed by X-ray photoelectron spectroscopy and Potentiostat/Galvanostat to investigate their characterization. In the study, the XPS analysis results demonstrate the presence of copper indium sulfide thin film could only be observed on TiO2 nanotube arrays before the modified TiO2 nanotube arrays were annealed. TiO2 nanotube arrays were modified with copper indium sulfide by SILAR method resulting in some deviation on the molecularity and stoichiometry of copper indium sulfide, which affects the electrical property of the modified TiO2 nanotube arrays. Typically, In-rich copper indium sulfide thin films could be obtained by using lower sulfur precursor concentrations in SILAR method and the deposited films belonged to n-type semiconductor; the p-type Cu-rich copper indium sulfide thin films could be prepared by using higher sulfur precursor concentrations in SILAR method. When the chemical composition of Cu, In, and S is closer to the stoichiometric composition of copper indium sulfide (1:1:2), the modified TiO2 nanotube arrays exhibit higher photocatalytic performance for degrading gaseous IPA. Moreover, the modified TiO2 nanotube arrays show excellent stability during the photocatalytic process.

    中文摘要 I Abstract III Acknowledgment V Table of Contents VII List of Figures VI List of Tables XI Chapter 1 Introduction 1 1.1 Background 1 1.2 Objectives and scope 4 Chapter 2 Literature Review 5 2.1 Isopropyl alcohol (IPA) 5 2.2 TiO2 nanotube arrays 7 2.2.1 Properties of TiO2 8 2.2.2 Fabrication methods of TiO2 nanotube arrays 14 2.2.3 Operating factors affecting fabrication of TiO2 nanotube arrays by anodization 22 2.2.4 Application of TiO2 nanotube arrays 36 2.3 TiO2 photocatalysts modified with organic or inorganic compound 38 2.3.1 Dye sensitizing 38 2.3.2 Narrow band-gap semiconductors coupling 40 2.4 CuInS2/TiO2 nanotube arrays coupled photocatalyst 43 2.4.1 Properties of CuInS2 45 2.4.2 Modification methods of CuInS2 on TiO2 nanotube arrays 49 Chapter 3 Experimental Procedures and Apparatus 57 3.1 Materials 57 3.2 Experimental instruments 58 3.3 Apparatus 60 3.3.1 Apparatus for anodization process 60 3.3.2 Photocatalytic system and apparatus 61 3.4 Experimental procedures 64 3.4.1 Experimental framework 65 3.4.2 Fabrication of TiO2 nanotube arrays 66 3.4.3 Deposition copper indium sulfide on TiO2 nanotube arrays 67 3.4.4 Characterization analysis of photocatalysts 69 3.4.5 Background experiments 72 3.4.6 Photocatalytic degradation of gaseous IPA 74 Chapter 4 Results and Discussion 75 4.1 Fabrication of TiO2 nanotube arrays under different conditions 75 4.1.1 Effect of electrolyte temperature 75 4.1.2 Effect of water content in ethylene glycol electrolyte 82 4.1.3 Formation mechanism of TiO2 nanotube arrays 90 4.2 Characterization of TiO2 nanotube arrays 99 4.2.1 Field-emission scanning electron microscopy analysis 100 4.2.2 X-ray photoelectron spectroscopy 104 4.2.3 X-ray diffraction spectra analysis 106 4.2.4 Potentiostat/Galvanostat analysis 109 4.2.5 Photoluminescence spectroscopy analysis 112 4.3 Deposition of copper indium sulfide on TiO2 nanotube arrays 115 4.3.1 Effect of annealing temperature 116 4.3.2 Effect of sulfur precursor concentration 121 4.4 Photocatalytic degradation of IPA using copper indium sulfide modified TiO2 nanotube arrays under simulated light sources 129 4.4.1 Effect of dimensions of TiO2 nanotube arrays 129 4.4.2 Effect of annealing temperature for copper indium sulfide modified TiO2 nanotube arrays 134 4.4.3 Effect of anionic precursor concentration for copper indium sulfide modified TiO2 nanotube arrays 137 4.4.4 Stability of TiO2 nanotube arrays modified with copper indium sulfide for degrading IPA 139 Chapter 5 Conclusions and Recommendations 141 5.1 Conclusions 141 5.2 Recommendations 143 Reference 145 Appendix 161 Vita 175

    Ali Yahia, S. A., L. Hamadou, A. Kadri, N. Benbrahim, and E. M. M. Sutter, "Effect of Anodizing Potential on the Formation and EIS Characteristics of TiO2 Nanotube Arrays," J. Electrochem. Soc., Vol. 159, No. 4, pp. K83-K92 (2012).
    Allam, N. K., A. J. Poncheri, and M. A. El-Sayed, "Vertically Oriented Ti-Pd Mixed Oxynitride Nanotube Arrays for Enhanced Photoelectrochemical Water Splitting," ACS Nano, Vol. 5, No. 6, pp. 5056-5066 (2011).
