簡易檢索 / 詳目顯示

研究生: 呂英瑞
Ying-Jui Lu
論文名稱: 超音波結合吸附Minoxidil之微氣泡產生穴蝕效應促進毛髮生長之研究
Evaluation of the hair growth enhancements with ultrasound-mediated minoxidil loaded microbubbles cavitation
指導教授: 廖愛禾
Ai-Ho Liao
口試委員: 莊賀喬
none
沈哲州
none
王智弘
none
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 醫學工程研究所
Graduate Institute of Biomedical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 60
中文關鍵詞: 超音波微氣泡超音波Minoxidil幾丁聚醣
外文關鍵詞: microbubble, ultrasound, minoxidil, chitosan
相關次數: 點閱:411下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 市售藥劑為改善敏諾西代(Minoxidil)較差的水溶性與增加其皮膚的滲透性,其配方使用化學滲透促進劑(乙醇,丙二醇),每天至少需要兩次塗抹藥劑,以確保它的藥理作用,長期使用這類化學滲透促進劑(乙醇,丙二醇)來增加經皮給藥的效果,會發生異位性皮膚炎。在這項研究中,提供一個新超音波微氣泡顯影劑,可裝載敏諾西代形成水溶液製劑,促進毛髮生長,減少皮膚產生副作用。
    以離子逐層吸附法(Layer by layer)使敏諾西代吸附於白蛋白微氣泡(MBs)表面經幾丁寡醣(COL)修飾的陽離子載體(COL-MBs), 透過DLS量測粒徑與電位、in vitro與 in vivo (n=7)實驗組分別以(1) 控制組(C)、 (2) 單純滲透敏諾西代溶液(Mx)、 (3) 超音波施於敏諾西代溶液(US)、(4) 超音波結合Minoxidil-COL-MBs(US+Mx-COL-MB)、(5)超音波結合Minoxidil混合微氣泡組(US+MB)。
    經過幾丁寡醣修飾得到陽離子的微氣泡,其粒徑大小隨球殼不同而改變,依序MBs、COL-MBs與吸附敏諾西代之COL-MBs為1.48,4.15,4.50 µm;表面電位依序為-8.51±0.81、20.23±1.2和0.41±1.73 mV;微氣泡COL-MBs對敏諾西代的吸附率為14.5%;利用FITC觀察經皮穿透深度六小時可達1856 µm,利用透析方式觀察藥物釋放,在2小時時釋放33%;動物實驗中超音波結合COL-MBs吸附敏諾西代組相較控制組提早4天進入生長期,綜合以上結果超音波結合微氣泡之方法能改善敏諾西代之局部治療脫髮症(Alopecias)


    A first commercially available formulations of minoxidil which improve its poor water solubility and increase permeability by chemical enhancement methods (ethanol, propylene glycol). The commercially products require at least two times a day to ensure its pharmacological effect, because the products is made of chemical formulations (ethanol, propylene glycol) to increase the ability of transdermal drug delivery so it will often occur atopic dermatitis for long-term use. In this study, a new ultrasound contrast agent, minoxidil loaded microbubbles (MBs) were created and combined with US energy in water-phase to enhance hair growth and reduce the side effects of skin.
    The MBs which are layer by layer (LbL) assembly of chitosan oligosaccharide lactate (COL) shell which absorbed minoxidil on this cationic carriers. The zeta potential and size distribution of the minoxidil loaded MBs in suspension were measured by DLS. The in vitro and in vivo experimental parameters will be randomly divided into four groups (n=7 animals per group): (1) no treatment [the control group(C)], (2) only penetrating minoxidil solution(Mx), (3) penetrating minoxidil solution by US(US), (4) US combines minoxidil-COL-MBs(US+Mx-COL-MB), (5)US combines MBs with free minoxidil(US+MB).
