簡易檢索 / 詳目顯示

研究生: SAKTHIPRIYA BALU
SAKTHIPRIYA BALU
論文名稱: 為未來提供清潔氫氣所制定之鹼性水電解無機奈米結構催化劑
Tailoring Inorganic Nanostructured Catalysts for Alkaline Water Electrolysis to Fuel the Future with Clean Hydrogen
指導教授: 黃崧任
Song-Jeng Huang
口試委員: 丘群
Raman Sankar
汪俊延
王丞浩
Lena Yadgarov
林景崎
李泉
黃崧任
學位類別: 博士
Doctor
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 112
語文別: 英文
論文頁數: 161
中文關鍵詞: 無機奈米結構催化劑水電解槽陽極端的產氧反應(OER)陰極端的產氫反應(HER)三金屬層狀雙氫氧化物CoZnFe LDH原位摻雜FeCo(MoO4)3混合奈米複合材料rGO/Ni3Se2/NF
外文關鍵詞: Inorganic nanostructured catalysts, water electrolyzers, oxygen evolution reaction (OER), hydrogen evolution reaction (HER), trimetallic layered double hydroxides, CoZnFe LDH, in-situ doping, FeCo(MoO4)3, hybrid nanocomposite, rGO/Ni3Se2/NF
相關次數: 點閱:42下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 應對氣候變化需要採用清潔能源解決方案。氫氣因其高能量密度和零二氧化碳排放的特性而具有巨大潛力。然而,氫的廣泛應用取決於高效且經濟實惠的生產方法。水電解是一條前景廣闊的途徑,但其慢速的氧氣和氫氣進化反應(分別為 OER 和 HER)需要活性催化劑。
    本研究聚焦於新型無機納米結構催化劑的設計和優化,以提升水的分裂效能。我們主要採用了三種策略來提高催化性能:
    (i) 三金屬(CoZnFe)層狀雙氫氧化物納米片:我們合成了 Co1-xZnFex LDH 成分,以優化 OER 活性。透過精確的成分調整,我們成功獲得了一種 OER 催化劑,其過電位接近基準 RuO2,這歸功於活性位點密度的提高和電子特性的改善。(ii) 原位摻鈷的鉬酸鐵納米顆粒:摻鈷使顆粒尺寸減小,表面積增大,進而提高了催化活性,比未摻鈷的顆粒高出 1.5 倍。鈷離子在活性位點中也發揮了關鍵作用,促進了高效的電子轉移。(iii) rGO/Ni3Se2/NF 納米覆合材料:這種混合結構與導電泡沫鎳和邊缘修飾的石墨烯相結合,為 HER 和 OER 提供豐富的活性位點,使這兩種催化反應都表現出顯著的過電位。

    先進的表徵技術揭示了這些催化劑卓越催化活性背後的結構和形態現象,包括 X 射線衍射、X 射線光電子能譜、場發射掃描電子顯微鏡、拉曼光譜儀、高分辨率過渡電子顯微鏡和電化學活性分析。這些結果提供了對內擴式高效催化劑的制備和表征的清晰而深刻描述,有助於從根本上理解HER和OER催化劑及其改進。我們的工作為實現經濟高效的水電解鋪平了道路,推動氫氣在未來可持續能源中扮演關鍵角色。


    The fight against climate change demands clean energy solutions. Hydrogen, with its high energy density and zero carbon dioxide emissions, holds immense potential. However, its widespread adoption hinges on efficient and affordable production methods. Water electrolysis offers a promising path, but sluggish oxygen and hydrogen evolution reactions (OER and HER) require active catalysts.
    This study explores the design and optimization of novel inorganic nanostructured catalysts for enhanced water splitting, focusing on three strategies to improve catalytic performance. Thus, trimetallic (CoZnFe) layered double hydroxides nanosheets (i): Co1-xZnFex LDH compositions were synthesized to optimize OER activity. Through precise composition tuning, an OER catalyst with low overpotential close to benchmark RuO2 was achieved, attributed to enhanced active site density and improved electronic properties. In-situ cobalt-doped ferric molybdate nanoparticles (ii): cobalt doping resulted in reduced particle size and increased surface area, thus boosting catalytic activity by 1.5 times, compared to undoped counterparts. Co ions also acted as major role in active sites and promoted efficient electron transfer. rGO/Ni3Se2/NF Nanocomposite (iii): this hybrid structure combines with conductive nickel foam and rGO provides abundant active sites for both HER and OER, achieving remarkable overpotentials for both the catalytic reactions.
    Advanced characterization techniques revealed the structural and morphological phenomena underlying the exceptional catalytic activity of these catalysts including x-ray diffraction, x-ray photoelectron spectroscopy, field emission scanning electron microscopy, raman spectrometer, high resolution transition electron microscopy, and electrochemical activity analysis. The results that are displayed significantly contributed to the fundamental understanding of HER and OER catalysts and their improvement, by offering a clear and an insightful description of the preparation and characterization of affordable and effective catalysts. This work paves the way for cost-effective and efficient water electrolysis, propelling hydrogen towards a key role in the sustainable energy future.