    Asahi, R., Y. Taga, W. Mannstadt, and A. J. Freeman, "Electronic and Optical Properties of Anatase TiO2," Phys. Rev. B Condens. Matter Mater. Phys, Vol. 61, No. 11, pp. 7459-7465 (2000).
    Bacsa, R. R. and J. Kiwi, "Effect of Rutile Phase on the Photocatalytic Properties of Nanocrystalline Titania During the Degradation of P-Coumaric Acid," Appl. Catal., B, Vol. 16, No. 1, pp. 19-29 (1998).
    Bai, J., J. Li, Y. Liu, B. Zhou, and W. Cai, "A New Glass Substrate Photoelectrocatalytic Electrode for Efficient Visible-Light Hydrogen Production: CdS Sensitized TiO2 Nanotube Arrays," Appl. Catal., B, Vol. 95, No. 3-4, pp. 408-413 (2010).
    Baram, N., D. Starosvetsky, J. Starosvetsky, M. Epshtein, R. Armon, and Y. Ein-Eli, "Photocatalytic Inactivation of Microorganisms Using Nanotubular TiO2," Appl. Catal., B, Vol. 101, No. 3-4, pp. 212-219 (2011).
    Barzykin, A. V. and M. Tachiya, "Mechanism of Charge Recombination in Dye-Sensitized Nanocrystalline Semiconductors: Random Flight Model," J. Phys. Chem. B, Vol. 106, No. 17, pp. 4356-4363 (2002).
    Batzill, M., E. H. Morales, and U. Diebold, "Influence of Nitrogen Doping on the Defect Formation and Surface Properties of TiO2 Rutile and Anatase," Phys. Rev. Lett., Vol. 96, No. 2 (2006).
    Benk, G., J. Kallioinen, J. E. I. Korppi-Tommola, A. P. Yartsev, and V. Sundstrm, "Photoinduced Ultrafast Dye-to-Semiconductor Electron Injection from Nonthermalized and Thermalized Donor States," J. Am. Chem. Soc., Vol. 124, No. 3, pp. 489-493 (2002).
    Berger, S., R. Hahn, P. Roy, and P. Schmuki, "Self-Organized TiO2 Nanotubes: Factors Affecting Their Morphology and Properties," Physica Status Solidi B, Vol. 247, No. 10, pp. 2424-2435 (2010a).
    Berger, S., J. Kunze, P. Schmuki, A. T. Valota, D. J. Leclere, P. Skeldon, and G. E. Thompson, "Influence of Water Content on the Growth of Anodic TiO2 Nanotubes in Fluoride-Containing Ethylene Glycol Electrolytes," J. Electrochem. Soc., Vol. 157, No. 1, pp. C18-C23 (2010b).
    Boyd, G. D., E. Buehler, F. G. Storz, and J. H. Wernick, "Linear and Nonlinear Optical Properties of Ternary AII BIV C2V Chalcopyrite Semiconductors," IEEE J. Quantum Electron., Vol. QE-8, No. 4, pp. 419-426 (1972).
    Chen, C., G. Ali, S. H. Yoo, J. M. Kum, and S. O. Cho, "Improved Conversion Efficiency of CdS Quantum Dot-Sensitized TiO2 Nanotube-Arrays Using CuInS2 as a Co-Sensitizer and an Energy Barrier Layer," J. Mater. Chem., Vol. 21, No. 41, pp. 16430-16435 (2011).
    Chen, Q. and D. Xu, "Large-Scale, Noncurling, and Free-Standing Crystallized TiO2 Nanotube Arrays for Dye-Sensitized Solar Cells," J. Phys. Chem. C, Vol. 113, No. 15, pp. 6310-6314 (2009).
    Chen, Q., D. Xu, Z. Wu, and Z. Liu, "Free-Standing TiO2 Nanotube Arrays Made by Anodic Oxidation and Ultrasonic Splitting," Nanotechnology, Vol. 19, No. 36 (2008).
    Chen, S., M. Paulose, C. Ruan, G. K. Mor, O. K. Varghese, D. Kouzoudis, and C. A. Grimes, "Electrochemically Synthesized CdS Nanoparticle-Modified TiO2 Nanotube-Array Photoelectrodes: Preparation, Characterization, and Application to Photoelectrochemical Cells," J. Photochem. Photobiol. A Chem., Vol. 177, No. 2-3, pp. 177-184 (2006).
    Chen, X., J. Chen, and J. Lin, "Self-Assembled TiO2 Nanotube Arrays with U-Shaped Profile by Controlling Anodization Temperature," J. Nanomater., Vol. 2010 (2010).
    Chin, P., L. P. Yang, and D. F. Ollis, "Formaldehyde Removal from Air via a Rotating Adsorbent Combined with a Photocatalyst Reactor: Kinetic Modeling," J. Catal., Vol. 237, No. 1, pp. 29-37 (2006).