    The cationic MBs were modified by chitosan. The mean diameters of MBs, MBs coated with COL, and minoxidil loaded COL-MBs were 1.48, 4.15, 4.50 µm. The zeta potentials of MBs, MBs coated with COL and minoxidil loaded COL-MBs were -8.51± , 20.23±1.2 and 0.41 ±1.73 mV, respectively. The loading efficiency of minoxidil on cationic MBs was 14.85%. The penertration depth of FITC was 1856 μm by using ultrasound with microbubbles (6h). The minoxidil release kinetics from minoxidil loaded COL-MBs were determined by dynamic dialysis method. After US treatment, the released rate increased 33% at 2 hour. For the in vivo experiments, the minoxidil loaded MBs would be expected to promote hair growth rapidly 4 days than control group, reduced the treatment dose and side effects. The results confer to these ultrasound with COL-MBs the potential to target and improve topical therapy of alopecia with minoxidil.

    目錄 中文摘要 i ABSTRACT ii 誌謝 iii 目錄 v 圖目錄 viii 表目錄 x 第1章 緒論 1 1.1 經毛囊遞送藥物系統 (Transfollicular drug delivery) 1 1.1.1 發展 1 1.1.2 皮膚結構生理學 1 1.2 常用藥物經皮穿透方法 5 1.2.1 化學滲透促進劑 (Chemical penetration enhancers, CPE) 5 1.2.2 離子導入法 Iontophoresis 5 1.2.3 超音波 (Ultrasound) 6 1.2.4 微針 (Microneedle) 6 1.3 Minoxidil簡介 7 1.3.1 Minoxidil發展 7 1.3.2 藥理作用與現象 8 1.3.3 脫髮症 (Alopecia) 8 1.4 人類血親白蛋白 10 1.4.1 人類血親白蛋白作為載體相關研究 11 1.4.2 超音波微氣泡對比劑 13 1.5 幾丁寡醣 15 1.5.1 逐層離子吸附 (Layer by layer assembly) 16 1.6 超音波結合微氣泡經皮給藥法 18 1.6.1 超音波簡介 18 1.6.2 藥物傳輸機制 19 1.6.3 穴蝕效應 20 1.7 研究動機 23 第2章 材料與方法 24 2.1 研究架構 24 2.2 藥品與設備 25 2.2.1 藥品 25 2.2.2 設備 25 2.3 表面修飾幾丁聚醣之白蛋白微氣泡製作 26 2.3.1 粒徑分析 26 2.3.2 介面電位 27 2.3.3 掃描式電子顯微鏡 28 2.4 螢光染劑模擬藥物於豬皮之穿透深度 28 2.5 吸附效率評估 29 2.5.1 定性分析 29 2.5.2 定量分析 29 2.6 體外藥物釋放試驗 30 2.6.1 於透析袋模擬釋放 30 2.6.2 豬皮模擬經皮穿透 31 2.6.3 豬皮內皮藥物含量分析 32 2.7 超音波結合修飾幾丁聚醣之微氣泡吸附藥物於小鼠皮膚促進毛髮生長實驗 32 2.8 超音波導入儀 34 2.9 統計分析 34 第3章 實驗結果 35 3.1 微氣泡性質 35 3.1.1 粒徑分析 35 3.1.2 電位分析 35 3.1.3 掃描式電子顯微鏡 36 3.2 螢光染劑模擬藥物於豬皮之穿透深度 37 3.3 吸附效率評估 39 3.3.1 定性分析 39 3.3.2 定量分析 40 3.4 體外藥物釋放試驗 41 3.4.1 於透析袋之藥物釋放 41 3.4.2 於豬皮之經皮穿透 42 3.5 超音波結合修飾幾丁聚醣之微氣泡吸附藥物於小鼠皮膚促進毛髮生長實驗 44 3.5.1 毛髮生長狀況 44 3.5.2 色度儀分析 46 3.5.3 組織切片 47 第4章 討論 48 第5章 結論 51 參考文獻 52

    [1] Meidan VM, Bonner MC, Michniak BB. Transfollicular drug delivery—is it a reality?. International journal of pharmaceutics. 2005:306.1, 1-14.
    [2] Lauer AC, Lieb LM, Ramachandran C, Flynn GL, Weiner ND. Transfollicular drug delivery. Pharmaceutical research. 1995: 179-186.
    [3] Chourasia R, Jain SK. Drug targeting through pilosebaceous route. Current drug targets 2009: 950-967.
    [4] Gelfuso GM, Gratieri T, Simão PS, de Freitas LA, Lopez RF. Chitosan microparticles for sustaining the topical delivery of minoxidil sulphate. Journal of microencapsulation 2011: 650-658.
