簡易檢索 / 詳目顯示

研究生: 范展榮
Zhan-rong Fan
論文名稱: 利用不同尺寸之陣列式二氧化鈦奈米管在紫外光下分解染料水溶液
Effects of TiO2 Nanotube Arrays Dimension on the Degradation of Acid Red 4 in Aqueous Solution
指導教授: 顧洋
Young Ku
口試委員: 曾堯宣
Yao-hsuan Tseng
蔣本基
Pen-chi Chiang
郭俞麟
Yu-lin Kuo
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 138
中文關鍵詞: 二氧化鈦奈米管陣列陽極氧化尺寸晶相酸性紅4號
外文關鍵詞: TiO2 Nanotube Arrays, Anodic Oxidation, Dimension, Crystal Phase, Acid Red 4
相關次數: 點閱:170下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以陽極氧化法在含氟化物的電解液中製備陣列式二氧化鈦奈米管光觸媒,並以場發式電子顯微鏡、X-射線繞射光譜儀以及定電位/恆電流儀對光觸媒表面形態及結晶型態以及光電流進行物性分析。除此之外,表面電性與表面元素分析則是利用介達電位儀和X射線光電子能譜儀進行分析。研究中以UV/TiO2 nanotube arrays程序針對酸性染料-AR4進行光催化降解,探討觸媒燒結溫度、觸媒表面型態、光強度與染料初始值濃度對光催化降解的影響。研究結果顯示,光催化的能力與觸媒表面型態有相當大的關係,管徑越小與管長越長的陣列式二氧化鈦奈米管光觸媒具有較佳的光催化降解能力。在本實驗中,陣列式二氧化鈦奈米管的光催化能力也與市售的二氧化鈦(P25)做比較,當管長大於1500 nm時,陣列式二氧化鈦奈米管的光催化能力是大於市售的二氧化鈦。所以在本研究中,改變陣列式二氧化鈦奈米管的表面型態是有效的提升光降解污染物的能力。


    The fabrication of TiO2 nanotube arrays was carried out by the anodization in electrolytes containing fluoride in this study. The TiO2 nanotube arrays were fabricated under various operational conditions: water content, anodizing voltage, anodization time and annealing temperature. The dimensions, crystal phase and photocurrent of TiO2 nanotube arrays were determined by scanning electron microscope, X-ray diffraction and potentiostat/galvanostat, respectively. Additionally, zeta meter was employed to analyze surface charge of TiO2 nanotube arrays. The formation of the nanotube structures on titanium during anodization depends on the correlation between electrochemical oxidation (anodization) and chemical dissolution. The competition of electrochemical oxidation and chemical dissolution rates correlate with formation of TiO2 nanotube arrays. The photocatalytic efficiency was determined by studying the photocatalytic degradation of Acid Red 4 in aqueous solution to recognize effect of TiO2 nanotube arrays dimension on the photocatalytic efficiency. Experimental results indicated that the photocatalytic efficiency was influenced significantly with the dimension of TiO2 nanotube arrays. TiO2 nanotube arrays with longer length and smaller inner diameter exhibited better performance of AR4 degradation because of the larger surface area. The application of TiO2 nanotube arrays was effective to enhance the decomposition efficiency of photocatalytic process based on the results of this study.