    ABSTRACT I 摘要 III ACKNOWLEDGEMENT IV AUTHOR’S DECLARATION V LIST OF PUBLICATIONS VI OTHER PUBLICATIONS VII LIST OF ACRONYMS VIII TABLE OF CONTENTS IX LIST OF FIGURES XIV LIST OF TABLES XX CHAPTER 1: INTRODUCTION 1 1.1 Motivation: Environmental Concerns and Energy Crisis 1 1.1.1 Environmental Concerns 3 1.1.2 Energy Crisis 4 1.2 Clean Energy: Fueling the Future 6 1.3 Electrochemical Water Splitting 7 CHAPTER 2: FUNDAMENTALS AND PRINCIPLES OF WATER SPLITTING 10 2.1 Fundamentals of Water Splitting 10 2.2 Principles of Electrocatalytic Water Splitting 12 2.3 Reaction mechanisms for electrocatalytic WS 14 2.3.1 Hydrogen Evolution Reaction 15 2.3.2 Oxygen Evolution Reaction 17 2.4 Kinetic Parameters of Electrocatalytic WS 19 2.4.1 Activation Energy 19 2.4.2 Polarized Potential 19 2.4.3 Tafel Plots/Slope Analysis 21 2.4.4 Cyclic Voltammetry 22 2.4.4.1 Double Layer Capacitance (Cdl) 23 2.4.4.2 Electrochemically Active Surface Area 24 2.4.5 Electrochemical Impedance Spectroscopy 24 2.4.5.1 iR drop 25 2.4.6 Chronometry Analysis 26 CHAPTER 3: ELECTROCATALYSTS AND ITS EARLY INVESTIGATIONS 28 3.1 Selection Criteria for Electrocatalysts 28 3.2 Importance of Electrocatalysts 29 3.3 Design Strategies to Improve Catalysts Performances 30 3.4 Literature survey on electrocatalysts 32 3.4.1 Early Investigations on Layered Double Hydroxides 32 3.4.2 Early Investigations on Monoclinic Ferric Molybdates 35 3.4.3 Early Investigations on Nickel Selenide 36 3.5 Scope of the thesis 38 CHAPTER 4: EXPERIMENTAL METHODS AND CHARACTERIZATIONS 42 4.1 Criteria for selecting material for the synthesis 42 4.1.1 Materials 42 4.2 Material synthesis 43 4.2.1 Trimetallic Layered Double Hydroxide (CoZnFe LDH) Nanosheets Synthesis: 44 4.2.2 In-situ Co-doped Ferric Molybdates Nanoparticles Synthesis: 44 4.2.3 rGO/Ni3Se2/NF Nanocomposite Synthesis 45 4.3 Methods of characterizations 47 4.3.1 Composition and Structural Assessment 47 4.3.1.1 X-ray diffraction 47 4.3.1.2 Field emission scanning electron microscopy, Energy-dispersive x-ray spectroscopy and Elemental mapping 48 4.3.1.3 Transmission electron microscopy 49 4.3.1.4 Raman spectroscopy 49 4.3.1.5 X-ray photoelectron spectroscopy 50 4.3.2 Electrochemical characterizations 51 4.3.2.1 Cell setup 51 4.3.2.2 Electrolyte Preparation 51 CHAPTER 5: RESULTS AND DISCUSSIONS 54 5.1 Trimetallic (CoZnFe) Layered Double Hydroxide Nanosheets 54 5.1.1 Compositions and Structural Analysis of CoZnFe LDH 55 5.1.1.1 XRD analysis 55 5.1.1.2 TEM analysis 57 5.1.1.3 FESEM analysis 57 5.1.1.4 EDX analysis 58 5.1.1.5 XPS analysis 60 5.1.2 Electrocatalytic Activity of CoZnFe LDH 61 5.1.2.1 OER performance 61 5.1.3 Summary 70 5.2 In-situ Cobalt-doped Ferric Molybdate as a Water Oxidation Catalysts 72 5.2.1 Compositions and Structural Analysis of Fe2(MoO4)3 72 5.2.1.1 In-situ formation of Fe2(MoO4)3 72 5.2.2 Electrocatalytic performance of Fe2-xCox(MoO4)3 79 5.2.2.1 OER performance 79 5.2.3 Summary 82 5.3 Nickel Selenide-based Nanocomposite as Bi-functional Catalyst (rGO/Ni3Se2/NF) 83 5.3.1 Composition and Structural Analysis of rGO/Ni3Se2/NF 84 5.3.1.1 Crystal structure and XRD analysis 84 5.3.1.2 FESEM, EDX and elemental mapping analysis 85 5.3.1.3 XPS analysis 87 5.3.2 Electrocatalytic Activity of rGO/Ni3Se2/NF 88 5.3.2.1 OER performance 88 5.3.2.2 HER performance 91 5.3.2.3 Surface Analysis after Catalytic Performance 93 5.3.3 Summary 95 CHAPTER 6: CONCLUSIONS AND FUTURE PERSPECTIVES 97 6.1 Conclusions 97 6.2 Future perspectives 100 APPENDICES 101 REFERENCES 115

    [1] Global Hydrogen Review 2023, Glob. Hydrog. Rev. 2023. (2023). https://doi.org/10.1787/cb2635f6-en.
    [2] P. Chen, M. Zhu, Recent progress in hydrogen storage, Mater. Today. 11 (2008) 36–43. https://doi.org/10.1016/S1369-7021(08)70251-7.
    [3] D. Bond, Broken record, 2006. https://doi.org/10.1119/1.1544234.
    [4] N. Mamaca, E. Mayousse, S. Arrii-Clacens, T.W. Napporn, K. Servat, N. Guillet, K.B. Kokoh, Electrochemical activity of ruthenium and iridium based catalysts for oxygen evolution reaction, Appl. Catal. B Environ. 111–112 (2012) 376–380. https://doi.org/10.1016/j.apcatb.2011.10.020.
    [5] F. Moureaux, P. Stevens, G. Toussaint, M. Chatenet, Timely-activated 316L stainless steel: A low cost, durable and active electrode for oxygen evolution reaction in concentrated alkaline environments, Appl. Catal. B Environ. 258 (2019) 117963. https://doi.org/10.1016/j.apcatb.2019.117963.
    [6] P. Costamagna, S. Srinivasan, Quantum jumps in the PEMFC science and technology from the 1960s to the year 2000: Part II. Engineering, technology development and application aspects, J. Power Sources. 102 (2001) 253–269. https://doi.org/10.1016/S0378-7753(01)00808-4.
    [7] J.O. Bockris, A.J. Appleby, Hydrogen economy-an ultimate economy. Practical answer to the problem of energy supply and pollution, Environ. This Mon.;(United Kingdom). 1 (1972).
    [8] J.O.M. Bockris, The hydrogen economy: Its history, Int. J. Hydrogen Energy. 38 (2013) 2579–2588. https://doi.org/10.1016/j.ijhydene.2012.12.026.
    [9] C. Martínez de León, C. Ríos, J.J. Brey, Cost of green hydrogen: Limitations of production from a stand-alone photovoltaic system, Int. J. Hydrogen Energy. 48 (2023) 11885–11898. https://doi.org/10.1016/j.ijhydene.2022.05.090.
    [10] P.W.T. Lu, S. Srinivasan, Advances in water electrolysis technology with emphasis on use of the solid polymer electrolyte, J. Appl. Electrochem. 9 (1979) 269–283. https://doi.org/10.1007/BF01112480.
    [11] J. Garcia-Navarro, M.A. Isaacs, M. Favaro, D. Ren, W.J. Ong, M. Grätzel, P. Jiménez-Calvo, Updates on Hydrogen Value Chain: A Strategic Roadmap, Glob. Challenges. 2300073 (2023) 1–17. https://doi.org/10.1002/gch2.202300073.
    [12] M.A. Laguna-Bercero, Recent advances in high temperature electrolysis using solid oxide fuel cells: A review, J. Power Sources. 203 (2012) 4–16. https://doi.org/10.1016/j.jpowsour.2011.12.019.
    [13] P. Kumar, R. Boukherroub, K. Shankar, Sunlight-driven water-splitting using two-dimensional carbon based semiconductors, J. Mater. Chem. A. 6 (2018) 12876–12931. https://doi.org/10.1039/c8ta02061b.