    [5] Scheuplein, R.J, Mechanism of percutaneous absorption.I. Rate of penetration and solubility. J. Invest. Dermatol. 1965:45, 334–346.
    [6] Scheuplein, R.J., Mechanism of percutaneous absorption. II. Transient diffusion and the relative importance of various routes of skin penetration. J. Invest. Dermatol. 1967:48, 63–70.
    [7] Rutherford T, Black JG, The use of autoradiography to study the localization of germicides in skin. Br. J. Dermatol. 1969:81, 75–87.
    [8] Tur E, Maibach HI, Guy RH, Percutaneous penetration of methyl nicotinate at three anatomic sites: evidence for an appendageal contribution to transport. Skin Pharmacol. 1991:4, 230–234.
    [9] Lademann J, Otberg N, Richter H, Weigman HJ, Lindemann U, Schaefer H, Sterry W, Investigation of follicular penetration of topically applied substances. Skin Pharmacol Appl Skin Physiol. 2001:14, 17–22.
    [10] Essa EA, Bonner MC, Barry BW, Human skin sandwich for assessing shunt route penetration during passive and iontophoretic drug and liposome delivery. J. Pharm. Pharmacol. 2002:54, 1481–1490.
    [11] Hobson DW, Comparative anatomy, physiology, and biochemistry of mammalian skin, Dermal and Ocular Toxicology: Fundamentals and Methods, Boca Raton, 1991:3–71,.
    [12] Volz P, Alexander B, Alexander W, Kim TY, Jens B , Janna F, Sabrina H, Zahra A, Fiorenza R, Ulrike BP, Annika V, Ulrike A, Application of Single Molecule Fluorescence Microscopy to Characterize the Penetration of a Large Amphiphilic Molecule in the Stratum Corneum of Human Skin. International journal of molecular sciences. 2015:16.4 6960-6977.
    [13] Ward M, Wu J, Chiu JF. Ultrasound-induced cell lysis and sonoporation enhanced by contrast agents. The Journal of the Acoustical Society of America, 1999:105, 2951-7.
    [14] Wu J, Ross JP, Chiu JF, Reparable sonoporation generated by microstreaming. The Journal of the Acoustical Society of America, 2002:111, 1460-4.
    [15] Venus M, Waterman J, McNab I, Basic physiology of the skin. Surgery. 2010:28, 10, 469-472.
    [16] 林銘楷,「人體皮脂對藥物角質層滲透性之研究」,碩士論文,國立成功大學,台南 (2004)
    [17] 鄭嘉雯,「含乙基維生素C微乳液之特性」,碩士論文,大同大學,台北 (2011)
    [18] Schaefer H, Redelmeier TE, Skin Barrier: Principles of Percutaneous Absorption. Karger, Basel. 1996
    [19] 李承鴻,「利用體外穿皮與活體穿皮研究來評估化學性與物力穿皮促進法對Minoxidil」,碩士論文,國立陽明大學,台北 (2010)
    [20] Bamba FL, Wepierre J, Role of the appendageal pathway in the percutaneous absorption of pyridostigmine bromide in various vehicles. Eur. J. Drug Metab Pharmacokinet. 1993:18, 339–348.
    [21] Browning RJ, Mulvana H, Tang MX, Hajnal JV, Wells DJ, Eckersley RJ, Effect of albumin and dextrose concentration on ultrasound and microbubble mediated gene transfection in vivo. Ultrasound Med Biol, 2012:38, 1067-77
    [22] Volz P, Boreham A, Wolf A, Kim TY, Balke J, Frombach J, Hadam S, Afraz Z, Rancan F, Blume-Peytavi U, Vogt A, Alexiev U. Iontophoresis‐targeted, follicular delivery of minoxidil sulfate for the treatment of alopecia." Journal of pharmaceutical sciences. 2013: 1488-1494.
    [23] Uitto OD, White HS, Electroosmotic pore transport in human skin. Pharm. Res. 2003:20, 646–652.
    [24] Aarti N, Yogeshvar N. Kalia, Richard H, Transdermal drug delivery:overcoming the skin’s barrier function. PSTT. 2000 3, 9.
    [25] Jadoul A, Bouwstra J, Pre´at V,Effects of iontophoresis and electroporation on the stratum corneum Review of the biophysical studies. Advanced Drug Delivery Reviews. 1999:35, 1、4, 89-105.
    [26] Silva SM, Hu L, Sousa JJ, Pais AA, Michniak-Kohn BB. A combination of nonionic surfactants and iontophoresis to enhance the transdermal drug delivery of ondansetron HCl and diltiazem HCl. European Journal of Pharmaceutics and Biopharmaceutics. 2012:80, 3, 663-673.
    [27] Liao AH, Chou HY, Hsieh YL, Hsu SC, Wei KC, Liu HL. Enhanced Therapeutic Epidermal Growth Factor Receptor (EGFR) Antibody Delivery via Pulsed Ultrasound with Targeting Microbubbles for Glioma Treatment. Journal of medical and biological engineering 2015: 156-164.
    [28] Smith NB. Perspectives on transdermal ultrasound mediated. International Journal of Nanomedicine. 2007:2, 4, 585-594.
    [29] Alexander A, Dwivedi S, Ajazuddin. Approaches for breaking the barriers of drug permeation through transdermal. Journal of Controlled Release. 2012:164, 1, 26-40.
    [30] Chen MC, Ling MH, Setiawan JK. Poly-γ-glutamic acid microneedles with a supporting structure design as a potential tool for transdermal delivery of insulin. Acta biomaterialia. 2015.
    [31] Burton J L, Marshall A. Hypertrichosis due to minoxidil. British Journal of Dermatology 1979: 593-595.
    [32] Weiss VC, Dennis PW, Catherine EM. Topical minoxidil in alopecia areata. Journal of the American Academy of Dermatology. 1981: 224-226.
    [33] De Villez, Richard L. Topical minoxidil therapy in hereditary androgenetic alopecia. Archives of dermatology. 1985: 197-202.
    [34] Duvic M, Lemak NA, Valero V, Hymes SR, Farmer KL, Hortobagyi GN, Trancik RJ, Bandstra BA, Compton LD. A randomized trial of minoxidil in chemotherapy-induced alopecia. Journal of the American Academy of Dermatology 1996:74-78.
    [35] Messenger AG, Rundegren J. Minoxidil: mechanisms of action on hair growth. British journal of dermatology 2004: 186-194.
    [36] Tata S, Flynn GL, Weiner ND. Penetration of minoxidil from ethanol/propylene glycol solutions: effect of application volume and occlusion. Journal of pharmaceutical sciences. 1995: 688-69.
    [37] White G, Cox N, eds. Diseases of the Skin. Philadelphia, PA: WB Saunders; 2000.
    [38] Gomes MJ, Martins S, Ferreira D, Segundo MA, Reis S. Lipid nanoparticles for topical and transdermal application for alopecia treatment: development, physicochemical characterization, and in vitro release and penetration studies. International journal of nanomedicine 2014: 1231.
    [39] 保髮堂, http://www.hairway.org/show.aspx?id=244
    [40] 李俊諒,雄性禿的成因與治療,取自:http://www.ohayoo.com.tw/雄性禿的成因與治療.htm
    [41] http://smallcollation.blogspot.tw/2014/04/dht-and-testosterone.html#gsc.tab=0
    [42] 髮源國際有限公司,雄性禿,取自:http://hb168.pixnet.net/blog/post/1482383-【雄性禿掉髮】
    [43] 蔡呈芳,認識落髮、掉髮,取自:http://blog.xuite.net/tfdacos/wretch/149709734-認識落髮、掉髮
    [44] 醫髮診所,取自: http://www.2h.com.tw/h.htm
    [45] Kratz, F. Albumin as a drug carrier: design of prodrugs, drug conjugates and nanoparticles. Journal of Controlled Release 2008: 171-183.
    [46] Nishiyama Y, Yamamoto Y, Mori Y, Satoh K, Takashima H,. Ohkawa M, Tanabe M, Usefulness of Technetium-99 m human serum albumin lymphoscintigraphy in chyluria. Clin. Nucl. Med. 1998: 429–431.
    [47] Rink T, Heuser T, Fitz H, Schroth HJ, Weller E, Zippel HH, Lymphoscintigraphic sentinel node imaging and gamma probe detection in breast cancer with Tc-99 m nanocolloidal albumin: results of an optimized protocol, Clin. Nucl. Med. 2001 293–298.
    [48] Bedrosian I, Scheff AM, Mick R, Callans LS, Bucky LP, Spitz FR, Helsabeck C, Elder DE, Alavi A, Fraker DF, Czerniecki BJ. 99mTc-human serum albumin: an effective radiotracer for identifying sentinel lymph nodes in melanoma, J. Nucl. Med. 1999:1143–1148.
    [49] Dhabuwala A, Lamerton P, Stubbs RS, Relationship of 99mtechnetium labelled macroaggregated albumin (99mTc-MAA) uptake by colorectal liver metastases to response following selective internal radiation therapy (SIRT), BMC Nuclear Medicine 2005 7.
    [50] Suga K, Kume N, Matsunaga N, Motoyama K, Hara A, Ogasawara N., Assessment of leg oedema by dynamic lymphoscintigraphy with intradermal injection of technetium-99 m human serum albumin and load produced by standing, Eur. J. Nucl. Med. 2001 294–303.
    [51] Chiu NT, Lee BF, Hwang SJ, Chang JM, Liu GC, Yu HS. Protein-losing enteropathy: diagnosis with (99 m)Tc-labeled human serum albumin scintigraphy, Radiology 2001:86–90.
    [52] Adams BK, Al Attia HM, Khadim RA, Al Haider ZY. 99Tc(m) nanocolloid scintigraphy: a reliable way to detect active joint disease in patients with peripheral joint pain, Nucl. Med. Commun. 2001: 315–318.
    [53] Abraxane, (2014), Abraxane® [ONLINE]. Available at:http://www.abraxane.eu/wp-content/uploads/2013/05/nano_2.jpg [Accessed 02 December 14].
    [54] Cortes, J, 2010. Nanoparticle albumin-bound (nab™)-paclitaxel: improving efficacy and tolerability by targeted drug delivery in metastatic breast cancer. EJC supplements, [Online]. Vol. 8. Issue.1, 1-10. Available at:http://www.ejcancersupplements.com/article/S1359-6349(10)70002-1/fulltext [Accessed 03 December 2014].
    [55] National cancer institution. 2013. FDA Approval for Paclitaxel Albumin-stabilized Nanoparticle Formulation. [ONLINE] Available at: http://www.cancer.gov/cancertopics/druginfo/fda-nanoparticle-paclitaxel . [Accessed 04 December 14].
    [56] 謝依峻,組織背景抑制於諧波對比劑偵測,國立台灣科技大學電機工程系碩士論文,2008。
    [57] 陳思嘉,靶向超音波於血栓溶解之研究,國立台灣大學電機資訊學院生依電子與資訊學研究所碩士論文,2009。
    [58] Tinkov S, Bekeredjian R, Winter G, Coester C. Microbubbles as ultrasound triggered drug carriers. J Pharm Sci, 2009:98, 6, 1935–61.
    [59] Hernot S, Klibanov AL. Microbubbles in ultrasound-triggered drug and gene delivery. Adv Drug Deliv Rev, 2008:60, 10, 1153–66.
    [60] Chae SY, Son S, Lee M, Jang MK, Nah JW. Deoxycholic acid-conjugated chitosan oligosaccharide nanoparticles for efficient gene carrier. Journal of Controlled Release 2005:330-344.
    [61] Nah JW, Jang MK, Spectroscopic characterization and preparation of low molecular, water-soluble chitosan with free-amine group by novel method, J. Polym. Sci. Part A, Polym. Chem. 2002:3796–3803.
    [62] Köping-Höggård M, Mel'nikova YS, Vårum KM, Lindman B, Artursson P., Relationship between the physical shape and the efficiency of oligomeric chitosan as a gene delivery system in vitro and in vivo, J. Gene Med. 2003:130–141.
    [63] Köping-Höggård M, Vårum KM, Issa M, Danielsen S, Christensen BE, Stokke BT, Artursson P. Improved chitosan-mediated gene delivery based on easily dissociated chitosan polyplexes of highly defined chitosan oligomers, Gene Ther. 2004:1441–1452.
    [64] Son S, Chae SY, Choi C, Kim MY, Ngugen VG, Kweon JK, Jang MK, Nah JW, Preparation of a hydrophobized chitosan oligosaccharide for application as an efficient gene carrier, Macromol. Res. 2004:573–580.
    [65] Son S, Chae SY, Choi C, Kim MY, Ngugen VG, Jang MK, Kweon J K. Preparation of a hydrophobized chitosan oligosaccharide for application as an efficient gene carrier. Macromolecular Research 2004: 573-580.
    [66] Li TS, Yawata T, Honke K. Efficient siRNA delivery and tumor accumulation mediated by ionically cross-linked folic acid–poly (ethylene glycol)–chitosan oligosaccharide lactate nanoparticles: For the potential targeted ovarian cancer gene therapy. European Journal of Pharmaceutical Sciences 2014: 48-61.
    [67] Decher, G. Science 1997, 277, 1232.
    [68] Zhu Y, Gao C, He T, Liu X, Shen J. Layer-by-Layer assembly to modify poly (L-lactic acid) surface toward improving its cytocompatibility to human endothelial cells. Biomacromolecules 2003:446-452.
    [69] Pichette M, Chevalier F, Généreux P. Coronary artery perforation at the level of two‐overlapping bioresorbable vascular scaffolds: The importance of vessel sizing and scaffold thickness. Catheterization and Cardiovascular Interventions. 2015.
    [70] Borden MA, Caskey CF, Little E, Gillies RJ, Ferrara KW. DNA and polylysine adsorption and multilayer construction onto cationic lipid-coated microbubbles. Langmuir 2007: 9401-9408.
    [71] 李嘉明、李玉華,新超音波醫學1 : 醫用超音波的基礎,合計圖書出版社,2003。
    [72] 陳思嘉,靶向超音波於血栓溶解之研究,國立台灣大學電機資訊學院生依電子與資訊學研究所碩士論文,2009。
    [73] 王嘉弘,高頻超音波驅動電路設計在生醫應用之研究,國立暨南國際大學生物醫學科技研究所碩士論文,2006。
    [74] Douglas A. Christensen, Wiley, Ultrasonic Bioinstrumentation, 1988.
    [75] 伍嘉文,多種模式超音波驅動電路設計於生物醫學應用,國立暨南國際大學生物醫學科技研究所碩士論文,2006。
    [76] Kaufman J J, Popp H, Chiabrea A, Pilla AA, The effect of ultrasound on the electrical impedance of biological cells, IEEE engineering in medicine & biology society 10th annual international conference, 1988:2, 6, 753-754.
    [77] Levy D , Kost J, Meshulam Y, Langer R, Effect of ultrasound on transdermal drug delivery to rats and guinea pigs, The Journal of Clinical Investigation, 1989:83, 2, 2074-2078.
    [78] Tezel A, Sens A, Tuchscherer J, Mitragotri S, Synergistic effect of low frequency ultrasound and surfactants on skin permeability, Journal of Pharmaceutical Sciences, 2002:91, 1, 91–100,
    [79] Kokubu T, Matsui n, Fujioka H, Tsundan M, Mizuno k, Low intensity pulsed ultrasound exposure increases prostaglandin E2 production via the induction of Cyclooxygenase – 2 mRNA in mouse osteoblasts, Biochemical and Biophysical Research Communications. 1999:256, 2, 284-287.
    [80] Ter Haar, GR, High intensity focused ultrasound for the treatment of tumors, Echocardiography, 2001:18 , 4, 317-322.
    [81] Ter Haar G, Sinnett D Rivens I. High intensity focused ultrasound—a surgical technique for the treatment of discrete liver tumours, Phys Med Biol. 1989:34, 11, 1743-1750.
    [82] Chaussy C and Thuroff S, Results and side effects of high-intensity focused ultrasound in localized prostate cancer, J Endourol. 2001:15,.4, 437-440.
    [83] 賴俊延,超音波穴蝕效應於基因傳遞效率之研究,國立台灣大學電機工程學研究所碩士論文,2005。
    [84] Lauterborn W, Kurz T, Geisler R, Schanz D, Lindau O. Acoustic cavitation, bubble dynamics and sonoluminescence. Ultrason Sonochem. 2007:14, 4, 484-91.
    [85] Leighton TG, The acoustic bubble, London: Academic Press, 1994.
    [86] Miller DL, Bao S, Gies RA, Thrall BD. Ultrasonic enhancement of gene transfection in murine melanoma tumors. Ultrasound Med Biol. 1999:25, 9, 1425-30,.
    [87] 王鴻偉,使用三倍頻發射相位法對比劑諧波影像,國立台灣科技大學電機工程系碩士論文,2008。
    [88] 盧聖介,包覆空氣微脂體於高頻超音波影像與聲學非線性性質研究與應用,國立清華大學生醫工程與環境科學研究所碩士學位論文,2008。
    [89] Foster FS, Pavlin CJ, Harasiewicz KA, Christopher DA, Turnbull DH, Advances in Ultrasound Biomicroscopy. Ultrasound Med. Biol. 2000:26, 1, 1-27.
    [90] Christensen DA, Ultrasonic Bioinstrumentation. New York: Wiley, 1998.
    [91] 謝依峻,組織背景抑制於諧波對比劑偵測,國立台灣科技大學電機工程系碩士論文,2008。
    [92] Miller AJ, Scanning Acoustic Microscopy in Eletronics Research IEEE Trans. On Ultrasound, Ferroelectrics, and Frequency Control, 1985:32, 2, 320-324.
    [93] Geoff R. Lockwood DH. Turnbull DA. Christopher Foster , A 40-100 MHz B-scan Ultrasound backscatter skin imaging. Ultrasound in Med.&Biol. 1995:21, 1, 79-88.
    [94] Passmann C. Ermert H. Adaptive 150MHz Ultrasound Imaging of the Skin and the Eye using an Optimal combination of Shor Pulse Mode and Pulse Compression Mode. IEEE Ultrasonics Symposium. 1995:186,173-6.
    [95] Knspik DA. Starkoski B. Pavlin CJ. Foster FS. A 100-200 MHz Ultrasound Biomicroscope. IEEE. Ultras. Ferroelectrics, and Frequency Control, 2000:47, 6, 1540-9.
    [96] Charles J. Pavlin. F. Stuart Foster, Ultrasound Biomicroscothe Eye Springer-Verlag Press. 1995.
    [97] 何祚明,高頻超音波影像系統,國立台灣大學電機工程學研究所碩士論文,2002。
    [98] Chen WS. Lu X. Liu Y. Zhong P. The effect of surface agitation on ultrasound-mediated gene transfer in vitro. J Acoust Soc Am. 2004:116, 4, 2440-50.
    [99] Francis CW. Blinc A. Lee S. Cox C. Ultrasound accelerates transport of recombinant tissue plasminogen activator into clots. Ultrasound Med Biol 1995:21, 3, 419-24.
    [100] Everbach EC. Francis CW. Cavitational mechanisms in ultrasound-accelerated thrombolysis at 1 MHz. Ultrasound Med Biol, 2000:26. 7, 1153-60.
    [101] Li P. Cao LQ. Dou CY. Armstrong WF. Miller D. Impact of myocardial contrast echocardiography on vascular permeability: an in vivo dose response study of delivery mode, pressure amplitude and contrast dose. Ultrasound Med Biol. 2003:29, 9, 1341–1349.
    [102] Ibsen S, Schutt CE, Esener S. Microbubble-mediated ultrasound therapy: a review of its potential in cancer treatment. Drug design, development and therapy 2013: 375.
    [103] Yang F. Li Y. Chen Z. Zhang Y. Wu J. Gu N. Superparamagnetic iron oxide nanoparticle-embedded encapsulated microbubbles as dual contrast agents of magnetic resonance and ultrasound imaging, Biomaterials. 2009:30, 23-24, 3882–3890.
    [104] Bekeredjian R, Grayburn PA Shohet RV. Use of ultrasound contrast agents for gene or drug delivery in cardiovascular medicine. J. Am. Coll. Cardiol. , 2005:45, 3, 329–335.
    [105] Lanza, GM. Wickline SA. Targeted ultrasonic contrast agents for molecular imaging and therapy. Curr Probl Cardiol. 2003:28, 12, 625-53.
    [106] Ellegala DB. Leong-Poi H. Carpenter JE. Klibanov AL. Kaul S. Shaffrey ME. Lindner JR. Imaging tumor angiogenesis with contrast ultrasound and microbubbles targeted to αvβ3. Circulation, 2003:108, 336-341.

    QR CODE