    Chapter 1 Introduction 2 Review of Literature 2.1 Introduction of photocatalyst 2.1.1 Basic Properties of TiO2 2.1.2 Mechanism of Photocatalytic Process 2.2 Preparation of TiO2 Nanotube Arrays 2.2.1 Template Method 2.2.2 Hydrothermal Synthesis 2.2.3 Anodic Oxidation Method 2.2.4 Review of Anodic Oxidation in Literature 2.2.4.1 Development of TiO2 Nanotube Arrays 2.2.4.2 Effect of Anodization Voltage 2.2.4.3 Effect of Water Content in Electrolyte 2.2.4.4 Effect of Anodization Time 2.2.4.5 Effect of Anodization Temperature 2.2.4.6 Effect of Fluorine Ion Dosage 2.2.4.7 Effect of pH Value in Electrolyte 2.2.4.8 Effect of Annealing Environment 2.3 Operating Conditions for Photocatalyst Process Utilizing TiO2 nanotube arrays 2.3.1 Effect of Annealing Temperature 2.3.2 Effect of Initial Concentration 2.3.3 Effect of Bias Potential 2.3.4 Effect of Modification 2.4 Application of TiO2 Nanotube Arrays 3 Experimental Procedures and Analysis 3.1 Instruments 3.2 Chemicals 3.3 Apparatus 3.3.1 Photocatalytic Apparatus 3.3.2 Photoelectrochemistry Equipment 3.4 Experimental Procedures 3.4.1 Experimental Framework 3.4.2 Photocatalyst Preparation 3.4.2.1 Preparation of TiO2 nanotube arrays/Ti 3.4.2.2 Preparation of TiO2/Ti 3.4.3 Background Experiments 3.4.4 The Operating Conditions of Characterization Analysis 3.4.5 Photocatalytic Process (UV/TiO2 Nanotube arrays Process) 4 Results and Discussions 4.1 Background Experimental 4.1.1 Adsorption experiment 4.1.2 Photolysis experiment 4.1.3 UV light intensity calibration 4.2 Characterization Analysis of TiO2 nanotube arrays 4.2.1 Field-emission Scanning Electron Microscope Analysis 4.2.2 X-ray Diffraction Analysis 4.2.3 Zeta Potential Analysis 4.2.4 Photocurrent Analysis 4.3 Mechanism of the Formation of TiO2 Nanotube Arrays 4.4 Photocatalytic Degradation of AR4 in Aqueous Solutions using TiO2 Nanotube Arrays 4.4.1 Effect of Annealing Temperature 4.4.2 Effect of TiO2 Nanotube Arrays Dimension 4.4.3 Effect of Light Intensity 4.4.4 Effect of Initial Concentration of AR4 Solution 5 Conclusions and Recommendations Reference Appendix Vita

    Al-Ekabi, H., B. Butters, D. Delany, W. Holden, T. Powell and J. Story, “The Photocatalytic Destruction of Gaseous Trichloroethylene and Tetrachloroethylene Over Immobilized Titanium-Dioxide, Photocatalytic Purification and Treatment of Water and Air,” Elsevier Sci. Publ., B.V. Amsterdam, pp. 719-725 (1993).
    Awitor, K.O., S. Rafqah, G. Granton, Y. Sibaud, P.R. Larson, R.S.P. Bokalawela, J.D. Jernigen and M.B. Johnson, “Photo-catalysis using Titanium Dioxide Nanotube Layers,” J. Photochem. Photobiol., A, Vol. 199, pp. 250-254 (2008).
    Burdett, J. K., “Electronic Control of the Geometry of Rutile and Related Structures,” Inorg. Chem., Vol. 24, pp. 2244 (1985).
    Bakardjieva, S., J. Šubrt, V. Štengl, M. J. Dianez and M. J. Sayagues, “Photoactivity of Anatase–Rutile TiO2 Nanocrystalline Mixtures Obtained by Heat Treatment of Homogeneously Precipitated Anatase,” Appl. Catal B: Environ., Vol. 58, pp. 193-202 (2005).
    Cai, Q., M. Paulose, O.K. Varghese and C.A. Grimes, “The Effect of Electrolyte Composition on the Fabrication of Self-organized Titanium Oxide Nanotube Arrays by Anodic Oxidation,” J. Mater. Res., Vol. 20, pp. 230-236 (2005).
    Crawford, G.A., N. Chawla, K. Das, S. Bose and A. Bandyopadhyay, “Microstructure and Deformation Behavior of Biocompatible TiO2 Nanotubes on Titanium Substrate,” Acta Biomater., Vol. 3 , pp. 359-367 (2007).
    Fujishima, A. and K. Honda, “Electrochemical Photolysis of Water at a Semiconductor Electrode,” Nature, Vol. 238, pp. 37-38 (1972).
    Fujishima, A., K. Hashoimoto and T. Watanabe, “TiO2 Photocatalysis Fundamentals and Application,” BKC, Inc., Tokyo, (1999).
    Gong, D., C.A. Grimes, O.K. Varghese, W. Hu, R.S. Singh, Z. Chen and E.C. Dickey, “Titanium Oxide Nanotube Arrays Prepared by Anodic Oxidation,” J. Mater. Res., Vol. 16, pp. 3331-3334 (2001).
    Ghicov, A., H. Tsuchiya, J.M. Macak and P. Schmuki, “Annealing Effects on the Photoresponse of TiO2 Nanotubes,” Phys. Status Solidi A, Vol. 203, pp. R28-R30 (2006).
    Hoyer, P., “Formation of a Titanium Dioxide Nanotube Array,” Langmuir, Vol. 12, pp. 1411-1413 (1996).
    Hsu, M.C., I.C. Leu, Y.M. Sun and M.H. Hon, “Fabrication of CdS@TiO2 Coaxial Composite Nanocables Arrays by Liquid-phase Deposition.” J. Cryst. Growth, Vol. 285, pp. 642-648. (2005).
    Iijima, S., “Helical Microtubules of Graphitic Carbon,” Nature, Vol. 354, pp. 56-58. (1991).
    Kasuga, T., M. Hiramatsu, A. Hoson, T. Sekino and K. Niihara, “Formation of Titanium Oxide Nanotube,” Langmuir, Vol. 14, pp. 3160-3163 (1998).
    Kim, T.K., M.N. Lee, S.H. Lee, Y.C. Park, C.K. Jung, and J. H. Boo, “Development of Surface Coating Technology of TiO2 Powder and Improvement of Photocatalytic Activity by Surface Modification,” Thin Solid Films, Vol. 475, pp. 171-177 (2005).
    Kim, E.Y., J.H. Park and G..Y. Han, “Design of TiO2 Nanotube Array-based Water-splitting Reactor for Hydrogen Generation,” J. Power Sources, Vol. 184, pp. 284-287 (2008).
    Linsebigler, A.L., G. Lu and J.T. Yates Jr., “Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results,” Chem. Rev., Vol. 95, pp. 735-758 (1995).
    Law, M., L.E. Greene, J.C. Johnson, R. Saykally and P. Yang, “Nanowire Dye-sensitized Solar Cells,” Nat. Mater., Vol. 4, pp. 455-459 (2005).
    Liu, Z., X. Zhang, S. Nishimoto, M. Jin, D.A. Tryk, T. Murakami and A. Fujishima, “Highly Ordered TiO2 Nanotube Arrays with Controllable Length for Photoelectrocatalytic Degradation of Phenol,” J. Phys. Chem. C, Vol. 112, pp. 253-259 (2008).
    Lu, N., H. Zhao, J. Li, X. Quan and S. Chen, “Characterization of Boron-doped TiO2 Nanotube Arrays Prepared by Electrochemical Method and Its Visible Light Activity,” Sep. Purif. Technol., Vol. 62, pp. 668-673 (2008).
    Liang, H.C. and X.Z. Li, “Effects of Structure of Anodic TiO2 Nanotube Arrays on Photocatalytic Activity for the Degradation of 2,3-Dichlorophenol in Aqueous Solution,” J. Hazard. Mater., Vol. 162, pp. 1415-1422(2009).
    Macák, J.M., H. Tsuchiya, A. Ghicov and P. Schmuki, “Dye-sensitized Anodic TiO2 Nanotubes,” Electrochem. Commun., Vol. 7, pp. 1133-1137 (2005).
    Macák, J.M., H. Tsuchiya and P. Schmuki, “High-aspect-ratio TiO2 Nanotubes by Anodization of Titanium,” Angew. Chem. Int. Ed., Vol. 44, pp. 2100-2102 (2005).
    Macak, J.M., H. Tsuchiya, L. Taveira, S .Aldabergerova and P. Schmuki, “Smooth Anodic TiO2 Nanotubes,” Angew. Chem. Int. Ed., Vol. 44, pp. 7463-7465 (2005).
    Mor, G.K., K. Shankar, M. Paulose, O.K. Varghese and C.A. Grimes, “Enhanced Photocleavage of Water using Titania Nanotube Arrays,” Nano Lett., Vol. 5, pp. 191-195 (2005).
    Mor, G.K., O.K. Varghese, M. Paulose and C.A. Grimes, “Transparent Highly Ordered TiO2 Nanotube Arrays via Anodization of Titanium Thin Films,” Adv. Funct. Mater., Vol. 15, pp. 1291-1296 (2005).
    Macak, J.M. and P. Schmuki, “Anodic Growth of Self-organized Anodic TiO2 Nanotubes in Viscous Electrolytes,” Electrochim. Acta, Vol. 52, pp. 1258-1264 (2006).
    Mor, G.K., O.K. Varghese, M. Paulose, K. Shankar and C.A. Grimes, “A Review on Highly Ordered, Vertically Oriented TiO2 Nanotube Arrays: Fabrication, Material Properties, and Solar Energy Applications,” Sol. Energy Mater. Sol. Cells, Vol. 90, pp. 2011-2075 (2006).
    Macak, J.M., M. Zlamal, J. Krysa and P. Schmuki, “Self-organized TiO2 Nanotube Layers as Highly Efficient Photocatalysts,” Small, Vol. 3, pp. 300-304 (2007).
    Macak, J.M., H. Tsuchiya, A. Ghicov, K. Yasuda, R. Hahn, S. Bauer and P. Schmuki, “TiO2 Nanotubes: Self-organized Electrochemical Formation, Properties and Applications,” Curr. Opin. Solid State Mater. Sci., Vol. 11, pp. 3-18 (2007).
    Macak, J.M., H. Hildebrand, U. Marten Jahns and P. Schmuki, “Mechanistic Aspects and Growth of Large Diameter Self-organized TiO2 Nanotubes,” J. Electroanal. Chem., Vol. 621, pp. 254-266 (2008).
    Ollis, David F., E. Pelizzetti and N. Serpone, “Photocatalyzed Destruction of Water Contaminants,” Environ. Sci. Technol.,Vol. 25, pp. 1522-1529 (1991).
    O'Regan, B. and M. Grätzel, “A Low-cost, High-activity Solar Cell Based on Dye-sensitized Colloidal TiO2 Films,” Nature, Vol. 353, pp. 737-740 (1991).
    Ohno, T., K. Tokieda, S. Higashida and M. Matsumura, “Synergism between Rutile and Anatase TiO2 Particles in Photocatalytic Oxidation of Naphthalene,” Appl. Catal. A: General, Vol. 244, pp. 383-391 (2003).
    Ou, H.H. and S.L. Lo, “Review of Titania Nanotubes Synthesized Via the Hydrothermal Treatment: Fabrication, Modification, and Application,” Sep. Purif. Technol., Vol. 58, pp. 179-191 (2007).
    Oh, H.J., J.H. Lee, Y.J. Kim, S.J. Suh, J.H. Lee and C.S. Chi, “Synthesis of Effective Titania Nanotubes for Wastewater Purification,” Appl. Catal. B: Environ., Vol. 84, pp. 142-147(2008).
    Paulose, M., K. Shankar, S. Yoriya, H.E. Prakasam, O.K. Varghese, G.K. Mor, T.A. Latempa, A. Fitzgerald and C.A. Grimes, “Anodic Growth of Highly Ordered TiO2 Nanotube Arrays to 134 μm in Length,” J. Phys. Chem. B, Vol. 110, pp. 16179-16184 (2006).
    Paulose, M., K. Shankar, O.K. Varghese, G.K. Mor and C.A. Grimes, “Application of Highly-ordered TiO2 Nanotube-arrays in Heterojunction Dye-sensitized Solar Cells,” J. Phys. D: Appl. Phys., Vol. 39, pp. 2498-2503 (2006).
    Paulose, M., H.E. Prakasam, O.K. Varghese, L. Peng, K.C. Popat, G.K. Mor, T.A. Desai and C.A. Grimes, “TiO2 Nanotube Arrays of 1000 μm Length by Anodization of Titanium Foil: Phenol Red Diffusion,” J. Phys. Chem. C, Vol. 111, pp. 14992-14997 (2007).
    Paramasivam, I., J.M. Macak, T. Selvam and P. Schmuki, “Electrochemical Synthesis of Self-organized TiO2 Nanotubular Structures using an Ionic Liquid (BMIM-BF4),” Electrochim. Acta, Vol. 54, pp. 643-648 (2008).
    Paramasivam, I., J.M. Macak and P. Schmuki, “Photocatalytic Activity of TiO2 Nanotube Layers Loaded with Ag and Au Nanoparticles,” Electrochem. Commun., Vol. 10, pp. 71-75 (2008).
    Quan, X., X. Ruan, H. Zhao, S. Chen and Y. Zhao, “Photoelectrocatalytic Degradation of Pentachlorophenol in Aqueous Solution using a TiO2 Nanotube Film Electrode,” Environ. Pollut., Vol. 147, pp. 409-414 (2007).
    Rahman, M.Y.A., M.M. Salleh, I.A. Talib and M. Yahaya, “Effect of Surface Roughness of TiO2 Films on Short-circuit Current Density of Photoelectrochemical Cell of ITO/TiO2/ PVC-LiClO4/graphite,” Curr. Appl Phys., Vol. 5, pp. 599-602 (2005).
    Raja, K.S., T. Gandhi and M. Misra, “Effect of Water Content of Ethylene Glycol as Electrolyte for Synthesis of Ordered Titania Nanotubes,” Electrochem. Commun., Vol. 9, pp. 1069-1076 (2007).
    Sivalingam, G., K. Nagaveni, M.S. Hegde and G. Madras, “Photocatalytic Degradation of Various Dyes by Combustion Synthesized Nano Anatase TiO2,” Appl. Catal. B: Environ., Vol. 45, pp. 23-38(2003).
    Shankar, K., G.K. Mor, H.E. Prakasam, S. Yoriya, M. Paulose, O.K. Varghese and C.A. Grimes, “Highly-ordered TiO2 Nanotube Arrays up to 220 μm in Length: Use in Water Photoelectrolysis and Dye-sensitized Solar Cells,” Nanotechnology, Vol. 18, art. no. 065707(2007).
    Su, Y., X. Zhang, S. Han, X. Chen and L. Lei, “F-B-codoping of Anodized TiO2 Nanotubes using Chemical Vapor Deposition,” Electrochem. Commun., Vol. 9, pp. 2291-2298(2007).
    Sohn, Y.S., Y.R. Smith, M. Misra and V. Subramanian, “Electrochemically Assisted Photocatalytic Degradation of Methyl Orange using Anodized Titanium Dioxide Nanotubes,” Appl. Catal., B, Vol. 84, pp. 372-378 (2008).
    Su, Y., S. Chen, X. Quan, H. Zhao and Y. Zhang, “A Silicon-doped TiO2 Nanotube Arrays Electrode with Enhanced Photoelectrocatalytic Activity,” Appl. Surf. Sci., Vol. 255, pp. 2167-2172 (2008).
    Su, Y., S. Han, X. Zhang, X. Chen and L. Lei, “Preparation and Visible-light-driven Photoelectrocatalytic Properties of Boron-doped TiO2 Nanotubes,” Mater. Chem. Phys., Vol. 110, pp. 239-246 (2008).
    Tanaka, K., T. Hisanaga and A. Rivera, “Effect of Crystal Form of TiO2 on the Photocatalytic Degradation of Pollutants, Photocatalytic Treatment of Water and Air,” Elsevier Science Publishers, B.V. Amsterdam, pp. 169-178 (1993).
    Tian, M., B. Adams, J. Wen, R. Matthew Asmussen and A. Chen, “Photoelectrochemical Oxidation of Salicylic Acid and Salicylaldehyde on Titanium Dioxide Nanotube Arrays,” Electrochim. Acta, Vol. 54, pp. 3799-3805 (2009).
    Varghese, O.K., G.K. Mor, M. Paulose and C.A. Grimes, “A Titania Nanotube-array Room-temperature Sensor for Selective Detection of Low Hydrogen Concentrations,” Mater. Res. Soc. Symp. Proc., Vol. 828, art. no. A3.1/K4.1, pp. 117-125 (2005).
    Wang, Y.Q., G.Q. Hu, X.F. Duan, H.L. Sun and Q.K. Xue, “Microstructure and Formation Mechanism of Titanim Dioxide Nanotubes,” Chem. Phys. Lett., Vol 365, pp. 427-431 (2002).
    Wang, M., G. Song, J. Li, L. Miao and B. Zhang, “Direct Hydrothermal Synthesis and Magnetic Property of Titanate Nanotubes Doped Magnetic Metal Ions,” Journal of University of Science and Technology Beijing: Mineral Metallurgy Materials (Eng Ed), Vol. 15, pp. 644-648 (2008).
    Wang, N., X. Li, Y. Wang, X. Quan and G. Chen, “Evaluation of Bias Potential Enhanced Photocatalytic Degradation of 4-chlorophenol With TiO2 Nanotube Fabricated by Anodic Oxidation Method,” Chem. Eng. J., Vol. 146, pp. 30-35 (2009).
    Xiao, P., D. Liu, B.B. Garcia, S. Sepehri, Y. Zhang and G. Cao, “Electrochemical and Photoelectrical Properties of Titania Nanotube Arrays Annealed in Different Gases,” Sens. Actuators, B, Vol. 134, pp. 367-372(2008).
    Xiao, X., K. Ouyang, R. Liu and J. Liang, “Anatase Type Titania Nanotube Arrays Direct Fabricated by Anodization Without Annealing,” Appl. Surf. Sci., Vol. 255, pp. 3659-3663 (2009).
    Yamanaka, S., T. Hamaguchi, H. Muta, K. Kurosaki and M. Uno, “Fabrication of Oxide Nanohole Arrays by a Liquid Phase Deposition Method,” J. Alloys Compd., Vol. 373, pp. 312-315 (2004).
    Yoon, J., E. Shim, S. Bae and H. Joo, “Application of Immobilized Nanotubular TiO2 Electrode for Photocatalytic Hydrogen Evolution: Reduction of Hexavalent Chromium (Cr(VI)) in Water,” J. Hazard. Mater., Vol. 161, pp. 1069-1074 (2009).
    Zhang, Y., X. Li, D. Chen, N. Ma, X. Hua and H. Wang, “Si Doping Effects on the Photocatalytic Activity of TiO2 Nanotubes Film Prepared by an Anodization Process,” Scr. Mater., Vol. 60, pp. 543-546 (2009).
    楊明倫(Yang, M.L.) “紫外線/光觸媒程序外加電位處理含有機染料水溶液之研究” 國立台灣科技大學化學工程技術研究所碩士論文,台灣,台北 (2006)
    王文裕(Wang, W.Y) “二氧化鈦光電特性及染料於光觸媒膜反應器之分解效率” 國立台灣科技大學化學工程系博士論文,台灣,台北 (2006)
    侯韋銘(Hou, W.M.) “溶膠凝膠法合成鈦酸鑭在紫外光下分解染料水溶液之研究” 國立台灣科技大學化學工程技術研究所碩士論文,台灣,台北 (2007)
    邱炳嶔(Chiu, P.C.) “紫外光/光觸媒程序外加電位處理苯胺水溶液隻研究” 國立台灣科技大學化學工程系博士論文,台灣,台北 (2008)

    無法下載圖示 全文公開日期 2014/07/26 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE