簡易檢索 / 詳目顯示

研究生: Abrha
Abrha Berhe Yaebyo
論文名稱: Metal/Semiconductor Nano-Composites for Effective Photocatalysis
Metal/Semiconductor Nano-Composites for Effective Photocatalysis
指導教授: 氏原真樹
Masaki Ujihara
口試委員: 今榮東洋子
Toyoko Imae
何清華
Ching - Hwa Ho
劉雅瑄
Ya - Hsuan Liou
蘇威年
Wei - Nien Su
氏原真樹
Masaki Ujihara 
劉沂欣
Yi -Hsin Liu
陳柏均
Po - Chun Chen
學位類別: 博士
Doctor
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 114
中文關鍵詞: 奈米線奈米複合材料樹枝狀銅奈米線銀奈米線碘化銅磷酸銀浸塗法陽極氧化轉化膜光催化劑光催化劑自由基清除劑吸附電子-電洞對電荷分離
外文關鍵詞: dendritic Cu nanowire, Ag nanowire, copper iodide, silver phosphate, conversion film, radical scavenger, electron-hole pair
相關次數: 點閱:285下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    半導體光催化過程在降解有機污染物具有極大潛力,同時具有低成本和環境友善等優勢,正已引起全世界的關注。由於快速的電荷載體復合導致現有的材料效率並不理想,為了克服上述問題,已開發出具有異質結構的光催化劑◦在這項研究中,我們利用浸塗法和陽極氧化將金屬奈米線與半導體於表面雜化以合成金屬/半導體奈米複合材料,這種材料可以藉由電荷載體轉移過程來降低復合現象◦為了達到這種概念,將銅奈米線藉由浸塗法以形成碘化銅超薄膜,同時於磷酸鹽溶液中陽極氧化銀奈米線以製備磷酸銀轉化膜◦使用場發射掃描電子顯微鏡觀察樣品的形態和微結構,樣品的相組成和晶體結構則利用X射線衍射法、能量色散X射線光譜法和X射線光電子能譜法,在通過紫外線-可見光漫反射光譜法分析銀/磷酸銀的光學特性,最後經紫外光照射下透過降解亞甲藍去評估銅/碘化銅和銀/磷酸銀奈米複合材料的光催化活性。銅/碘化銅和銀/磷酸銀奈米復合光催化劑的光催化效率均高於未經修飾的半導體。值得注意的是通過相對短的雜化時間,達到最高活性且額外的過程則降低了活性,是因為厚半導體層阻擋有效電荷轉移。此外,我們還透過循環試驗研究銅/碘化銅和銀/磷酸銀奈米復合材料的可重複使用性,其結果表明奈米復合材料在光反應期間表現出足夠的穩定性。由結果顯示我們已成功設計金屬/半導體奈米複合材料的策略和方法,用於催化劑和光電子領域的各種應用。


    Photocatalytic processes over semiconductor surfaces have attracted worldwide attention as potentially efficient, environmentally friendly, and low cost methods for organic pollutant degradation. However, some limitations to achieve high photocatalytic efficiencies have been found due to the fast recombination of the charge carriers. To overcome this limitation, photocatalysts with heterostructures have developed. In this study, semiconductors are hybridized on the surface of metallic nanowires by dip-coating and by anodization of metal nanowires to synthesize metal/semiconductor nanocomposites to reduce recombination phenomena by transfer of charge carriers. To realize this concept, the CuI ultrathin film was formed on Cu nanowires by the dip-coating method, and the Ag nanowires were anodized in the phosphate solution to prepare the conversion film of Ag3PO4. The morphologies and microstructures of thus obtained samples were observed by the field-emission scanning electron microscopy. Their phase compositions and crystal structures of the samples were characterized by the X-ray diffraction method, the energy dispersive X-ray spectrometry, and the X-ray photoelectron spectroscopy. The optical characteristics of Ag/Ag3PO4 was analyzed by the UV–visible diffuse reflectance spectroscopy. Then, the photocatalytic activities of Cu/CuI and Ag/Ag3PO4 nanocomposites were evaluated by the degradation of methylene blue under ultraviolet light irradiation. The nanocomposite photocatalysts exhibited the higher photocatalytic efficiency than bare semiconductors, CuI and Ag3PO4 respectively. Particularly, the highest activity was achieved by rather short time hybridization, and the excess process decreased the activity. This trend was explained that the thick semiconductor layer prevented the effective charge transfer. Furthermore, the reusability of Cu/CuI and Ag/Ag3PO4 nanocomposites were investigated by the cycle tests. The nanocomposites demonstrated their sufficient stability during the photoreactions. These results present the strategy and methodology to design metal/semiconductor nanocomposites for various applications in the fields of catalysts and optoelectronics.

    Table of Contents 摘要 i Abstract ii Acknowledgement iii Table of Contents iv List of Figures vi List of Schemes x List of Tables xi List of Equations xii List of Nomenclature xiii List of Abbreviations xiv Chapter 1. General Introduction 1 1.1. Background 1 1.2. Basic principle of photocatalysis 3 1.3. Approaches for efficient charge separation 4 1.3.1. Semiconductor/semiconductor heterostructures 5 1.3.2. Organic polymer/semiconductor heterostructures 5 1.3.3. Metal/ Semiconductor heterostructures 6 1.4. Scavenging agents for free radicals and hole 9 1.5. Applications of metal/Semiconductor nanocomposites 10 1.5.1. Degradation of organic molecules 10 1.5.2. Sensor application 11 1.5.3. Medicinal applications 11 1.5.4. Water splitting for H2 energy 11 1.6. Aim of this thesis 12 Chapter 2. Experimental Part 14 2.1. Research design 14 2.2. Materials and Reagents 15 2.3. Synthesis Methods of the Nanomaterials 15 2.3.1. Cyclic voltammetry 15 2.3.2. Controlled-Potential Electrolysis 17 2.3.3. Dip-coating method 18 2.4. Characterization Techniques 19 2.4.1. X-ray Diffraction method (XRD) 19 2.4.2. Field Emission Scanning Electron Microscopy (FE-SEM) 20 2.4.3. X-Ray Photoelectron Spectroscopy (XPS) 21 2.4.4. Diffuse reflectance spectra (DRS) 22 2.5. Measurement of the Photocatalytic Activity 22 Chapter 3. Electrochemical and Dip-coating Synthesis of Dendritic Cu/CuI Nanowires and Their Application in Dye Degradation Under UV Irradiation 24 3.1. Abstract 24 3.2. Introduction 24 3.3. Experimental section 26 3.3.1. Synthesis of Dendritic Cu NWs 26 3.3.2. Synthesis of Dendritic Cu/CuI NWs 26 3.4. Results and Discussion 27 3.4.1. Cyclic Voltammogram study 27 3.4.2. Electrochemical Deposition of Cu 28 3.4.3. Storage of Cu nanowire on ITO 29 3.4.4. Characterization of the Cu NWs and Cu/CuI NWs 30 3.4.5. Photocatalytic Performance 40 3.5. Conclusion 53 Chapter 4. Synthesis and Characterization of Ag/Ag3PO4 Nanocomposite Hybrid Films with Enhanced Photocatalytic Performance 54 4.1. Abstract 54 4.2. Introduction 55 4.3. Experimental Section 56 4.3.1. Synthesis of Silver nanowires 56 4.3.2. Synthesis of Ag/Ag3PO4 nanocomposites 56 4.4. Results and discussion 57 4.4.1. Characterization of Ag NWs and Ag/Ag3PO4 nanocomposites 57 4.4.2. Photocatalytic performance 67 4.5. Conclusion 75 Chapter 5. General Conclusion and Future Scopes. 77 5.1. General Conclusion 77 5.2. Future scope 79 References 81 Appendix A 92 Conference attended 93 List of Publications 94

    References

    1. K. Rajeshwar, M.E.Osugi W. Chanmanee, C.R. Chenthamarakshan, M.V.B. Zanoni, P. Kajitvichyanukul, and R. Krishnan-Ayer, Photochem. Photobiol., C, 2008, 9, 171-192.
    2. R. Lago , G. Bueno, and R. Bermejo, Energy Sustain. Dev., 2016, 33, 1-13.
    3. J. E. Dmonds, and J. Reilly, Energy Sustain. Deve., 1983, 8, 419-432.
    4. J. M.Coronado, F. Fresno, M. D. Hernadez-Alonso, and R. Portela, Springer, 2013, DOI 10.1007/1978-1001-4471-5061-1009.
    5. A. J. Nozik, Appl. Phys. Lett. , 1977, 30, 567-569.
    6. U. I. Gaya, Springer, 2014, 25-47.
    7. E. J. Weber, and V. C. Stickney, Water Res., 1993, 27, 63-67.
    8. D. Barcelo, and C. Rafols, J. Chromatogr. A, 1997, 777, 177-192.
    9. H. Lachheb. A. Houas , M. Ksibi , E. Elaloui , C. Guillard, and J.M. Herrmann, Appl. Catal. B, 2001, 31, 145-157.
    10. C. B. Alessandra, M. C. Brussino, E. Pramauro, P. Savarino, V. Augugliaro, G. Marci, and L. Palmisano, Environ. Sci. Technol., 2001, 35, 971-976.
    11. A. Lopez, C. O'Neill , S. Esteves , F. R. Hawkes, D. L. Hawkes, and S. Wilcox, Appl. Microbiol. Biotechnol., 2000, 53, 249-254.
    12. J. M. Herrmann, Catal. Today, 1999, 53, 115-129.
    13. A. Kudo, and Y. Miseki, Chem. Soc. Rev., 2009, 38, 253-278.
    14. Q. Xiang, J. Yu, and M. Jaroniec, Chem. Soc. Rev., 2012, 41, 782-796.
    15. S. Dasgupt and, . D. Chatterjee, Photochem. Photobiol., C, 2005, 6, 186-205.
    16. A. Fujishima, and K. Honda, Nature, 1972, 238, 37-38.
    17. M.A. Rauf,and S.Salman Ashraf, Chem. Eng. J., 2009, 151, 10-18.
    18. B. Ohtani, Phys. Chem. Chem. Phys., 2014, 16, 1788-1797.
    19. M. A. Fox, and M. T. Dulay, Chem. Rev., 1993, 93, 341-357.
    20. H. Ye, R. Liu, X. Xiong, and H. Liu, Mater. Chem. Phys., 2010, 121, 432-439.
    21. Z. Wu, H. Wang, Y. Liu, and Z. Sheng, J. Mol. Catal. A: Chem., 2008, 287, 176-181.
    22. C. Lei, C. Shifu, G. Shen, and C. Gengyu, Mater. Chem. Phys., 2006, 98, 116-120.
    23. Y. Li, L. Yu, N. Li, W. Yan, and X. Li, J. Colloid Interface Sci., 2015, 450, 246-253.
    24. J. Wang, N. Shao, D. Wang, P. Corvini, Appl. Catal., B, 2017, 203, 964-978.
    25. L. Zhang, and M. Wan, J. Phys. Chem. B, 2003, 107, 6748-6753.
    26. Y. Shen, X.Wang, A. Xie, L. Qiu, S. Li, and Y. Wang, J. Mater. Chem., 2011, 21, 9641-9646.
    27. D. Zhang, R. Qiu, Y. Mo, L.Song, E. Brewerd, X. Huang, and Y. Xiong, J. Hazard. Mater., 2008, 156, 80-85.
    28. U. Riaz, S. M. Ashraf, and J. Kashyap, Polym. Plast. Technol. Eng., 2015, 54, 1850-1870.
    29. H. Wang, L. Zhang, Z. Chen, J. Hu, S. Li, Z. Wang, J. Liu, and X. Wang, Chem.Soc.Rev., 2014, 43, 5234-5244.
    30. T. W. Chuan, M.R. Khan, A.Yousuf, M. N. K. Chowdhury, and C. K. Cheng, Catal. Sci. Technol., 2015, 5, 2522-2531.
    31. W. Hou, and S. B. Cronin, Adv. Funct. Mater. , 2013, 23, 1612-1619.
    32. K. Mallikarjuna, B. Babu , C. V. Reddy, and J. Park ,, Mater. Lett., 2016, 176, 265-269.
    33. W. Que, X. Yin, D. Fei, F. Shen, and Q. Guo, J. Alloy. Comp., 2012, 524,13- 21.
    34. C. Ren, B. Yang, M. Wu, J. Xu, Z. Fu, Y. Lv, T. Guo, Y. Zhao, and C. Zhu, J. Hazard Mater., 2010, 182, 123-129.
    35. T. Yan, H. Zhang, Q. Luo, Y. Ma, H. Lin, and J. You, Chem. Eng. J., 2013, 232, 564-572.
    36. T. Yu, W.S. Kim, and A. Shahzad, RSC Adv., 2016, 6, 54709-54717
    37. M. K. Dangare, and R.S. Sonawane, J. Mol. Catal. A: Chem., 2006, 243, 68-76.
    38. N. Zhang, S. Liu, X. Fu, and Y. J. Xu, J. Phys. Chem. C, 2011, 115, 9136-9145.
    39. Y. Lv, K. Huang, W. Zhang, S. Sun , B. Yang, , F. Chi, S. Ran, and X. Liu, Mat. Res., 2015, 18, 939-945.
    40. H. Chen, T. Tu, M. Wen, and Q. Wu, Dalton Trans., 2015, 44, 15645-15652.
    41. X. H. Yang, H. T. Fu, K. Wong, X. C. Jiang, and A. B. Yu, Nanotechnology, 2013, 24, 415-601.
    42. S. J. Hoseini, and R. H. Fath, RSC Adv., 2016, 6, 76964-76971.
    43. S. T. Martin, M. R. Hoffmann, W. Choi, and D. W. Bahnemann, Chem. Rev., 1995, 95, 69-96.
    44. D. Li, W. Li, Y. Lin, P. Wang, W. Chen, X. Fu, and Y. Shao, J. Phys. Chem. C, 2012, 116, 3552-3560.
    45. W. A. Anderson, M. Mehrvar, and M. M. Young, Int. J. Photoenergy, 2001, 3, 187-191.
    46. B. Zhang, L.Zhao, X. Xiao, F. L. Gu, R.Q. Zhang, J. Mol. Catal. A: Chem., 2016, 420 82-87.
    47. M. Pelaez, P. Falaras, V. Likodimos, K. O'Shea, A. A. de la Cruz, P. S. M. Dunlop, J. A. Byrne, and D. D. Dionysiou, J. Mol. Catal. A: Chem, 2016, 425, 183-189.
    48. S. Talukdar, and R. K. Dutta, RSC Adv., 2016, 6, 928-936
    49. S. Mansingh, K. M. Parida, and S. Acharya, Inorg. Chem. Front., 2017, 4, 1022-1032.
    50. D. Li, W. Li, J.Wang, Y. Shao, J.You, and F.Teng, J. Mol. Catal. A: Chem., 2013, 380, 10-17.
    51. J. Song, R. Gao, Y. Hu, X. Zhang, S.Gong, and W.F.Li, J. Chin. Chem. Soc., 2017, 64, 1172-1180.
    52. J. Li, B. Chai, and Q. Xu, Ind. Eng. Chem. Res., 2014, 53, 8744-8752.
    53. C. Jin, G. Liu, L. Zu, Y. Qin, and J. Yang, J. Colloid Interface Sci., 2015, 453, 36-41.
    54. A. M. Idris, M. I. Shinger, S. Devaramani, D. D. Qin, H.Baballa, S.T. Zhang, D. L.Shan, and X. Lu,, J. Environ. Chem. Eng., 2017, 5, 1526-1535.
    55. C. Yang, and Q. Li, Mater. Lett., 2017, 199, 168-171.
    56. X. Geo, L. Wang, L. Jin, Q. Wu, Z. Chen, and X. Lin, Sens. Actuator B-Chem., 2013, 176, 9-14.
    57. J. Zhu, Nanoscale Res. Lett., 2009, 4, 977-981.
    58. M. Debliquy, J. M. Renoirt, J. Albert, A. Ianoul, and C. Caucheteur, J. Phys. Chem. C, 2014, 118, 11035-11042.
    59. X. Ben and H. S. Park, Sci Rep, 2015, 5, 10574.
    60. B. He, T. J. Morrow, and C. D. Keating, Curr. Opin. Chem. Biol, 2008, 12, 522-528.
    61. M. T. Rahman, M. F. Kabir, A. Gurung, and Q. Qiao, IEEE Sens. J., 2018, 18, 3480 - 3485.
    62. Y. Hou, L. Xu, M. Zhang, T. Cheng, W. Huang, C. Yao, and Q. Wu, Anal. Methods, 2015, 7, 5649-5653
    63. A. Csaki, M. Thiele, J. Jatschka, A. Dathe D. Zopf, O. Stranik, and W. Fritzsche, Springer, 2012, 3, 78.
    64. Z. Wang, S. Lee, K. Koo and K. Kim, IEEE Trans. Nanobioscience, 2016, 15, 186-199.
    65. D. Movia, M. Singh, O. K. Mahfoud, Y. Volkov, and A. P. Mello, Eur. J. Nanomed., 2013, 5, 195-204.
    66. R. Jones, R. Draheim, and M. Roldo, Appl. Sci., 2018, 8, 673-687.
    67. N. M. Zain, A. G. Stapley, and G. Shama, Carbohydr. Polym., 2014, 112, 195-202.
    68. D. B. Ingram, and S. Linic, J. Am. Chem. Soc., 2011, 133, 5202-5205.
    69. C. Li, P. Wang, H. Li, M. Wang, J. Zhang, G. Qi, and Y. Jin, Nanoscale, 2018, 10, 14290-14297.
    70. P. Diao, Q. Wu, J.Sun, D. Xu, T. Jina, and M. Xiang, J. Mater. Chem. A, 2015, 3, 18991-18999
    71. S. Wojtyła, W. Macyk, and T. Baran, Photochem. Photobiol. Sci., 2017, 16, 1079-1087.
    72. M. Xia, M. Gu, X. Liu, S. Sun, B. Liu, S. Huang and C. Ni, Mater. Lett., 2015, 153, 14-17.
    73. Y.H. Yan, Y.C. Liu, L. Fang, Z.C. Lu, Z.B. Li, and S. X. Zhou, Trans. Nonferrous Met. Soc.China, 2011, 21, 359-363.
    74. L. Heng, X. Wang, N. Yang, J. Zhai, M. Wan, and L. Jiang, Adv. Funct. Mater., 2010, 20, 266-271.
    75. S. Gao, Z. Li, X. Jia, K. Jiang, and H. Zeng, GreenChem., 2010, 12, 1442-1447.
    76. D. Chen, Y. Wang, Z. Lin, J. Huang, X. Chen, D. Pan, and F. Huang, Cryst. Growth Des., 2010, 10, 2057-2060.
    77. Y. Jiang, S. Gao, Z. Li, X. Jia, and Y. Chen, Mater. Sci. Eng., B, 2011, 176, 1021-1027.
    78. Y. Liu, Y. Cheng, S. Lv, C. Liu, J. Lai, and G. Luo, Res. Chem. Intermed., 2015, 41, 3885-3892.
    79. T. Baran, S. Wojtyła, A. Dibenedetto, M. Aresta, and W. Macyk, ChemSusChem, 2016, 9, 2933-2938.
    80. X. Wang, Y. Shen, A. Xie, L. Qiu, S. Li, and Y. Wang, J. Mater.Chem., 2011, 21, 9641-9646.
    81. X. Wang, J. Zhang, K. Zhang, W. Zou, and S. Chen, RSC Adv., 2016, 6, 44851-44858.
    82. S. J. Hoseini, and R. H. Fath, RSC Adv., 2016, 6, 76964-76971.
    83. A. Arora, V. Jaswal, K. Singh, and R. Singh, Orien. J. Chem., 2016, 32, 2035-2042.
    84. P. K. Labhane, V. R. Huse, L. B. Patle, A. L. Chaudhari, and G. H. Sonawane, J. Mater. Sci. Chem. Eng., 2015, 03, 39-51.
    85. H. Chen, T. Tu, M. Wen, and Q. Wu, DaltonTrans., 2015, 44, 15645-15652.
    86. C. Ren, B. Yang, M. Wu, J. Xu, Z. Fu, Y. lv, T. Guo, Y. Zhao, and C. Zhu, J. Hazard. Mater., 2010, 182, 123-129.
    87. Z. Wang, S. Zhao, S. Zhu, Y. Sun, and M. Fang, CrystEngComm, 2011, 13, 2262-2267.
    88. I. Shown, M. Ujihara, and T. Imae, J. Nanosci. Nanotechnol., 2011, 11, 3284-3290.
    89. A. Alshammari, A. Bagabas, and M. Assulami, Arab. J. Chem., 2014, DOI: 10.1016/j.arabjc.2014.11.013.
    90. H. Xu, G. Li, N. Liu, K. Zhu, G. Zhu, and S. Jin, Mater. Lett., 2015, 142, 324-327.
    91. D. Schelonka, J. Tolasz, and V. Štengl, Photochem. Photobiol., 2015, 91, 1071-1077.
    92. L. Xu, Y. Yang, Z.-W. Hu, and S.-H. Yu, ACS Nano, 2016, 10, 3823-3834.
    93. S. Bhanushali, P. Ghosh, A. Ganesh, and W. Cheng, Small, 2015, 11, 1232-1252.
    94. C. Hwang, J. An, B. D. Choi, K. Kim, S. W. Jung, K. J. Baeg, M. G. Kim, K. M. Ok, and J. Hong, J. Mater. Chem. C, 2016, 4, 1441-1447.
    95. S. Ye, A. R. Rathmell, Z. Chen, I. E. Stewart and B. J. Wiley, Adv. Mater., 2014, 26, 6670-6687.
    96. R. Kaur, and B. Pal, Appl. Catal., A, 2015, 491, 28-36.
    97. B. Babu, K. Mallikarjuna, C. V. Reddy, and J. Park, Mater. Lett., 2016, 176, 265-269.
    98. M. Malika, C. V. Rao, R. K. Das, A. S. Giri, and A. K. Golder, Appl. Surf. Sci., 2016, 368, 316-324.
    99. S. Obregón, S. W. Lee, and V. Rodríguez-González, Mater. Lett., 2016, 173, 174-177.
    100. P. Pongwan, K. Wetchakun, S. Phanichphant, and N. Wetchakun, Res. Chem. Intermed., 2016, 42, 2815-2830.
    101. Y. Cheng, Y. Lin, J. Xu, J. He, T. Wang, G. Yu, D. Shao, W.-H. Wang, F. Lu, L. Li, X. Du, W. Wang, H. Liu, and R. Zheng, Appl. Surf. Sci., 2016, 366, 120-128.
    102. S. S. Momeni, M. Nasrollahzadeh and A. Rustaiyan, J. Colloid Interface Sci., 2016, 472, 173-179.
    103. Y. Asano, K. Nakaoka, K. Murashiro, T. Komatsu, and K. Hoshino, Mater. Lett., 2012, 81, 162-164.
    104. H. Yu, P. Xiao, J. Tian, F. Wang, and J. Yu, ACS Appl. Mater. Interfaces, 2016, 8, 29470-29477.
    105. Y. Bi, H. Hu, S. Ouyang, G. Lu, J. Cao, and J. Ye, Chem. Commun., 2012, 48, 3748-3750.
    106. K. Woan, G. Pyrgiotakis, and W. Sigmund, Adv. Mater., 2009, 21, 2233-2239.
    107. Y. Liu, L. Fang, H. Lu, Y. Li, C. Hu, and H. Yu, Appl. Catal. B: Environ., 2012, 115-116, 245-252.
    108. Y. Liu, L. Fang, H. Lu, L. Liu, H. Wang, and C. Hu, Catal. Commun., 2012, 17, 200-204.
    109. X. Yan, Q. Gao, J. Qin, X. Yang, Y. Li, and H. Tang, Ceram. Int., 2013, 39, 9715-9720.
    110. X. Yang, H. Cui, Y. Li, J. Qin, R. Zhang, and H. Tang, ACS Catal., 2013, 3, 363-369.
    111. X. Z. Li, K. L. Wu, C. Dong, S. H. Xia, Y. Ye, and X. W. Wei, Mater. Lett., 2014, 130, 97-100.
    112. C. T. Dinh, T. D. Nguyen, F. Kleitz, and T. O. Do, Chem. Commun., 2011, 47, 7797-7799.
    113. P. Chen, M. Zhu, and M. Liu, ACS Nano, 2011, 5 4529-4536
    114. Z. C. Yanhui Zhanga, Siqi Liua, Yi-Jun Xua, Appl. Catal. B: Environ., 2013, 140, 598– 607.
    115. Z. Yi, J. Ye, N. Kikugawa, T. Kako, S. Ouyang, H. Stuart-Williams, H. Yang, J. Cao, W. Luo, Z. Li, Y. Liu, and R. L. Withers, Nat. Mater., 2010, 9, 559-564.
    116. Y. Bi, S. Ouyang, N. Umezawa, J. Cao, and J. Ye, J. Am. Chem. Soc, 2011, 133, 6490-6492.
    117. W. Yao, B. Zhang, C. Huang, C. Ma, X. Song, and Q. Xu, J. Mater. Chem., 2012, 22, 4050-4055.
    118. J. Ma, J. Zou, L. Li, C. Yao, Y. Kong, B. Cui, R. Zhu, and D. Li, Appl. Catal. B: Environ., 2014, 144, 36-40.
    119. A. Khan, M. Qamar, and M. Muneer, Chem. Phys. Lett., 2012, 519-520, 54-58.
    120. F. Pang, X. Liu, M. He, and J. Ge, Nano Res., 2015, 8, 106-116.
    121. M. Ge, N. Zhu, Y. Zhao, J. Li, and L. Liu, Ind. Eng. Chem. Res., 2012, 51, 5167-5173.
    122. M. A. Gondal, X. Chang, W. E. I. Sha, Z. H. Yamani, and Q. Zhou, J. Colloid Interface Sci., 2013, 392, 325-330.
    123. S. Zhang, S. Zhang, and L. Song, Appl. Catal. B: Environ., 2014, 152-153, 129-139.
    124. K. Huang, Y. Lv, W. Zhang, S. Sun, B. Yang, F. Chi, S. Ran, and X. Liu, Mat. Res., 2015, 18, 939-945.
    125. J. Lv, K. Dai, L. Lu, L. Geng, C. Liang, and G. Zhu, J. Alloy. Comp., 2016, 682, 778-784.
    126. F. A. Sofi, K. Majid, and O. Mehraj, J. Alloy. Comp., 2018, 737, 798-808.
    127. H. Yu, G. Cao, F. Chen, X. Wang, J. Yu, and M. Lei, Appl. Catal. B: Environ., 2014, 160-161, 658-665.
    128. F. T. Li, Y. Zhao, Q. Wang, X. J. Wang, Y. J. Hao, R. H. Liu, and D. Zhao, J. Hazard. Mater., 2015, 283, 371-381.
    129. H. Yu, Q. Dong, Z. Jiao, T. Wang, J. Ma, G. Lu, and Y. Bi, J. Mater. Chem. A, 2014, 2, 1668-1671.
    130. Y. Liu, D. Yang, R. Yu, J. Qu, Y. Shi, H. Li, and Z. Z. Yu, J. Phys. Chem. C, 2017, 121, 25172-25179.
    131. C. Dong, K. L. Wu, M. R. Li, L. Liu, and X. W. Wei, Catal. Commun., 2014, 46, 32-35.
    132. Z. Chen, W. Wang, Z. Zhang, and X. Fang, J. Phys. Chem. C, 2013, 117, 19346-19352.
    133. S. B. Rawal, S. D. Sung, and W. I. Lee, Catal. Commun., 2012, 17, 131-135.
    134. J. Sun, H. Fan, B. Nan, and S. Ai, Sep. Purif. Technol., 2014, 130, 84-90.
    135. F.-M. Zhao, L. Pan, S. Wang, Q. Deng, J.-J. Zou, L. Wang, and X. Zhang, Appl. Surf. Sci., 2014, 317, 833-838.
    136. N. Kamely, and M. Ujihara, J. Nanoparticle Res., 2018, 20, 1-10.
    137. A. Berhe, and M. Ujihara, ChemistrySelect, 2018, 3, 10502-10508.
    138. C.W. Nan. G. Wei, Y. Deng, and Y.H. Lin, Chem. Mater., 2003, 15, 4436-4441.
    139. P. Dong, G. Hou, C. Liu, X. Zhang, H. Tian, F. Xu, X. Xi, and R. Shao, Materials, 2016, 9, 968-985.
    140. D. Wang, Z. Li, L. Shang, J. Liu, and J. Shen, Thin Solid Films, 2014, 551, 8-12.
    141. J. K. Liu, C. X. Luo, J. D. Wang, X. H. Yang, and X. H. Zhong, CrystEngComm, 2012, 14, 8714-8721.
    142. W. Teng, X. Li, Q. Zhao, and G. Chen, J. Mater. Chem. A, 2013, 1, 9060-9068.
    143. W. Zhai, G. Li, P. Yu, L. Yang, and L. Mao, J. Phys. Chem. C, 2013, 117, 15183-15191.
    144. P. Wang, B. Huang, Q. Zhang, X. Zhang, X. Qin, Y. Dai, J. Zhan, J. Yu, H. Liu, and Z. Lou, Chem. Eur. J., 2010, 16, 10042-10047.
    145. J. Cao, B. Luo, H. Lin, B. Xu, and S. Chen, J. Hazard Mater., 2012, 217-218, 107-115.
    146. X. B. Li, S. Y. Ma, F. M. Li, Y. Chen, Q. Q. Zhang, X. H. Yang, C. Y. Wang and J. Zhu, Mater. Lett., 2013, 100, 119-123.
    147. X. Zhang, J. Qin, Y. Xue, P. Yu, B. Zhang, L. Wang, and R. Liu, Sci. Rep., 2014, 4, 4596.
    148. V. Kumar, H. C. Swart, O. M. Ntwaeaborwa, R. E. Kroon, J. J. Terblans, S. K. K. Shaat, A. Yousif, and M. M. Duvenhage, Mater. Lett., 2013, 101, 57-60.
    149. L. Zhang, J. Zhao, H. Lu, L. Gong, L. Li, J. Zheng, H. Li, and Z. Zhu, Sens. Actuator B-Chem., 2011, 160, 364-370.
    150. H. Perron, J. Vandenborre, C. Domain, R. Drot, J. Roques, E. Simoni, J. J. Ehrhardt and H. Catalette, Surf. Sci., 2007, 601, 518-527.
    151. P. D. Mani, S. Saraf, V. Singh, M. Real-Robert, A. Vijayakumar, S. J. Duranceau, S. Seal, and K. R. Coffey, Solid State Ion, 2016, 287, 48-59.
    152. J. Orbulescu, M. Ujihara, T. Imae, and R. M. Leblanc, Langmuir, 2005, 21, 6846-6854.
    153. X. Y. Ling, M. J. Mulvihill, J.Henzie, and P. Yang, J. Am. Chem. Soc., 2010, 132, 268-274.
    154. C. Pan and Y. Zhu, Environ. Sci. Technol., 2010, 44, 5570-5574.
    155. G. Dai, J. Yu and G. Liu, J. Phys. Chem. C, 2011, 115, 7339-7346.
    156. X. Wang, S. Li, H. Yu, J. Yu, and S. Liu, Chem. Eur. J., 2011, 17, 7777-7780.
    157. P. Wang, B. Huang, X. Qin, X. Zhang, Y. Dai, J. Wei, and M. H. Whangbo, Angew. Chem. Int. Ed., 2008, 47, 7931-7933.
    158. P. Wang, B. Huang, X. Zhang, X. Qin, H. Jin, Y. Dai, Z. Wang, J. Wei, J. Zhan, S. Wang, J. Wang, and M. H. Whangbo, Chem. Eur. J., 2009, 15, 1821-1824.
    159. L. Zhang, T. Xu, H. Cheng, and Y. Zhu, Appl. Catal., B, 2011, 101 382-387.
    160. J.Freer, R. Palominos , M.A. Mondaca, and H.D. Mansilla , J. Photochem. Photobiol., 2008, 193 139-145.
    161. D. Chen, T. Li, Q. Chen, J. Gao, B. Fan, J. Li, X. Li, R. Zhang, J. Sun, and L. Gao, Nanoscale, 2012, 4, 5431-5439.
    162. Y. Bi, H. Hu, S. Ouyang, Z. Jiao, G. Lu, and J. Ye, J. Mater. Chem., 2012, 22, 14847-14850.
    163. S. S. Soni, M. J. Henderson, J. F. Bardeau, and A. Gibaud, Adv. Mater, 2008, 20, 1493-1498.
    164. G. Dai, J. Yu, and B. Huang, J. Phys. Chem. C, 2009, 113, 16394-16401.
    165. D. J. Martin, G. Liu, S. J. Moniz, Y. Bi, A. M. Beale, J. Ye, and J. Tang, Chem. Soc. Rev., 2015, 44, 7808-7828.

    無法下載圖示 全文公開日期 2025/01/21 (校內網路)
    全文公開日期 2029/01/21 (校外網路)
    全文公開日期 2029/01/21 (國家圖書館:臺灣博碩士論文系統)
    QR CODE