    Courtel, F. M., A. Hammami, R. Imbeault, G. Hersant, R. W. Paynter, B. Marsan, and M. Morin, "Synthesis of N-Type CuInS2 Particles Using N-Methylimidazole, Characterization and Growth Mechanism," Chem. Mater., Vol. 22, No. 12, pp. 3752-3761 (2010).
    Courtel, F. M., R. W. Paynter, B. Marsan, and M. Morin, "Synthesis, Characterization, and Growth Mechanism of N-Type CuInS2 Colloidal Particles," Chem. Mater., Vol. 21, No. 16, pp. 3752-3762 (2009).
    Diebold, U., "The Surface Science of Titanium Dioxide," Surf. Sci. Rep., Vol. 48, No. 5-8, pp. 53-229 (2003).
    Doucet, N., F. Bocquillon, O. Zahraa, and M. Bouchy, "Kinetics of Photocatalytic VOCs Abatement in a Standardized Reactor," Chemosphere, Vol. 65, No. 7, pp. 1188-1196 (2006).
    Du, G. H., Q. Chen, R. C. Che, Z. Y. Yuan, and L. M. Peng, "Preparation and Structure Analysis of Titanium Oxide Nanotubes," Appl. Phys. Lett., Vol. 79, No. 22, pp. 3702-3704 (2001).
    El Ruby Mohamed, A. and S. Rohani, "Modified TiO2 Nanotube Arrays (TNTAs): Progressive Strategies Towards Visible Light Responsive Photoanode, a Review," Energy Environ. Sci., Vol. 4, No. 4, pp. 1065 (2011).
    Fox, M. A. and M. T. Dulay, "Heterogeneous Photocatalysis," Chem. Rev., Vol. 93, No. 1, pp. 341-357 (1993).
    Fujishima, A., T. N. Rao, and D. A. Tryk, "Titanium Dioxide Photocatalysis," J. Photochem. Photobiol. C: Photochem. Rev., Vol. 1, No. 1, pp. 1-21 (2000).
    Ghicov, A. and P. Schmuki, "Self-Ordering Electrochemistry: A Review on Growth and Functionality of TiO2 Nanotubes and Other Self-Aligned MOx Structures," Chem. Commun., No. 20, pp. 2791-2808 (2009).
    Gong, D., C. A. Grimes, O. K. Varghese, W. C. Hu, R. S. Singh, Z. Chen, and E. C. Dickey, "Titanium Oxide Nanotube Arrays Prepared by Anodic Oxidation," J. Mater. Res., Vol. 16, No. 12, pp. 3331-3334 (2001).
    Gong, J., Y. Lai, and C. Lin, "Electrochemically Multi-Anodized TiO2 Nanotube Arrays for Enhancing Hydrogen Generation by Photoelectrocatalytic Water Splitting," Electrochim. Acta, Vol. 55, No. 16, pp. 4776-4782 (2010).
    Guha, P., D. Das, A. B. Maity, D. Ganguli, and S. Chaudhuri, "Synthesis of CuInS2 by Chemical Route: Optical Characterization," Sol. Energy Mater. Sol. Cells, Vol. 80, No. 1, pp. 115-130 (2003).
    Hanaor, D. A. H. and C. C. Sorrell, "Review of the Anatase to Rutile Phase Transformation," J. Mater. Sci., Vol. 46, No. 4, pp. 855-874 (2011).
    Hirano, M., C. Nakahara, K. Ota, O. Tanaike, and M. Inagaki, "Photoactivity and Phase Stability of ZrO2-Doped Anatase-Type TiO2 Directly Formed as Nanometer-Sized Particles by Hydrolysis under Hydrothermal Conditions," J. Solid State Chem., Vol. 170, No. 1, pp. 39-47 (2003).
    Ho, C. H., S. F. Lo, and P. C. Chi, "Electronic Structure and E1 Excitons of CuInS2 Energy-Related Crystals Studied by Temperature-Dependent Thermoreflectance Spectroscopy," J. Electrochem. Soc., Vol. 157, No. 2, pp. H219-H226 (2010).
    Hollingsworth, J. A., K. K. Banger, M. H. C. Jin, J. D. Harris, J. E. Cowen, E. W. Bohannan, J. A. Switzer, W. Buhro, and A. F. Hepp, "Single Source Precursors for Fabrication of I-III-VI2 Thin-Film Solar Cells via Spray CVD," Thin Solid Films, Vol. 431, pp. 63-67 (2003).
    Hoyer, P., "Formation of a Titanium Dioxide Nanotube Array," Langmuir, Vol. 12, No. 6, pp. 1411-1413 (1996).
    Jaffe, J. E. and A. Zunger, "Anion Displacements and the Band-Gap Anomaly in Ternary ABC2 Chalcopyrite Semiconductors," Phys. Rev. B, Vol. 27, No. 8, pp. 5176-5179 (1983a).
    Jaffe, J. E. and A. Zunger, "Electronic Structure of the Ternary Chalcopyrite Semiconductors CuInS2, CuGaS2, CuInS2, CuAlSe2, CuGaSe2, and CuInSe2," Phys. Rev. B, Vol. 28, No. 10, pp. 5822-5847 (1983b).