    [14] N. Dubouis, C. Yang, R. Beer, L. Ries, D. Voiry, A. Grimaud, Interfacial Interactions as an Electrochemical Tool to Understand Mo-Based Catalysts for the Hydrogen Evolution Reaction, ACS Catal. 8 (2018) 828–836. https://doi.org/10.1021/acscatal.7b03684.
    [15] C. Hu, L. Zhang, J. Gong, Recent progress made in the mechanism comprehension and design of electrocatalysts for alkaline water splitting, Energy Environ. Sci. 12 (2019) 2620–2645. https://doi.org/10.1039/c9ee01202h.
    [16] F. Song, L. Bai, A. Moysiadou, S. Lee, C. Hu, L. Liardet, X. Hu, Transition Metal Oxides as Electrocatalysts for the Oxygen Evolution Reaction in Alkaline Solutions: An Application-Inspired Renaissance, J. Am. Chem. Soc. 140 (2018) 7748–7759. https://doi.org/10.1021/jacs.8b04546.
    [17] N.T. Suen, S.F. Hung, Q. Quan, N. Zhang, Y.J. Xu, H.M. Chen, Electrocatalysis for the oxygen evolution reaction: Recent development and future perspectives, Chem. Soc. Rev. 46 (2017) 337–365. https://doi.org/10.1039/c6cs00328a.
    [18] J. Kwon, H. Han, S. Jo, S. Choi, K.Y. Chung, G. Ali, K. Park, U. Paik, T. Song, Amorphous Nickel–Iron Borophosphate for a Robust and Efficient Oxygen Evolution Reaction, Adv. Energy Mater. 11 (2021) 1–10. https://doi.org/10.1002/aenm.202100624.
    [19] A. Raveendran, M. Chandran, R. Dhanusuraman, A comprehensive review on the electrochemical parameters and recent material development of electrochemical water splitting electrocatalysts, RSC Adv. 13 (2023) 3843–3876. https://doi.org/10.1039/d2ra07642j.
    [20] E.J.F. Dickinson, A.J. Wain, The Butler-Volmer equation in electrochemical theory: Origins, value, and practical application, J. Electroanal. Chem. 872 (2020) 114145. https://doi.org/10.1016/j.jelechem.2020.114145.
    [21] G. Solomon, Doctora l t h e s i s, n.d.
    [22] C. Yu, Z. Liu, X. Han, H. Huang, C. Zhao, J. Yang, J. Qiu, NiCo-layered double hydroxides vertically assembled on carbon fiber papers as binder-free high-active electrocatalysts for water oxidation, Carbon N. Y. 110 (2016) 1–7. https://doi.org/10.1016/j.carbon.2016.08.020.
    [23] S. Anantharaj, S. Noda, iR drop correction in electrocatalysis: everything one needs to know!, J. Mater. Chem. A. 10 (2022) 9348–9354. https://doi.org/10.1039/d2ta01393b.
    [24] M. Sillanpaa, M. Shestakova, Electrochemical water treatment methods: Fundamentals, methods and full scale applications, Butterworth-Heinemann, 2017.
    [25] S. Anantharaj, Hydrogen evolution reaction on Pt and Ru in alkali with volmer-step promotors and electronic structure modulators, Curr. Opin. Electrochem. 33 (2022) 100961. https://doi.org/10.1016/j.coelec.2022.100961.
    [26] R. Kötz, S. Stucki, Stabilization of RuO2 by IrO2 for anodic oxygen evolution in acid media, Electrochim. Acta. 31 (1986) 1311–1316. https://doi.org/10.1016/0013-4686(86)80153-0.
    [27] K.J. Jenewein, J. Knöppel, A. Hofer, A. Kormányos, B. Mayerhöfer, F.D. Speck, M. Bierling, S. Thiele, J. Bachmann, S. Cherevko, Dissolution of WO 3 modified with IrO x overlayers during photoelectrochemical water splitting , SusMat. 3 (2023) 128–136. https://doi.org/10.1002/sus2.107.
    [28] S.A. Mirshokraee, M. Muhyuddin, R. Lorenzi, G. Tseberlidis, C. Lo Vecchio, V. Baglio, E. Berretti, A. Lavacchi, C. Santoro, Litchi‐derived platinum group metal‐free electrocatalysts for oxygen reduction reaction and hydrogen evolution reaction in alkaline media, SusMat. 3 (2023) 248–262. https://doi.org/10.1002/sus2.121.
    [29] M.P. Browne, Z. Sofer, M. Pumera, Layered and two dimensional metal oxides for electrochemical energy conversion, Energy Environ. Sci. 12 (2019) 41–58. https://doi.org/10.1039/c8ee02495b.
    [30] A.M. Mohamed, N.K. Allam, Transition Metal Selenide (TMSe) electrodes for electrochemical capacitor devices: A critical review, J. Energy Storage. 47 (2022) 103565. https://doi.org/10.1016/j.est.2021.103565.
    [31] L. Wan, P. Wang, Recent progress on self-supported two-dimensional transition metal hydroxides nanosheets for electrochemical energy storage and conversion, Int. J. Hydrogen Energy. 46 (2021) 8356–8376. https://doi.org/10.1016/j.ijhydene.2020.12.061.
    [32] X.P. Li, C. Huang, W.K. Han, T. Ouyang, Z.Q. Liu, Transition metal-based electrocatalysts for overall water splitting, Chinese Chem. Lett. 32 (2021) 2597–2616. https://doi.org/10.1016/j.cclet.2021.01.047.
    [33] Y. Li, X. Bao, D. Chen, Z. Wang, N. Dewangan, M. Li, Z. Xu, J. Wang, S. Kawi, Q. Zhong, A Minireview on Nickel-Based Heterogeneous Electrocatalysts for Water Splitting, ChemCatChem. 11 (2019) 5913–5928. https://doi.org/10.1002/cctc.201901682.
    [34] Z. Chen, X. Duan, W. Wei, S. Wang, B.J. Ni, Recent advances in transition metal-based electrocatalysts for alkaline hydrogen evolution, J. Mater. Chem. A. 7 (2019) 14971–15005. https://doi.org/10.1039/c9ta03220g.
    [35] R.R. Chen, Y. Sun, S.J.H. Ong, S. Xi, Y. Du, C. Liu, O. Lev, Z.J. Xu, Antiferromagnetic Inverse Spinel Oxide LiCoVO4 with Spin-Polarized Channels for Water Oxidation, Adv. Mater. 32 (2020). https://doi.org/10.1002/adma.201907976.
    [36] K.N. Dinh, P. Zheng, Z. Dai, Y. Zhang, R. Dangol, Y. Zheng, B. Li, Y. Zong, Q. Yan, Ultrathin Porous NiFeV Ternary Layer Hydroxide Nanosheets as a Highly Efficient Bifunctional Electrocatalyst for Overall Water Splitting, Small. 14 (2018) 1–9. https://doi.org/10.1002/smll.201703257.
    [37] G. Li, Q. Xu, W. Shi, C. Fu, L. Jiao, M.E. Kamminga, M. Yu, H. Tüysüz, N. Kumar, V. Süß, R. Saha, A.K. Srivastava, S. Wirth, G. Auffermann, J. Gooth, S. Parkin, Y. Sun, E. Liu, C. Felser, Surface states in bulk single crystal of topological semimetal Co 3 Sn 2 S 2 toward water oxidation, 2019.
    [38] A. Hameed, M. Batool, Z. Liu, M.A. Nadeem, R. Jin, Layered Double Hydroxide-Derived Nanomaterials for Efficient Electrocatalytic Water Splitting: Recent Progress and Future Perspective, ACS Energy Lett. 7 (2022) 3311–3328. https://doi.org/10.1021/acsenergylett.2c01362.
    [39] C. Zhang, J. Zhao, L. Zhou, Z. Li, M. Shao, M. Wei, Layer-by-layer assembly of exfoliated layered double hydroxide nanosheets for enhanced electrochemical oxidation of water, J. Mater. Chem. A. 4 (2016) 11516–11523. https://doi.org/10.1039/c6ta02537d.
    [40] K. Maegawa, K. Hikima, W.K. Tan, G. Kawamura, H. Muto, A. Nagai, A. Jitianu, A. Matsuda, Enhancing water uptake and hydroxide ion conductivity of alkali fuel cell electrolyte membrane by layered double hydroxide, Solid State Ionics. 385 (2022) 116021. https://doi.org/10.1016/j.ssi.2022.116021.
    [41] Y. Cao, D. Zheng, F. Zhang, J. Pan, C. Lin, Layered double hydroxide (LDH) for multi-functionalized corrosion protection of metals: A review, J. Mater. Sci. Technol. 102 (2022) 232–263. https://doi.org/10.1016/j.jmst.2021.05.078.
    [42] C. Qiao, Y. Zhang, Y. Zhu, C. Cao, X. Bao, J. Xu, One-step synthesis of zinc-cobalt layered double hydroxide (Zn-Co-LDH) nanosheets for high-efficiency oxygen evolution reaction, J. Mater. Chem. A. 3 (2015) 6878–6883. https://doi.org/10.1039/c4ta06634k.
    [43] L. Zhou, S. Jiang, Y. Liu, M. Shao, M. Wei, X. Duan, Ultrathin CoNiP@Layered Double Hydroxides Core-Shell Nanosheets Arrays for Largely Enhanced Overall Water Splitting, ACS Appl. Energy Mater. 1 (2018) 623–631. https://doi.org/10.1021/acsaem.7b00151.
    [44] H. Yang, T. Guo, K. Qin, Q. Liu, Different Interlayer Anions Controlled Zinc Cobalt Layered Double Hydroxide Nanosheets for Ethanol Electrocatalytic Oxidation, J. Phys. Chem. C. 125 (2021) 24867–24875. https://doi.org/10.1021/acs.jpcc.1c06449.
    [45] Y. Luo, Y. Wu, D. Wu, C. Huang, D. Xiao, H. Chen, S. Zheng, P.K. Chu, NiFe-Layered Double Hydroxide Synchronously Activated by Heterojunctions and Vacancies for the Oxygen Evolution Reaction, ACS Appl. Mater. Interfaces. 12 (2020) 42850–42858. https://doi.org/10.1021/acsami.0c11847.
    [46] Z. Cai, X. Bu, P. Wang, J.C. Ho, J. Yang, X. Wang, Recent advances in layered double hydroxide electrocatalysts for the oxygen evolution reaction, J. Mater. Chem. A. 7 (2019) 5069–5089. https://doi.org/10.1039/c8ta11273h.
    [47] R. Eizi, T.R. Bastami, V. Mahmoudi, A. Ayati, H. Babaei, Facile ultrasound-assisted synthesis of CuFe-Layered double hydroxides/g-C3N4 nanocomposite for alizarin red S sono-sorption, J. Taiwan Inst. Chem. Eng. 145 (2023) 104844. https://doi.org/10.1016/j.jtice.2023.104844.
    [48] X. Zou, A. Goswami, T. Asefa, Efficient noble metal-free (electro)catalysis of water and alcohol oxidations by zinc-cobalt layered double hydroxide, J. Am. Chem. Soc. 135 (2013) 17242–17245. https://doi.org/10.1021/ja407174u.
    [49] Y. Li, L. Zhang, X. Xiang, D. Yan, F. Li, Engineering of ZnCo-layered double hydroxide nanowalls toward high-efficiency electrochemical water oxidation, J. Mater. Chem. A. 2 (2014) 13250–13258. https://doi.org/10.1039/c4ta01275e.
    [50] M.A. Woo, M.S. Song, T.W. Kim, I.Y. Kim, J.Y. Ju, Y.S. Lee, S.J. Kim, J.H. Choy, S.J. Hwang, Mixed valence Zn-Co-layered double hydroxides and their exfoliated nanosheets with electrode functionality, J. Mater. Chem. 21 (2011) 4286–4292. https://doi.org/10.1039/c0jm03430d.
    [51] C. Qiu, F. Cai, Y. Wang, Y. Liu, Q. Wang, C. Zhao, 2-Methylimidazole directed ambient synthesis of zinc-cobalt LDH nanosheets for efficient oxygen evolution reaction, J. Colloid Interface Sci. 565 (2020) 351–359. https://doi.org/10.1016/j.jcis.2019.12.070.
    [52] X. Lu, M. Du, T. Wang, W. Cheng, J. Li, C. He, Z. Li, L. Tian, Ultrafast fabrication of nanospherical CoFe alloys for boosting electrocatalytic water oxidation, Int. J. Hydrogen Energy. (2023). https://doi.org/10.1016/j.ijhydene.2023.05.105.
    [53] X. Lu, T. Wang, M. Cao, W. Cheng, H. Yang, H. Xu, C. He, L. Tian, Z. Li, Homogeneous NiMoO4–Co(OH)2 bifunctional heterostructures for electrocatalytic oxygen evolution and urea oxidation reaction, Int. J. Hydrogen Energy. (2023). https://doi.org/10.1016/j.ijhydene.2023.04.257.
    [54] H.T. Kang, K. Lv, S.L. Yuan, Synthesis, characterization, and SO2 removal capacity of MnMgAlFe mixed oxides derived from hydrotalcite-like compounds, Appl. Clay Sci. 72 (2013) 184–190. https://doi.org/10.1016/j.clay.2013.01.015.
    [55] S. Kim, J. Fahel, P. Durand, E. André, C. Carteret, Ternary Layered Double Hydroxides (LDHs) Based on Co-, Cu-Substituted ZnAl for the Design of Efficient Photocatalysts, Eur. J. Inorg. Chem. 2017 (2017) 669–678. https://doi.org/10.1002/ejic.201601213.
    [56] Z. Liu, R. Ma, Y. Ebina, N. Iyi, K. Takada, T. Sasaki, General synthesis and delamination of highly crystalline transition-metal-bearing layered double hydroxides, Langmuir. 23 (2007) 861–867. https://doi.org/10.1021/la062345m.
    [57] Y. Yang, L. Dang, M.J. Shearer, H. Sheng, W. Li, J. Chen, P. Xiao, Y. Zhang, R.J. Hamers, S. Jin, Highly Active Trimetallic NiFeCr Layered Double Hydroxide Electrocatalysts for Oxygen Evolution Reaction, Adv. Energy Mater. 8 (2018) 1–9. https://doi.org/10.1002/aenm.201703189.
    [58] J. Yao, D. Xu, X. Ma, J. Xiao, M. Zhang, H. Gao, Trimetallic CoNiFe-layered double hydroxides: Electronic coupling effect and oxygen vacancy for boosting water splitting, J. Power Sources. 524 (2022) 231068. https://doi.org/10.1016/j.jpowsour.2022.231068.
    [59] Y. Li, H. Xu, H. Huang, C. Wang, L. Gao, T. Ma, One-dimensional MoO2-Co2Mo3O8@C nanorods: A novel and highly efficient oxygen evolution reaction catalyst derived from metal-organic framework composites, Chem. Commun. 54 (2018) 2739–2742. https://doi.org/10.1039/c8cc00025e.
    [60] T. Ouyang, X.T. Wang, X.Q. Mai, A.N. Chen, Z.Y. Tang, Z.Q. Liu, Coupling Magnetic Single-Crystal Co2Mo3O8 with Ultrathin Nitrogen-Rich Carbon Layer for Oxygen Evolution Reaction, Angew. Chemie - Int. Ed. 59 (2020) 11948–11957. https://doi.org/10.1002/anie.202004533.
    [61] Z. Liu, C. Zhan, L. Peng, Y. Cao, Y. Chen, S. Ding, C. Xiao, X. Lai, J. Li, S. Wei, J. Wang, J. Tu, A CoMoO4-Co2Mo3O8 heterostructure with valence-rich molybdenum for a high-performance hydrogen evolution reaction in alkaline solution, J. Mater. Chem. A. 7 (2019) 16761–16769. https://doi.org/10.1039/c9ta04180j.
    [62] Z. Yin, Y. Chen, Y. Zhao, C. Li, C. Zhu, X. Zhang, Hierarchical nanosheet-based CoMoO4-NiMoO4 nanotubes for applications in asymmetric supercapacitors and the oxygen evolution reaction, J. Mater. Chem. A. 3 (2015) 22750–22758. https://doi.org/10.1039/c5ta05678k.
    [63] Y.Y. Wu, Y. Teng, M. Zhang, Z.P. Deng, Y.M. Xu, L.H. Huo, S. Gao, Cooperative modulation of Fe2(MoO4)3 microstructure derived from absorbent cotton for enhanced gas-sensing performance, Sensors Actuators, B Chem. 329 (2021) 129126. https://doi.org/10.1016/j.snb.2020.129126.
    [64] Y. Chu, X. Shi, Y. Wang, Z. Fang, Y. Deng, Z. Liu, Q. Dong, Z. Hao, High temperature solid-state synthesis of dopant-free Fe2Mo3O8 for lithium-ion batteries, Inorg. Chem. Commun. 107 (2019) 107477. https://doi.org/10.1016/j.inoche.2019.107477.
    [65] D. Zhang, L. Zhang, W. Zhang, M. Huo, J. Yin, G. Dang, Z. Ren, Q. Zhang, J. Xie, S.S. Mao, Morphology-dependent electrocatalytic performance of Fe2(MoO4)3 for electro-oxidation of methanol in alkaline medium, J. Mater. 3 (2017) 135–143. https://doi.org/10.1016/j.jmat.2017.03.002.
    [66] L. Lu, Y. Zhang, Z. Chen, F. Feng, Z. Ma, S. Zhang, K. Teng, Q. An, Elemental diversity-enhanced HER and OER photoelectrochemical catalytic performance in FeCo-AuNP/nitrogen-carbon composite catalysts, Appl. Surf. Sci. 568 (2021). https://doi.org/10.1016/j.apsusc.2021.151005.
    [67] J. Gao, H. Ma, L. Zhang, X. Luo, L. Yu, Interface engineering of Ni3Se2@FeOOH heterostructure nanoforests for highly-efficient overall water splitting, J. Alloys Compd. 893 (2022) 162244. https://doi.org/10.1016/j.jallcom.2021.162244.
    [68] K.S. Bhat, A. Sarkar, In-situ synthesis of nickel seleno-sulfide nano-rod arrays on three-dimensional nickel foam as efficient electrocatalyst for water oxidation, Electrochim. Acta. 407 (2022) 139886. https://doi.org/10.1016/j.electacta.2022.139886.
    [69] F. Chen, Y. Chen, Q. Han, L. Qu, One-step synthesis of hierarchical Ni3Se2 nanosheet-on-nanorods/Ni foam electrodes for hybrid supercapacitors, Chinese Chem. Lett. 33 (2022) 475–479. https://doi.org/10.1016/j.cclet.2021.06.021.
    [70] I. Hussain, S. Sahoo, C. Lamiel, T.T. Nguyen, M. Ahmed, C. Xi, S. Iqbal, A. Ali, N. Abbas, M.S. Javed, K. Zhang, Research progress and future aspects: Metal selenides as effective electrodes, Energy Storage Mater. 47 (2022) 13–43. https://doi.org/10.1016/j.ensm.2022.01.055.
    [71] A.T. Swesi, J. Masud, M. Nath, Nickel selenide as a high-efficiency catalyst for oxygen evolution reaction, Energy Environ. Sci. 9 (2016) 1771–1782. https://doi.org/10.1039/c5ee02463c.
    [72] X. Ma, J. Yang, X. Xu, H. Yang, C. Peng, NiSe/Ni3Se2on nickel foam as an ultra-high-rate HER electrocatalyst: Common anion heterostructure with built-in electric field and efficient interfacial charge transfer, RSC Adv. 11 (2021) 34432–34439. https://doi.org/10.1039/d1ra06183f.
    [73] R. Xu, R. Wu, Y. Shi, J. Zhang, B. Zhang, Ni3Se2 nanoforest/Ni foam as a hydrophilic, metallic, and self-supported bifunctional electrocatalyst for both H2 and O2 generations, Nano Energy. 24 (2016) 103–110. https://doi.org/10.1016/j.nanoen.2016.04.006.
    [74] D. He, L. Cao, J. Huang, Y. Feng, G. Li, D. Yang, Q. Huang, L. Feng, Rational Design of Vanadium-Modulated Ni3Se2Nanorod@Nanosheet Arrays as a Bifunctional Electrocatalyst for Overall Water Splitting, ACS Sustain. Chem. Eng. 9 (2021) 12005–12016. https://doi.org/10.1021/acssuschemeng.1c04695.
    [75] Z. Zheng, Y. Xue, Y. Li, A new carbon allotrope: graphdiyne, Trends Chem. 4 (2022) 754–768. https://doi.org/https://doi.org/10.1016/j.trechm.2022.05.006.
    [76] Y. Fang, Y. Liu, L. Qi, Y. Xue, Y. Li, 2D graphdiyne: an emerging carbon material, Chem. Soc. Rev. 51 (2022) 2691–2709. https://doi.org/10.1039/d1cs00592h.
    [77] X. Luan, Z. Zheng, S. Zhao, Y. Xue, Y. Li, Controlled Growth of the Interface of CdWOx/GDY for Hydrogen Energy Conversion, Adv. Funct. Mater. 2202843 (2022) 1–10. https://doi.org/10.1002/adfm.202202843.
    [78] W. Zhuang, Z. Li, M. Song, W. Zhu, L. Tian, Synergistic improvement in electron transport and active sites exposure over RGO supported NiP/Fe4P for oxygen evolution reaction, Ionics (Kiel). 28 (2022) 1359–1366. https://doi.org/10.1007/s11581-021-04396-0.
    [79] P.A. Bharad, K. Sivaranjani, C.S. Gopinath, A rational approach towards enhancing solar water splitting: a case study of Au-RGO/N-RGO-TiO2, Nanoscale. 7 (2015) 11206–11215. https://doi.org/10.1039/c5nr02613j.
    [80] Y. Liu, X. Wang, Reduced graphene oxides decorated NiSe nanoparticles as high performance electrodes for Na/Li storage, Materials (Basel). 12 (2019) 1–12. https://doi.org/10.3390/ma12223709.
    [81] X. Zhang, M. Zhen, J. Bai, S. Jin, L. Liu, Efficient NiSe-Ni3Se2/Graphene Electrocatalyst in Dye-Sensitized Solar Cells: The Role of Hollow Hybrid Nanostructure, ACS Appl. Mater. Interfaces. 8 (2016) 17187–17193. https://doi.org/10.1021/acsami.6b02350.
    [82] S.J. Huang, S. Balu, N.R. Barveen, K.S. Bayikadi, Construction of Fe-substituted CoZn layered double hydroxide as an efficient electrocatalyst for the oxygen evolution reaction, J. Taiwan Inst. Chem. Eng. 152 (2023) 105157. https://doi.org/10.1016/j.jtice.2023.105157.
    [83] S. Huang, S. Balu, N. Riswana, R. Sankar, Colloids and Surfaces A : Physicochemical and Engineering Aspects Surface engineering of reduced graphene oxide onto the nanoforest-like nickel selenide as a high performance electrocatalyst for OER and HER, Colloids Surfaces A Physicochem. Eng. Asp. 654 (2022) 130024. https://doi.org/10.1016/j.colsurfa.2022.130024.
    [84] S. Abdolhosseinzadeh, H. Asgharzadeh, H.S. Kim, Fast and fully-scalable synthesis of reduced graphene oxide, Sci. Rep. 5 (2015) 1–7. https://doi.org/10.1038/srep10160.
    [85] S.Y. Jung, B.K. Kim, H.J. Kim, J.M. Oh, Development of mesopore structure of mixed metal oxide through albumin-templated coprecipitation and reconstruction of layered double hydroxide, Nanomaterials. 11 (2021) 1–13. https://doi.org/10.3390/nano11030620.
    [86] Y. Sun, X. Wang, Q. Fu, C. Pan, A novel hollow flower-like 0D/3D Zn0.5Cd0.5S/NiCoZn-LDH photocatalyst with n-n heterojunction for high hydrogen production, Appl. Surf. Sci. 564 (2021) 150379. https://doi.org/10.1016/j.apsusc.2021.150379.
    [87] I. Ahemen, F.B. Dejene, The role of traps in the blue–green emission of ZrO2:Ce3+, Tb3+ co-doped phosphors, J. Mater. Sci. Mater. Electron. 29 (2018) 2140–2150. https://doi.org/10.1007/s10854-017-8126-5.
    [88] P. Hartman, H.K. Chan, Application of the Periodic Bond Chain (PBC) Theory and Attachment Energy Consideration to Derive the Crystal Morphology of Hexamethylmelamine, Pharm. Res. An Off. J. Am. Assoc. Pharm. Sci. 10 (1993) 1052–1058. https://doi.org/10.1023/A:1018927109487.
    [89] X. Wang, Y. Tuo, Y. Zhou, D. Wang, S. Wang, J. Zhang, Ta-doping triggered electronic structural engineering and strain effect in NiFe LDH for enhanced water oxidation, Chem. Eng. J. 403 (2021) 126297. https://doi.org/10.1016/j.cej.2020.126297.
    [90] X. Chen, Y. Zeng, Z. Chen, S. Wang, C. Xin, L. Wang, C. Shi, L. Lu, C. Zhang, Synthesis and Electrochemical Property of FeOOH/Graphene Oxide Composites, Front. Chem. 8 (2020) 1–8. https://doi.org/10.3389/fchem.2020.00328.
    [91] S. Feliu, V. Barranco, XPS study of the surface chemistry of conventional hot-dip galvanised pure Zn, galvanneal and Zn-Al alloy coatings on steel, Acta Mater. 51 (2003) 5413–5424. https://doi.org/10.1016/S1359-6454(03)00408-7.
    [92] B. Wang, W.X. Lu, Z.Q. Huang, D.S. Pan, L.L. Zhou, Z.H. Guo, J.L. Song, A zeolite-type CoFe selenite via in-situ transformation of layered double hydroxide boosting the water oxidation performance in alkaline electrolyte, Chem. Eng. J. 399 (2020) 125799. https://doi.org/10.1016/j.cej.2020.125799.
    [93] H. Supercapacitor, Zinc Cobalt Layered Double Hydroxide Electrode for, 28 (2019) 164–168.
    [94] B. Dilasari, Y. Jung, K. Kwon, Effect of water on the stability of zinc in 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ionic liquid, J. Ind. Eng. Chem. 45 (2017) 375–379. https://doi.org/10.1016/j.jiec.2016.10.005.
    [95] B. Bozzini, E. Griskonis, A. Fanigliulo, A. Sulcius, Electrodeposition of Zn-Mn alloys in the presence of thiocarbamide, Surf. Coatings Technol. 154 (2002) 294–303. https://doi.org/10.1016/S0257-8972(02)00010-5.
    [96] F. Paquin, J. Rivnay, A. Salleo, N. Stingelin, C. Silva, Engineering of ZnCo-layered double hydroxide nanowalls toward high-efficiency electrochemical water oxidation, J. Mater. Chem. C. 3 (2015) 10715–10722. https://doi.org/10.1039/c0xx00000x.
    [97] S. Dutta, C. Ray, Y. Negishi, T. Pal, Facile Synthesis of Unique Hexagonal Nanoplates of Zn/Co Hydroxy Sulfate for Efficient Electrocatalytic Oxygen Evolution Reaction, ACS Appl. Mater. Interfaces. 9 (2017) 8134–8141. https://doi.org/10.1021/acsami.7b00030.
    [98] L. Huang, J. Jiang, L. Ai, Interlayer Expansion of Layered Cobalt Hydroxide Nanobelts to Highly Improve Oxygen Evolution Electrocatalysis, ACS Appl. Mater. Interfaces. 9 (2017) 7059–7067. https://doi.org/10.1021/acsami.6b14479.
    [99] L. Feng, A. Li, Y. Li, J. Liu, L. Wang, L. Huang, Y. Wang, X. Ge, A Highly Active CoFe Layered Double Hydroxide for Water Splitting, Chempluschem. 82 (2017) 483–488. https://doi.org/10.1002/cplu.201700005.
    [100] T. Zhou, Z. Cao, P. Zhang, H. Ma, Z. Gao, H. Wang, Y. Lu, J. He, Y. Zhao, Transition metal ions regulated oxygen evolution reaction performance of Ni-based hydroxides hierarchical nanoarrays, Sci. Rep. 7 (2017) 1–9. https://doi.org/10.1038/srep46154.
    [101] Y. Hong, L. Yang, Y. Tian, X. Lin, E. Liu, W. Sun, Y. Liu, C. Zhu, X. Li, J. Shi, Rational design 2D/3D MoS2/In2O3 composites for great boosting photocatalytic H2 production coupled with dye degradation, J. Taiwan Inst. Chem. Eng. 146 (2023) 104862. https://doi.org/10.1016/j.jtice.2023.104862.
    [102] Chemistry An Asian Journal - 2016 - Shi - Room‐Temperature and Aqueous‐Phase Synthesis of Plasmonic Molybdenum Oxide.pdf, (n.d.).
    [103] L.J. Xie, C.F. Li, J.W. Zhao, L.F. Gu, J.Q. Wu, Y. Wang, G.R. Li, Incorporating metal Co into CoMoO4/Co2Mo3O8 heterointerfaces with rich-oxygen vacancies for efficient hydrogen evolution catalysis, Chem. Eng. J. 430 (2022) 133119. https://doi.org/10.1016/j.cej.2021.133119.
    [104] R. Samanta, P. Panda, R. Mishra, S. Barman, IrO2-Modified RuO2 Nanowires/Nitrogen-Doped Carbon Composite for Effective Overall Water Splitting in All pH, Energy and Fuels. 36 (2022) 1015–1026. https://doi.org/10.1021/acs.energyfuels.1c04082.
    [105] Y. Zhang, W. Ye, J. Fan, V. Cecen, P. Shi, Y. Min, Q. Xu, Cobalt-Nanoparticle-Decorated Cobalt-Molybdenum Bimetal Oxides Embedded in Flower-like N-Doped Carbon as a Durable and Efficient Electrocatalyst for Oxygen Evolution Reaction, ACS Sustain. Chem. Eng. 9 (2021) 11052–11061. https://doi.org/10.1021/acssuschemeng.1c02472.
    [106] L. Zhang, X. Zhu, Y. Zhao, P. Zhang, J. Chen, J. Jiang, T. Xie, The photogenerated charge characteristics in Ni@NiO/CdS hybrids for increased photocatalytic H2 generation, RSC Adv. 9 (2019) 39604–39610. https://doi.org/10.1039/c9ra06034k.
    [107] D. Shao, P. Li, R. Zhang, C. Zhao, D. Wang, C. Zhao, One-step preparation of Fe-doped Ni 3 S 2 /rGO@NF electrode and its superior OER performances, Int. J. Hydrogen Energy. 44 (2019) 2664–2674. https://doi.org/10.1016/j.ijhydene.2018.11.054.
    [108] T. Yao, X. Guo, S. Qin, F. Xia, Q. Li, Y. Li, Q. Chen, J. Li, D. He, Effect of rGO Coating on Interconnected Co3O4 Nanosheets and Improved Supercapacitive Behavior of Co3O4/rGO/NF Architecture, Nano-Micro Lett. 9 (2017) 1–8. https://doi.org/10.1007/s40820-017-0141-9.
    [109] S. Dutta, A. Indra, Y. Feng, T. Song, U. Paik, Self-supported nickel iron layered double hydroxide-nickel selenide electrocatalyst for superior water splitting activity, ACS Appl. Mater. Interfaces. 9 (2017) 33766–33774. https://doi.org/10.1021/acsami.7b07984.
    [110] J. Du, A. Yu, Z. Zou, C. Xu, One-pot synthesis of iron-nickel-selenide nanorods for efficient and durable electrochemical oxygen evolution, Inorg. Chem. Front. 5 (2018) 814–818. https://doi.org/10.1039/c7qi00792b.
    [111] X. Zhao, Y. Yang, Y. Li, X. Cui, Y. Zhang, P. Xiao, NiCo-selenide as a novel catalyst for water oxidation, J. Mater. Sci. 51 (2016) 3724–3734. https://doi.org/10.1007/s10853-015-9690-9.
    [112] F.T. Johra, W.G. Jung, Hydrothermally reduced graphene oxide as a supercapacitor, Appl. Surf. Sci. 357 (2015) 1911–1914. https://doi.org/10.1016/j.apsusc.2015.09.128.
    [113] S. Li, Y. Chen, X. He, X. Mao, Y. Zhou, J. Xu, Y. Yang, Modifying Reduced Graphene Oxide by Conducting Polymer Through a Hydrothermal Polymerization Method and its Application as Energy Storage Electrodes, Nanoscale Res. Lett. 14 (2019). https://doi.org/10.1186/s11671-019-3051-6.
    [114] Y. Zeng, G.F. Chen, Z. Jiang, L.X. Ding, S. Wang, H. Wang, Confined heat treatment of a Prussian blue analogue for enhanced electrocatalytic oxygen evolution, J. Mater. Chem. A. 6 (2018) 15942–15946. https://doi.org/10.1039/c8ta05677c.
    [115] J. Zhao, L. Yang, H. Li, T. Huang, H. Cheng, A. Meng, Y. Lin, P. Wu, X. Yuan, Z. Li, Ni3Se2 nanosheets in-situ grown on 3D NiSe nanowire arrays with enhanced electrochemical performances for supercapacitor and efficient oxygen evolution, Mater. Charact. 172 (2021) 110819. https://doi.org/10.1016/j.matchar.2020.110819.
    [116] J. Hu, S. Zhu, Y. Liang, S. Wu, Z. Li, S. Luo, Z. Cui, Self-supported Ni3Se2@NiFe layered double hydroxide bifunctional electrocatalyst for overall water splitting, J. Colloid Interface Sci. 587 (2021) 79–89. https://doi.org/10.1016/j.jcis.2020.12.016.
    [117] L. Wang, Y. Wu, R. Cao, L. Ren, M. Chen, X. Feng, J. Zhou, B. Wang, Fe/Ni Metal-Organic Frameworks and Their Binder-Free Thin Films for Efficient Oxygen Evolution with Low Overpotential, ACS Appl. Mater. Interfaces. 8 (2016) 16736–16743. https://doi.org/10.1021/acsami.6b05375.
    [118] G.J. Liu, L.Q. Fan, F. Da Yu, J.H. Wu, L. Liu, Z.Y. Qiu, Q. Liu, Facile one-step hydrothermal synthesis of reduced graphene oxide/Co 3O4 composites for supercapacitors, J. Mater. Sci. 48 (2013) 8463–8470. https://doi.org/10.1007/s10853-013-7663-4.
    [119] C.O. Ania, M. Seredych, E. Rodriguez-Castellon, T.J. Bandosz, New copper/GO based material as an efficient oxygen reduction catalyst in an alkaline medium: The role of unique Cu/rGO architecture, Appl. Catal. B Environ. 163 (2015) 424–435. https://doi.org/10.1016/j.apcatb.2014.08.022.
    [120] L. Zhou, X. Kong, M. Gao, F. Lian, B. Li, Z. Zhou, H. Cao, Hydrothermal fabrication of MnCO3@rGO composite as an anode material for high-performance lithium ion batteries, Inorg. Chem. 53 (2014) 9228–9234. https://doi.org/10.1021/ic501321z.
    [121] S. Parwaiz, K. Bhunia, A.K. Das, M.M. Khan, D. Pradhan, Cobalt-Doped Ceria/Reduced Graphene Oxide Nanocomposite as an Efficient Oxygen Reduction Reaction Catalyst and Supercapacitor Material, J. Phys. Chem. C. 121 (2017) 20165–20176. https://doi.org/10.1021/acs.jpcc.7b06846.
    [122] H.S. Magar, R.Y.A. Hassan, A. Mulchandani, Electrochemical impedance spectroscopy (Eis): Principles, construction, and biosensing applications, Sensors. 21 (2021). https://doi.org/10.3390/s21196578.
    [123] A. Sheelam, S. Balu, A. Muneeb, K.S. Bayikadi, D. Namasivayam, E.E. Siddharthan, A.I. Inamdar, R. Thapa, M.H. Chiang, S.J. Isaac Huang, R. Sankar, Improved Oxygen Redox Activity by High-Valent Fe and Co3+Sites in the Perovskite LaNi1- xFe0.5 xCo0.5 xO3, ACS Appl. Energy Mater. 5 (2022) 343–354. https://doi.org/10.1021/acsaem.1c02871.
    [124] A. Meng, T. Shen, T. Huang, G. Song, Z. Li, S. Tan, J. Zhao, NiCoSe2/Ni3Se2 lamella arrays grown on N-doped graphene nanotubes with ultrahigh-rate capability and long-term cycling for asymmetric supercapacitor, Sci. China Mater. 63 (2020) 229–239. https://doi.org/10.1007/s40843-019-9587-5.
    [125] X. Wu, D. He, H. Zhang, H. Li, Z. Li, B. Yang, Z. Lin, L. Lei, X. Zhang, Ni0.85Se as an efficient non-noble bifunctional electrocatalyst for full water splitting, Int. J. Hydrogen Energy. 41 (2016) 10688–10694. https://doi.org/10.1016/j.ijhydene.2016.05.010.
    [126] X.Y. Yu, Y. Feng, B. Guan, X.W.D. Lou, U. Paik, Carbon coated porous nickel phosphides nanoplates for highly efficient oxygen evolution reaction, Energy Environ. Sci. 9 (2016) 1246–1250. https://doi.org/10.1039/c6ee00100a.
    [127] P. He, X.-Y. Yu, X.W.D. Lou, Carbon-Incorporated Nickel-Cobalt Mixed Metal Phosphide Nanoboxes with Enhanced Electrocatalytic Activity for Oxygen Evolution, Angew. Chemie. 129 (2017) 3955–3958. https://doi.org/10.1002/ange.201612635.
    [128] J. Jiang, C. Zhang, L. Ai, Hierarchical iron nickel oxide architectures derived from metal-organic frameworks as efficient electrocatalysts for oxygen evolution reaction, Electrochim. Acta. 208 (2016) 17–24. https://doi.org/10.1016/j.electacta.2016.05.008.
    [129] Facile route to achieve MoSe 2 -Ni 3 Se 2 on nickel foam as ef fi cient dual functional electrocatalysts for overall water splitting, (2022).
    [130] R. Gao, G.D. Li, J. Hu, Y. Wu, X. Lian, D. Wang, X. Zou, In situ electrochemical formation of NiSe/NiOx core/shell nano-electrocatalysts for superior oxygen evolution activity, Catal. Sci. Technol. 6 (2016) 8268–8275. https://doi.org/10.1039/c6cy01810f.
    [131] N. Jiang, Q. Tang, M. Sheng, B. You, D.E. Jiang, Y. Sun, Nickel sulfides for electrocatalytic hydrogen evolution under alkaline conditions: A case study of crystalline NiS, NiS2, and Ni3S2 nanoparticles, Catal. Sci. Technol. 6 (2016) 1077–1084. https://doi.org/10.1039/c5cy01111f.
    [132] Y. Liang, Q. Liu, A.M. Asiri, X. Sun, Y. He, Nickel-iron foam as a three-dimensional robust oxygen evolution electrode with high activity, Int. J. Hydrogen Energy. 40 (2015) 13258–13263. https://doi.org/10.1016/j.ijhydene.2015.07.165.

    無法下載圖示 全文公開日期 2026/02/16 (校內網路)
    全文公開日期 2034/02/16 (校外網路)
    全文公開日期 2034/02/16 (國家圖書館:臺灣博碩士論文系統)
    QR CODE