    Jaffe, J. E. and A. Zunger, "Theory of the Band-Gap Anomaly in ABC2 Chalcopyrite Semiconductors," Phys. Rev. B, Vol. 29, No. 4, pp. 1882-1906 (1984).
    Kaiser, I., K. Ernst, Ch H. Fischer, R. Knenkamp, C. Rost, I. Sieber, and M. Ch Lux-Steiner, "The ETA-Solar Cell with CuInS2: A Photovoltaic Cell Concept Using an Extremely Thin Absorber (ETA)," Sol. Energy Mater. Sol. Cells, Vol. 67, No. 1-4, pp. 89-96 (2001).
    Kale, R. B. and C. D. Lokhande, "Room Temperature Deposition of Znse Thin Films by Successive Ionic Layer Adsorption and Reaction (SILAR) Method," Mater. Res. Bull., Vol. 39, No. 12, pp. 1829-1839 (2004).
    Kang, S. H., J. Y. Kim, H. S. Kim, and Y. E. Sung, "Formation and Mechanistic Study of Self-Ordered TiO2 Nanotubes on Ti Substrate," J. Ind. Eng. Chem., Vol. 14, No. 1, pp. 52-59 (2008).
    Kang, S. Z., Y. K. Yang, W. Bu, and J. Mu, "TiO2 Nanoparticles Incorporated with CuInS2 Clusters: Preparation and Photocatalytic Activity for Degradation of 4-Nitrophenol," J. Solid State Chem., Vol. 182, No. 11, pp. 2972-2976 (2009).
    Kasuga, T., M. Hiramatsu, A. Hoson, T. Sekino, and K. Niihara, "Formation of Titanium Oxide Nanotube," Langmuir, Vol. 14, No. 12, pp. 3160-3163 (1998).
    Kasuga, T., M. Hiramatsu, A. Hoson, T. Sekino, and K. Niihara, "Titania Nanotubes Prepared by Chemical Processing," Adv. Mater., Vol. 11, No. 15, pp. 1307-1311 (1999).
    Kesselman, J. M., G. A. Shreve, M. R. Hoffmann, and N. S. Lewis, "Flux-Matching Conditions at TiO2 Photoelectrodes: Is Interfacial Electron Transfer to O2 Rate-Limiting in the TiO2-Catalyzed Photochemical Degradation of Organics?," J. Phys. Chem., Vol. 98, No. 50, pp. 13385-13395 (1994).
    Kim, J., K. C. Song, S. Foncillas, and S. E. Pratsinis, "Dopants for Synthesis of Stable Bimodally Porous Titania," J. Eur. Ceram. Soc., Vol. 21, No. 16, pp. 2863-2872 (2001).
    Kobayakawa, K., A. Teranishi, T. Tsurumaki, Y. Sato, and A. Fujishima, "Photocatalytic Activity of CuInS2 and CuIn5S8," Electrochim. Acta, Vol. 37, No. 3, pp. 465-467 (1992).
    Ku, Y., Z. R. Fan, Y. C. Chou, and W. Y. Wang, "Effects of TiO2 Nanotube Array Dimension and Annealing Temperature on the Acid Red 4 Degradation in Aqueous Solution by Photocatalytic Process," Water Sci. Technol., Vol. 61, No. 11, pp. 2943-2949 (2010).
    Kumar, S. G. and L. G. Devi, "Review on Modified TiO2 Photocatalysis under UV/Visible Light: Selected Results and Related Mechanisms on Interfacial Charge Carrier Transfer Dynamics," J. Phys. Chem. A, Vol. 115, No. 46, pp. 13211-13241 (2011).
    Kuranouchi, S. and T. Nakazawa, "Study of One-Step Electrodeposition Condition for Preparation of CuIn(Se, S)2 Thin Films," Sol. Energy Mater. Sol. Cells, Vol. 50, No. 1-4, pp. 31-36 (1998).
    Lai, Y. K., J. Y. Huang, H. F. Zhang, V. P. Subramaniam, Y. X. Tang, D. G. Gong, L. Sundar, L. Sun, Z. Chen, and C. J. Lin, "Nitrogen-Doped TiO2 Nanotube Array Films with Enhanced Photocatalytic Activity under Various Light Sources," J. Hazard. Mater., Vol. 184, No. 1-3, pp. 855-63 (2010).
    Lai, Y. K., H. F. Zhang, L. Sun, Z. Chen, and C. J. Lin, "Self-Organized TiO2 Nanotubes in Mixed Organic-Inorganic Electrolytes and Their Photoelectrochemical Performance," Electrochim. Acta, Vol. 54, No. 26, pp. 6536-6542 (2009).
    LaTempa, T. J., X. J. Feng, M. Paulose, and C. A. Grimes, "Temperature-Dependent Growth of Self-Assembled Hematite (α-Fe2O3) Nanotube Arrays: Rapid Electrochemical Synthesis and Photoelectrochemical Properties," J. Phys. Chem. C, Vol. 113, No. 36, pp. 16293-16298 (2009).
    Liang, H. C. and X. Z. Li, "Effects of Structure of Anodic TiO2 Nanotube Arrays on Photocatalytic Activity for the Degradation of 2,3-Dichlorophenol in Aqueous Solution," J. Hazard. Mater., Vol. 162, No. 2-3, pp. 1415-1422 (2009).
    Lindroos, S., Y. Charreire, D. Bonnin, and M. Leskel, "Growth and Characterization of Zinc Sulfide Thin Films Deposited by the Successive Ionic Layer Adsorption and Reaction (SILAR) Method Using Complexed Zinc Ions as the Cation Precursor," Mater. Res. Bull., Vol. 33, No. 3, pp. 453-459 (1998).
    Linsebigler, A. L., G. Lu, and J. T. Yates Jr, "Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results," Chem. Rev., Vol. 95, No. 3, pp. 735-758 (1995).
    Liu, G., K. Wang, N. Hoivik, and H. Jakobsen, "Progress on Free-Standing and Flow-through TiO2 Nanotube Membranes," Sol. Energy Mater. Sol. Cells, Vol. 98, No. 0, pp. 24-38 (2012).
    Liu, R., Y. Liu, C. Liu, S. Luo, Y. Teng, L. Yang, R. Yang, and Q. Cai, "Enhanced Photoelectrocatalytic Degradation of 2,4-Dichlorophenoxyacetic Acid by CuInS2 Nanoparticles Deposition onto TiO2 Nanotube Arrays," J. Alloys Compd., Vol. 509, No. 5, pp. 2434-2440 (2011).
    Lockman, Z., S. Ismail, S. Sreekantan, L. Schmidt-Mende, and J. L. MacManus-Driscoll, "The Rapid Growth of 3 μm Long Titania Nanotubes by Anodization of Titanium in a Neutral Electrochemical Bath," Nanotechnology, Vol. 21, No. 5 (2010).
    Lynch, R. P., A. Ghicov, and P. Schmuki, "A Photo-Electrochemical Investigation of Self-Organized TiO2 Nanotubes," J. Electrochem. Soc., Vol. 157, No. 3, pp. G76-G84 (2010).
    Macak, J. M., H. Hildebrand, U. Marten-Jahns, and P. Schmuki, "Mechanistic Aspects and Growth of Large Diameter Self-Organized TiO2 Nanotubes," J. Electroanal. Chem., Vol. 621, No. 2, pp. 254-266 (2008).
    Macak, J. M. and P. Schmuki, "Anodic Growth of Self-Organized Anodic TiO2 Nanotubes in Viscous Electrolytes," Electrochim. Acta, Vol. 52, No. 3, pp. 1258-1264 (2006).
    Macak, J. M., H. Tsuchiya, A. Ghicov, K. Yasuda, R. Hahn, S. Bauer, and P. Schmuki, "TiO2 Nanotubes: Self-Organized Electrochemical Formation, Properties and Applications," Curr. Opin. Solid State Mater. Sci., Vol. 11, No. 1-2, pp. 3-18 (2007).
    Macak, J. M., K. Sirotna, and P. Schmuki, "Self-Organized Porous Titanium Oxide Prepared in Na2SO4/NaF Electrolytes," Electrochim. Acta, Vol. 50, No. 18, pp. 3679-3684 (2005a).
    Macak, J. M., H. Tsuchiya, L. Taveira, S. Aldabergerova, and P. Schmuki, "Smooth Anodic TiO2 Nanotubes," Sci. Angew. Chem. Int. Ed. Engl., Vol. 44, No. 45, pp. 7463-7465 (2005b).
    Masuda, H. and M. Satoh, "Fabrication of Gold Nanodot Array Using Anodic Porous Alumina as an Evaporation Mask," Jpn. J. Appl. Phys., Part 2: Lett., Vol. 35, No. 1 B, pp. L126-L129 (1996).
    Mller, J., C. H. Fischer, H. J. Muffler, R. Konenkamp, I. Kaiser, C. Kelch, and M. C. Lux-Steiner, "A Novel Deposition Technique for Compound Semiconductors on Highly Porous Substrates: ILGAR," Thin Solid Films, Vol. 361, pp. 113-117 (2000).
    Mor, G. K., K. Shankar, M. Paulose, O. K. Varghese, and C. A. Grimes, "Enhanced Photocleavage of Water Using Titania Nanotube Arrays," Nano Lett., Vol. 5, No. 1, pp. 191-195 (2005).
    Mor, G. K., O. K. Varghese, M. Paulose, K. Shankar, and C. A. Grimes, "A Review on Highly Ordered, Vertically Oriented TiO2 Nanotube Arrays: Fabrication, Material Properties, and Solar Energy Applications," Sol. Energy Mater. Sol. Cells, Vol. 90, No. 14, pp. 2011-2075 (2006).
    Morales, A. G. R., M. O. C. Guzman, and C. C. Arteaga, "A Brief Review on Fabrication and Applications of Auto-Organized TiO2 Nanotube Arrays," Corros. Rev., Vol. 29, No. 1-2, pp. 105-121 (2011).
    Muffler, H. J., C. H. Fischer, K. Diesner, and M. C. Lux-Steiner, "ILGAR - a Novel Thin-Film Technology for Sulfides," Sol. Energy Mater. Sol. Cells, Vol. 67, No. 1-4, pp. 121-127 (2001).
    Nah, Y. C., I. Paramasivam, and P. Schmuki, "Doped TiO2 and TiO2 Nanotubes: Synthesis and Applications," Chemphyschem, Vol. 11, No. 13, pp. 2698-2713 (2010).
    Nanu, M., L. Reijnen, B. Meester, A. Goossens, and J. Schoonman, " CuInS2-TiO2 Heterojunctions Solar Cells Obtained by Atomic Layer Deposition," Thin Solid Films, Vol. 431-432, pp. 492-496 (2003).
    Nicolau, Y. F., "Solution Deposition of Thin Solid Compound Films by a Successive Ionic-Layer Adsorption and Reaction Process," Appl. Surf. Sci., Vol. 22-23, No. PART 2, pp. 1061-1074 (1985).
    Nicolau, Y. F. and J. C. Menard, "Solution Growth of ZnS, CdS and Zn1-xCdxS Thin Films by the Successive Ionic-Layer Adsorption and Reaction Process; Growth Mechanism," J. Cryst. Growth, Vol. 92, No. 1-2, pp. 128-142 (1988).
    Ohno, T., K. Sarukawa, and M. Matsumura, "Photocatalytic Activities of Pure Rutile Particles Isolated from TiO2 Owder by Dissolving the Anatase Component in Hf Solution," J. Phys. Chem. B, Vol. 105, No. 12, pp. 2417-2420 (2001).
    Ohno, T., K. Tokieda, S. Higashida, and M. Matsumura, "Synergism between Rutile and Anatase TiO2 Particles in Photocatalytic Oxidation of Naphthalene," Appl. Catal. A Gen., Vol. 244, No. 2, pp. 383-391 (2003).
    Pathan, H. M., S. S. Kale, C. D. Lokhande, S. H. Han, and O. S. Joo, "Preparation and Characterization of Amorphous Manganese Sulfide Thin Films by SILAR Method," Mater. Res. Bull., Vol. 42, No. 8, pp. 1565-1569 (2007).
    Pathan, H. M. and C. D. Lokhande, "Chemical Deposition and Characterization of Copper Indium Disulphide Thin Films," Appl. Surf. Sci., Vol. 239, No. 1, pp. 11-18 (2004a).
    Pathan, H. M. and C. D. Lokhande, "Deposition of Metal Chalcogenide Thin Films by Successive Ionic Layer Adsorption and Reaction (SILAR) Method," Bull. Mater. Sci., Vol. 27, No. 2, pp. 85-111 (2004b).
    Pathan, H. M., C. D. Lokhande, S. S. Kulkarni, D. P. Amalnerkar, T. Seth, and S. H. Han, "Some Studies on Successive Ionic Layer Adsorption and Reaction (SILAR) Grown Indium Sulphide Thin Films," Mater. Res. Bull., Vol. 40, No. 6, pp. 1018-1023 (2005).
    Paulose, M., H. E. Prakasam, O. K. Varghese, L. Peng, K. C. Popat, G. K. Mor, T. A. Desai, and C. A. Grimes, "TiO2 Nanotube Arrays of 1000 μm Length by Anodization of Titanium Foil: Phenol Red Diffusion," J. Phys. Chem. C, Vol. 111, No. 41, pp. 14992-14997 (2007).
    Preetha, K. C., K. V. Murali, A. J. Ragina, K. Deepa, and T. L. Remadevi, "Effect of Cationic Precursor pH on Optical and Transport Properties of SILAR Deposited Nano Crystalline PbS Thin Films," Curr. Appl. Phys., Vol. 12, No. 1, pp. 53-59 (2012).
    Qian, J., Z. Jin, J. Qiu, and Z. Liu, "Preparation of CuInS2 Thin Films by Ion Layer Gas Reaction," Kuei Suan Jen Hsueh Pao/ Journal of the Chinese Ceramic Society, Vol. 34, No. 8, pp. 937-940+946 (2006).
    Raja, K. S., T. Gandhi, and M. Misra, "Effect of Water Content of Ethylene Glycol as Electrolyte for Synthesis of Ordered Titania Nanotubes," Electrochem. Commun., Vol. 9, No. 5, pp. 1069-1076 (2007).
    Rani, S., S. C. Roy, M. Paulose, O. K. Varghese, G. K. Mor, S. Kim, S. Yoriya, T. J. LaTempa, and C. A. Grimes, "Synthesis and Applications of Electrochemically Self-Assembled Titania Nanotube Arrays," PCCP, Vol. 12, No. 12, pp. 2780-2800 (2010).
    Ristov, M., Gj Sinadinovski, and I. Grozdanov, "Chemical Deposition of Cu2O Thin Films," Thin Solid Films, Vol. 123, No. 1, pp. 63-67 (1985).
    Roy, P., S. Berger, and P. Schmuki, "TiO2 Nanotubes: Synthesis and Applications," Sci. Angew. Chem. Int. Ed. Engl., Vol. 50, No. 13, pp. 2904-2939 (2011).
    Sankapal, B. R. and C. D. Lokhande, "Studies on Photoelectrochemical (PEC) Cell Formed with Silar Deposited Bi2Se3-Sb2Se3 Multilayer Thin Films," Sol. Energy Mater. Sol. Cells, Vol. 69, No. 1, pp. 43-52 (2001).
    Sankapal, B. R., R. S. Mane, and C. D. Lokhande, "Successive Ionic Layer Adsorption and Reaction (SILAR) Method for the Deposition of Large Area (Approximately 10 cm2) Tin Disulfide (SnS2) Thin Films," Mater. Res. Bull., Vol. 35, No. 12, pp. 2027-2035 (2000).
    Sclafani, A. and J. M. Herrmann, "Comparison of the Photoelectronic and Photocatalytic Activities of Various Anatase and Rutile Forms of Titania in Pure Liquid Organic Phases and in Aqueous Solutions," J. Phys. Chem., Vol. 100, No. 32, pp. 13655-13661 (1996).
    Shen, F., W. Que, Y. Liao, and X. Yin, "Photocatalytic Activity of TiO2 Nanoparticles Sensitized by CuInS2 Quantum Dots," Ind. Eng. Chem., Vol. 50, No. 15, pp. 9131-9137 (2011).
    Shi, Y., Z. Jin, C. Li, H. An, and J. Qiu, "Effect of [Cu]/[In] Ratio on Properties of CuInS2 Thin Films Prepared by Successive Ionic Layer Absorption and Reaction Method," Appl. Surf. Sci., Vol. 252, No. 10, pp. 3737-3743 (2006).
    Shi, Y., Z. Jin, C. Li, H. An, and J. Qiu, "Effects of Post-Heat Treatment on the Characteristics of Chalcopyrite CuInS2 Film Deposited by Successive Ionic Layer Absorption and Reaction Method," Thin Solid Films, Vol. 515, No. 7-8, pp. 3339-3343 (2007).
    Srivastava, R. and K. N. Khanna, "Stokes-Einstein Relation in Two-and Three-Dimensional Fluids," J. Chem. Eng. Data, Vol. 54, No. 5, pp. 1452-1456 (2009).
    Strini, A., S. Cassese, and L. Schiavi, "Measurement of Benzene, Toluene, Ethylbenzene and O-Xylene Gas Phase Photodegradation by Titanium Dioxide Dispersed in Cementitious Materials Using a Mixed Flow Reactor," Appl. Catal., B, Vol. 61, No. 1-2, pp. 90-97 (2005).
    Su, D. S., W. Neumann, R. Hunger, P. Schubert-Bischoff, M. Giersig, H. J. Lewerenz, R. Scheer, and E. Zeitler, "CuAu-Type Ordering in Epitaxial CuInS2 Films," Appl. Phys. Lett., Vol. 73, No. 6, pp. 785-787 (1998).
    Sun, L., S. Zhang, X. W. Sun, and X. He, "Effect of Electric Field Strength on the Length of Anodized Titania Nanotube Arrays," J. Electroanal. Chem., Vol. 637, No. 1-2, pp. 6-12 (2009).
    Tak, Y., S. J. Hong, J. S. Lee, and K. Yong, "Fabrication of ZnO/CdS Core/Shell Nanowire Arrays for Efficient Solar Energy Conversion," J. Mater. Chem., Vol. 19, No. 33, pp. 5945-5951 (2009).
    Taner, A., M. Kul, E. Turan, A. S. Aybek, M. Zor, and T. Taşkpr, "Optical and Structural Properties of Zinc Oxide Films with Different Thicknesses Prepared by Successive Ionic Layer Adsorption and Reaction Method," Thin Solid Films, Vol. 520, No. 4, pp. 1358-1362 (2011).
    Thompson, T. L. and J. T. Yates Jr, "Surface Science Studies of the Photoactivation of TiO2 - New Photochemical Processes," Chem. Rev., Vol. 106, No. 10, pp. 4428-4453 (2006).
    Tsuboi, N., T. Tamogami, and S. Kobayashi, "Epitaxial Growth of Chalcopyrite-Type CuInS2 Films on GaAs(001) Substrates by Evaporation Method with Elemental Sources," Jpn. J. Appl. Phys., Vol. 50, No. 5 (2011).
    Valota, A., D. J. LeClere, P. Skeldon, M. Curioni, T. Hashimoto, S. Berger, J. Kunze, P. Schmuki, and G. E. Thompson, "Influence of Water Content on Nanotubular Anodic Titania Formed in Fluoride/Glycerol Electrolytes," Electrochim. Acta, Vol. 54, No. 18, pp. 4321-4327 (2009).
    Van De Lagemaat, J., M. Plakman, D. Vanmaekelbergh, and J. J. Kelly, "Enhancement of the Light-to-Current Conversion Efficiency in an N-Sic/Solution Diode by Porous Etching," Appl. Phys. Lett., Vol. 69, No. 15, pp. 2246-2248 (1996).
    Varghese, O. K., M. Paulose, T. J. LaTempa, and C. A. Grimes, "High-Rate Solar Photocatalytic Conversion of CO2 and Water Vapor to Hydrocarbon Fuels," Nano Lett., Vol. 9, No. 2, pp. 731-737 (2009).
    Vogel, R., K. Pohl, and H. Weller, "Sensitization of Highly Porous, Polycrystalline TiO2 Electrodes by Quantum Sized CdS," Chem. Phys. Lett., Vol. 174, No. 3-4, pp. 241-246 (1990).
    Wang, D., Y. Liu, B. Yu, F. Zhou, and W. Liu, "TiO2 Nanotubes with Tunable Morphology, Diameter, and Length: Synthesis and Photo-Electrical/Catalytic Performance," Chem. Mater., Vol. 21, No. 7, pp. 1198-1206 (2009).
    Wang, X., J. C. Yu, P. Liu, W. Su, and X. Fu, "Probing of Photocatalytic Surface Sites on SO42-/TiO2 Solid Acids by in Situ FT-IR Spectroscopy and Pyridine Adsorption," J. Photochem. Photobiol. A Chem., Vol. 179, No. 3, pp. 339-347 (2006).
    Wong, C. L., Y. N. Tan, and A. R. Mohamed, "A Review on the Formation of Titania Nanotube Photocatalysts by Hydrothermal Treatment," J. Environ. Manage., Vol. 92, No. 7, pp. 1669-1680 (2011).
    Wu, T., G. Liu, J. Zhao, H. Hidaka, and N. Serpone, "Photoassisted Degradation of Dye Pollutants. V. Self-Photosensitized Oxidative Transformation of Rhodamine B under Visible Light Irradiation in Aqueous TiO2 Dispersions," J. Phys. Chem. B, Vol. 102, No. 30, pp. 5845-5851 (1998).
    Xu, W. and D. Raftery, "Photocatalytic Oxidation of 2-Propanol on TiO2 Powder and TiO2 Monolayer Catalysts Studied by Solid-State NMR," J. Phys. Chem. B, Vol. 105, No. 19, pp. 4343-4349 (2001).
    Yang, J., Z. Jin, T. Liu, C. Li, and Y. Shi, "An Investigation into Effect of Cationic Precursor Solutions on Formation of CuInS2 Thin Films by SILAR Method," Sol. Energy Mater. Sol. Cells, Vol. 92, No. 6, pp. 621-627 (2008).
    Yin, Y., Z. Jin, F. Hou, and X. Wang, "Synthesis and Morphology of TiO2 Nanotube Arrays by Anodic Oxidation Using Modified Glycerol-Based Electrolytes," J. Am. Ceram. Soc., Vol. 90, No. 8, pp. 2384-2389 (2007).
    Yu, J. C., J. Yu, W. Ho, Z. Jiang, and L. Zhang, "Effects of F- Doping on the Photocatalytic Activity and Microstructures of Nanocrystalline TiO2 Powders," Chem. Mater., Vol. 14, No. 9, pp. 3808-3816 (2002).
    Yue, W., S. Han, R. Peng, W. Shen, H. Geng, F. Wu, S. Tao, and M. Wang, " CuInS2 Quantum Dots Synthesized by a Solvothermal Route and Their Application as Effective Electron Acceptors for Hybrid Solar Cells," J. Mater. Chem., Vol. 20, No. 35, pp. 7570-7578 (2010).
    Zhang, F., J. Zhao, T. Shen, H. Hidaka, E. Pelizzetti, and N. Serpone, "TiO2-Assisted Photodegradation of Dye Pollutants II. Adsorption and Degradation Kinetics of Eosin in TiO2 Dispersions under Visible Light Irradiation," Appl. Catal., B: Environ., Vol. 15, No. 1-2, pp. 147-156 (1998).
    Zhu, W., X. Liu, H. Liu, D. Tong, J. Yang, and J. Peng, "An Efficient Approach to Control the Morphology and the Adhesion Properties of Anodized TiO2 Nanotube Arrays for Improved Photoconversion Efficiency," Electrochim. Acta, Vol. 56, No. 6, pp. 2618-2626 (2011).
    Zouaghi, M. C., T. Ben Nasrallah, S. Marsillac, J. C. Bernede, and S. Belgacem, "Physico-Chemical Characterization of Spray-Deposited CuInS2 Thin Films," Thin Solid Films, Vol. 382, No. 1-2, pp. 39-46 (2001).

    無法下載圖示 全文公開日期 2017/07/23 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE