簡易檢索 / 詳目顯示

研究生: 鄭庭鈞
TING-CHUN CHENG
論文名稱: 探討超音波誘導裝載薄荷醇微氣泡穴蝕效應於下咽癌細胞治療與正常皮膚角質生成細胞之影響機制
Exploring the mechanisms of ultrasound-mediated menthol loaded microbubbles cavitation on hypopharyngeal cancer cells and normal skin keratinocytes treatments
指導教授: 廖愛禾
Ai-Ho Liao
王正康
Jehng-Kang Wang
口試委員: 廖愛禾
Ai-Ho Liao
王正康
Jehng-Kang Wang
沈哲州
Che-Chou Shen
王智弘
Chih-Hong Wang
朱永祥
Yung-Hsiang Chu
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 醫學工程研究所
Graduate Institute of Biomedical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 110
中文關鍵詞: 薄荷醇超音波微氣泡穴蝕效應膜結合絲胺酸蛋白酶頭頸癌
外文關鍵詞: menthol, ultrasound, microbubble, cavitation, matriptase, hypopharyngeal carcinoma
相關次數: 點閱:211下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 薄荷醇在醫學上因為其藥理功能,被應用在消炎鎮痛、冷卻止癢與抗菌防腐等方面。近年的研究中,薄荷醇應用在癌症治療中已有顯著的成果,薄荷醇能對多種惡性腫瘤生長產生抑制效果,主要機制是薄荷醇能活化細胞膜上TRPM8通道,影響細胞內離子分佈,導致腫瘤細胞增殖、遷移等能力下降,並誘發腫瘤細胞凋亡。Matriptase是膜結合絲胺酸蛋白酶,過去的研究表明,matriptase 的過度表達會導致人類細胞的癌症進展和預後不良。本論文探討薄荷醇於癌症治療的功效,然而其為植物所產生的高揮發性難溶於水之精油,因此備製穩定包覆薄荷醇的人類血清白蛋白微氣泡結合超音波治療,觀測TRPM8的活化與matriptase表現的相互關聯性驗證此新療法的顯著功效。
    實驗結果中薄荷醇微氣泡平均粒徑為3245.7 ± 605.2 nm,藥物包覆率約48 ± 3%。在體外細胞實驗中,人類角質生成細胞株(HaCaT)與人類下咽癌細胞株(FaDu)在IC50結果中兩者的薄荷醇半抑制濃度相近,分別為1.54 mM與1.52 mM。在細胞生存率的結果中,經超音波處理後,薄荷醇微氣泡對細胞毒殺效果有顯著增加。在西方墨點法實驗結果中,經過弱酸處理後,FaDu細胞的Matriptase-HAI複合物在經超音波結合薄荷醇微氣泡處理後表現下降,而HaCaT細胞變化則不明顯。進而可確認此新療法可顯著影響癌細胞Matriptase的活化功能、抑制細胞增殖、遷移並降低細胞生存率,且對正常的細胞影響較小,證實超音波結合薄荷醇微氣泡在癌症治療上極具有潛力。


    Menthol is used in medicine for its anti-inflammatory, analgesic, cooling, antipruritic, antibacterial and antiseptic effect. In recent years, the application of menthol in cancer treatment has achieved remarkable results. Menthol can inhibit the growth of various malignant tumors. The main mechanism is that menthol can activate the TRPM8 channel on the cell membrane, affect the distribution of ions in the cell, and reduce tumor cell proliferation, migration, and tumor cell apoptosis. Matriptase is a type II transmembrane serine protease. In the past, the overexpression of matriptase can lead to cancer progression and poor prognosis in human cells. This thesis discusses the efficacy of menthol in cancer treatment. However, menthol is a highly volatile and insoluble essential oil produced by plants. Therefore, the stable menthol encapsulated albumin microbubbles were prepared and combined with ultrasound to observe the correlation between the TRPM8 activation and expression of matriptase, and validated the remarkable efficacy of this new platform.
    In the experimental results, the mean diameter of menthol microbubbles was 3245.7 ± 605.2 nm, and the drug loading efficiancy was about 48 ± 3%. In the in vitro experiment, the IC50, 50% inhibitory concentration of menthol in the immortalized human keratinocytes (HaCaT) and hypopharyngeal carcinoma cell (FaDu) was similar, 1.54 mM and 1.52 mM, respectively. In the results of cell viability, after ultrasound treatment, the cytotoxic effect of menthol microbubbles was significantly increased either in HaCaT or in FaDu cell. In the results of western blot experiments, the Matriptase-HAI complex in FaDu cells was decreased after treatment with ultrasound combined with menthol microbubbles in mildly acidic environment, while the change in HaCaT cells was not obvious. It can be further confirmed that this new therapy can significantly affect the activation of Matriptase in cancer cell to inhibit cell proliferation, migration, and reduce cell survival rate. It is confirmed that ultrasound combined with menthol loaded microbubbles is an effective platform in cancer treatment.

    誌謝 I 中文摘要 II ABSTRACT III 目錄 IV 圖目錄 VIII 表目錄 X 第1章 、緒論 1 1.1癌症 1 1.1.1頭頸癌 2 1.1.2癌症治療與醫療技術發展 3 1.2薄荷醇 4 1.2.1薄荷醇應用 4 1.2.2藥理作用與分子生物學機制 5 1.3 人類血清白蛋白 8 1.3.1 人類血清白蛋白做為藥物載體的應用 8 1.3.2 人類血清白蛋白與薄荷醇結合機制 9 1.4 超音波傳輸機制 10 1.4.1 超音波簡介 10 1.4.2 超音波在醫療上的應用 11 1.5超音波微氣泡顯影劑 11 1.5.1微氣泡搭載藥物 12 1.5.2 微氣泡藥物輸送機制 13 1.5.3穴蝕效應 13 1.6 Matriptase 15 1.6.1 蛋白質水解酶(protease) 15 1.6.2 絲胺酸蛋白酶(Serine protease) 15 1.6.3 Matriptase的發現 16 1.6.4 Matriptase的結構 16 1.6.5 Matriptase的分佈與生理功能 18 1.7 Prostasin 19 1.7.1 Prostasin的發現 19 1.7.2 Prostasin的結構與活化 19 1.7.3 Prostasin的分佈與生理功能 20 1.8 Hepatocyte growth factor activator inhibitor-1 21 1.8.1 HAI-1的發現 21 1.8.2 HAI-1的結構 21 1.8.3 HAI-1的分佈與生理功能 22 1.9 Hepatocyte growth factor activator inhibitor-2 23 1.9.1 HAI-2的發現 23 1.9.2 HAI-2的結構 23 1.9.3 HAI-2的分佈與生理功能 24 1.10.1 Matriptase弱酸活化機制 26 1.10.2 Matriptase分別與HAI-1、HAI-2的平衡 27 1.10.3 Matriptase、Prostasin與HAI-1、HAI-2的複合物關係 27 1.11 研究動機 28 第2章 、材料與方法 30 2.1研究架構 30 2.2藥品與設備 31 2.2.1藥品與試劑 31 2.2.2 實驗套裝組 32 2.2.3抗體 32 2.2.4 耗材 33 2.2.5 設備 33 2.3 微氣泡對比劑製備 35 2.3.1 無菌人類血清白蛋白微氣泡製備 35 2.3.2 無菌人類血清白蛋白包覆薄荷醇微氣泡製備 35 2.4.1 光學定性分析 36 2.4.2 掃描式電子顯微鏡影像型態分析 36 2.4.3 粒徑分析 37 2.4.4 電性分析 37 2.4.5 濃度分析 38 2.5 微氣泡包覆薄荷醇之包覆率分析 39 2.6 高頻超音波影像系統模擬微氣泡打破模型 40 2.7 體外細胞實驗 41 2.7.1 細胞株與細胞培養液配製 41 2.7.3 細胞繼代 42 2.7.4 細胞計數 42 2.7.5 細胞冷凍與細胞解凍 43 2.7.6 細胞對藥物半抑制濃度 44 2.7.7 細胞經藥物與超音波處理對細胞生存率的影響 44 2.7.8 細胞遷移 45 2.7.9 細胞增殖 46 2.8 西方墨點法 47 2.8.1 細胞處理 47 2.8.2 細胞酸處理 47 2.8.3 細胞內蛋白質收集與定量分析 48 2.8.4 製膠 49 2.8.5 蛋白質電泳 50 2.8.6 蛋白質轉印(Protein Transfer) 50 2.8.7 抗體接枝 51 2.8.8 底片成像 51 2.9 統計分析 52 第3章 、實驗結果 53 3.1無菌微氣泡物理性質 53 3.1.1光學影像定性 53 3.1.2掃描式電子顯微鏡影像型態分析 54 3.1.3粒徑分析 55 3.1.4電性分析 56 3.1.5濃度分析 57 3.2微氣泡包覆薄荷醇之包覆率分析 58 3.3高頻超音波影像系統模擬微氣泡打破模型 59 3.4體外細胞實驗 60 3.4.1藥物半抑制濃度 60 3.4.2細胞經藥物與超音波處理對細胞生存率的影響 61 3.4.3細胞遷移 63 3.4.4細胞增殖 68 3.5西方墨點法 71 3.5.1酸處理對Matriptase表現之影響 71 3.5.2超音波處理對Matriptase表現之影響 71 3.5.3薄荷醇與超音波處理對Matriptase表現之影響 73 第4章 、討論 76 第5章 、結論 83 參考文獻 85 補充資料 94

    [1] World Health Organization.(2022). Cancer. Available from: https://www.who.int/news-room/fact-sheets/detail/cancer. Edited on 3 February 2022
    [2] National Cancer Institute. (2022). Tumor Grade. Available from: https://www.cancer.gov/about-cancer/diagnosis-staging/diagnosis/tumor-grade. Edited on 1 August 2022
    [3] National Cancer Institute. (2022). Cancer Staging. Available from: https://www.cancer.gov/about-cancer/diagnosis-staging/staging. Edited on 14 October 2022
    [4] Chow, L. Q. (2020). Head and neck cancer. New England Journal of Medicine, 382(1), 60-72.
    [5] OHSU Knight Cancer institute. Understanding Head and Neck Cancer. Retrieved from https://www.ohsu.edu/knight-cancer-institute/understanding-head-and-neck- cancer. Retrieved 12 Jun, 2023.
    [6] Jih-Chin Lee, M.D. (2020). Health Services & Info-Head and neck cancer Available from: https://wwwv.tsgh.ndmctsgh.edu.tw/unit/10018/18178.
    [7] National Cancer Institute. (2022). Cancer Staging. Available from: https://www.cancer.gov/about-cancer/treatment/types.
    [8] Patel, T., Ishiuji, Y., & Yosipovitch, G. (2007). Menthol: a refreshing look at this ancient compound. Journal of the American Academy of Dermatology, 57(5), 873-878. [9] Dylong, D., Hausoul, P. J., Palkovits, R., & Eisenacher, M. (2022). Synthesis of (−)‐menthol: Industrial synthesis routes and recent development. Flavour and Fragrance Journal, 37(4), 195-209.
    [10] Zhao, Y., Pan, H., Liu, W., Liu, E., Pang, Y., Gao, H., ... & Guo, J. (2023). Menthol: An underestimated anticancer agent. Frontiers in Pharmacology, 14, 1148790.
    [11] Li, Z., Zhang, H., Wang, Y., Li, Y., Li, Q., & Zhang, L. (2022). The distinctive role of menthol in pain and analgesia: Mechanisms, practices, and advances. Frontiers in Molecular Neuroscience.
    [12] Galeotti, N., Mannelli, L. D. C., Mazzanti, G., Bartolini, A., & Ghelardini, C. (2002). Menthol: a natural analgesic compound. Neuroscience letters, 322(3), 145-148.
    [13] Liu, Z., Shen, C., Tao, Y., Wang, S., Wei, Z., Cao, Y., ... & Lu, Y. (2015). Chemopreventive efficacy of menthol on carcinogen-induced cutaneous carcinoma through inhibition of inflammation and oxidative stress in mice. Food and Chemical Toxicology, 82, 12-18.
    [14] Santo, S. G. E., Romualdo, G. R., Santos, L. A. D., Grassi, T. F., & Barbisan, L. F. (2021). Modifying effects of menthol against benzo (a) pyrene‐induced forestomach carcinogenesis in female Swiss mice. Environmental Toxicology, 36(11), 2245-2255. [15] Li, Q., Wang, X., Yang, Z., Wang, B., & Li, S. (2010). Menthol induces cell death via the TRPM8 channel in the human bladder cancer cell line T24. Oncology, 77(6), 335-341.
    [16] Kim, S. H., Nam, J. H., Park, E. J., Kim, B. J., Kim, S. J., So, I., & Jeon, J. H. (2009). Menthol regulates TRPM8-independent processes in PC-3 prostate cancer cells. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1792(1), 33-38.
    [17] Xu, L., Han, Y., Chen, X., Aierken, A., Wang, H., Lu, X., ... & Yang, F. (2020). Molecular mechanisms underlying menthol binding and activation of TRPM8 ion channel. Biophysical Journal, 118(3), 413a.
    [18] Liu, Y., Mikrani, R., He, Y., Baig, M. M. F. A., Abbas, M., Naveed, M., ... & Zhou, X. (2020). TRPM8 channels: A review of distribution and clinical role. European Journal of Pharmacology, 882, 173312.
    [19] Lunardi, A., Barbareschi, M., Carbone, F. G., Morelli, L., Brunelli, M., Fortuna, N., ... & Alaimo, A. (2021). TRPM8 protein expression in hormone naïve local and lymph node metastatic prostate cancer. Pathologica, 113(2), 95.
    [20] Hemida, A. S., Hammam, M. A., Heriz, N. A. E. M., & Shehata, W. A. (2021). Expression of Transient Receptor Potential Channel of Melastatin number 8 (TRPM8) in non-melanoma skin cancer: A clinical and immunohistochemical study. Journal of Immunoassay and Immunochemistry, 42(6), 620-632.
    [21] Yee, N. S. (2015). Roles of TRPM8 ion channels in cancer: proliferation, survival, and invasion. Cancers, 7(4), 2134-2146.
    [22] Yee, N. S. (2016). TRPM8 ion channels as potential cancer biomarker and target in pancreatic cancer. Advances in protein chemistry and structural biology, 104, 127-155.
    [23] Wang, S., Liu, S., Zhang, Y., He, J., Coy, D. H., & Sun, L. (2020). Human serum albumin (HSA) and its applications as a drug delivery vehicle. Health Science Journal, 14(2), 1-8.
    [24] Sugio, S., Kashima, A., Mochizuki, S., Noda, M., & Kobayashi, K. (1999). Crystal structure of human serum albumin at 2.5 Å resolution. Protein engineering, 12(6), 439-446.
    [25] Tao, H. Y., Wang, R. Q., Sheng, W. J., & Zhen, Y. S. (2021). The development of human serum albumin-based drugs and relevant fusion proteins for cancer therapy. International Journal of Biological Macromolecules, 187, 24-34.
    [26] Yeggoni, D. P., Rachamallu, A., Dubey, S., Mitra, A., & Subramanyam, R. (2018). Probing the interaction mechanism of menthol with blood plasma proteins and its cytotoxicity activities. Journal of Biomolecular Structure and Dynamics, 36(2), 465-474.
    [27] Kasaai, M. R. (2013). Input power-mechanism relationship for ultrasonic irradiation: Food and polymer applications.
    [28] Cheng, X., Zhang, M., Xu, B., Adhikari, B., & Sun, J. (2015). The principles of ultrasound and its application in freezing related processes of food materials: A review. Ultrasonics sonochemistry, 27, 576-585.
    [29] Bansal, K., Jha, C. K., Bhatia, D., & Shekhar, H. (2021). Ultrasound-enabled therapeutic delivery and regenerative medicine: Physical and biological perspectives. ACS Biomaterials Science & Engineering, 7(9), 4371-4387.
    [30] Dubinsky, T. J., Cuevas, C., Dighe, M. K., Kolokythas, O., & Hwang, J. H. (2008). High-intensity focused ultrasound: current potential and oncologic applications. American journal of roentgenology, 190(1), 191-199.
    [31] Goldberg, B. B., Liu, J. B., & Forsberg, F. (1994). Ultrasound contrast agents: a review. Ultrasound in medicine & biology, 20(4), 319-333.
    [32] Morel, D. R., Schwieger, I., Hohn, L., Terrettaz, J., LLULL, J. B., CORNIOLEY, Y. A., & Schneider, M. (2000). Human pharmacokinetics and safety evaluation of SonoVue™, a new contrast agent for ultrasound imaging. Investigative radiology, 35(1), 80.
    [33] Osei, E., & Al-Asady, A. (2020). A review of ultrasound-mediated microbubbles technology for cancer therapy: A vehicle for chemotherapeutic drug delivery. Journal of Radiotherapy in Practice, 19(3), 291-298.
    [34] Chowdhury, S. M., Abou-Elkacem, L., Lee, T., Dahl, J., & Lutz, A. M. (2020). Ultrasound and microbubble mediated therapeutic delivery: Underlying mechanisms and future outlook. Journal of Controlled Release, 326, 75-90.
    [35] Izadifar, Z., Babyn, P., & Chapman, D. (2019). Ultrasound cavitation/microbubble detection and medical applications. Journal of Medical and Biological Engineering, 39, 259-276.
    [36] Meng, L., Liu, X., Wang, Y., Zhang, W., Zhou, W., Cai, F., ... & Zheng, H. (2019). Sonoporation of cells by a parallel stable cavitation microbubble array. Advanced Science, 6(17), 1900557.
    [37] López-Otín, C., & Overall, C. M. (2002). Protease degradomics: a new challenge for proteomics. Nature reviews Molecular cell biology, 3(7), 509-519.
    [38] Leung, D., Abbenante, G., & Fairlie, D. P. (2000). Protease inhibitors: current status and future prospects. Journal of medicinal chemistry, 43(3), 305-341.
    [39] Rawlings, N. D., & Barrett, A. J. (1993). Evolutionary families of peptidases. Biochemical Journal, 290(1), 205-218.
    [40] Shi, Y. E., Torri, J., Yieh, L., Wellstein, A., Lippman, M. E., & Dickson, R. B. (1993). Identification and characterization of a novel matrix-degrading protease from hormone-dependent human breast cancer cells. Cancer research, 53(6), 1409-1415.
    [41] List, K., Bugge, T. H., & Szabo, R. (2006). Matriptase: potent proteolysis on the cell surface. Molecular Medicine, 12(1), 1-7.
    [42] Lin, C. Y., Anders, J., Johnson, M., Sang, Q. A., & Dickson, R. B. (1999). Molecular cloning of cDNA for matriptase, a matrix-degrading serine protease with trypsin-like activity. Journal of Biological Chemistry, 274(26), 18231-18236.
    [43] Lin, C. Y., Anders, J., Johnson, M., & Dickson, R. B. (1999). Purification and characterization of a complex containing matriptase and a Kunitz-type serine protease inhibitor from human milk. Journal of Biological Chemistry, 274(26), 18237-18242.
    [44] Tanimoto, H., Underwood, L. J., Wang, Y., Shigemasa, K., Parmley, T. H., & O’Brien, T. J. (2000). Ovarian tumor cells express a transmembrane serine protease: a potential candidate for early diagnosis and therapeutic intervention. Tumor Biology, 22(2), 104-114.
    [45] Zhang, Y., Cai, X., Schlegelberger, B., & Zheng, S. (1998). Assignment of human putative tumor suppressor genes ST13 (alias SNC6) and ST14 (alias SNC19) to human chromosome bands 22q13 and 11q24--> q25 by in situ hybridization. Cytogenetic and Genome Research, 83(1-2), 56.
    [46] Takeuchi, T., Shuman, M. A., & Craik, C. S. (1999). Reverse biochemistry: use of macromolecular protease inhibitors to dissect complex biological processes and identify a membrane-type serine protease in epithelial cancer and normal tissue. Proceedings of the National Academy of Sciences, 96(20), 11054-11061.
    [47] Kim, M. G., Chen, C., Lyu, M. S., Cho, E. G., Park, D., Kozak, C., & Schwartz, R. H. (1999). Cloning and chromosomal mapping of a gene isolated from thymic stromal cells encoding a new mouse type II membrane serine protease, epithin, containing four LDL receptor modules and two CUB domains. Immunogenetics, 49, 420-428.
    [48] Antalis, T.M., et al., The cutting edge: membrane-anchored serine protease
    activities in the pericellular microenvironment. The Biochemical journal, 2010.
    428(3): p. 325-346.
    [49] Lin, C. Y., Tseng, I. C., Chou, F. P., Su, S. F., Chen, Y. W., Johnson, M. D., & Dickson, R. B. (2008). Zymogen activation, inhibition, and ectodomain shedding of matriptase. Frontiers in bioscience: a journal and virtual library, 13, 621-635.
    [50] Kim, C., Cho, Y., Kang, C. H., Kim, M. G., Lee, H., Cho, E. G., & Park, D. (2005). Filamin is essential for shedding of the transmembrane serine protease, epithin. EMBO reports, 6(11), 1045-1051.
    [51] Chen, C. J., Wu, B. Y., Tsao, P. I., Chen, C. Y., Wu, M. H., Chan, Y. L. E., ... & Lin, C. Y. (2011). Increased matriptase zymogen activation in inflammatory skin disorders. American Journal of Physiology-Cell Physiology, 300(3), C406-C415.
    [52] Oberst, M. D., Singh, B., Ozdemirli, M., Dickson, R. B., Johnson, M. D., & Lin, C. Y. (2003). Characterization of matriptase expression in normal human tissues. Journal of Histochemistry & Cytochemistry, 51(8), 1017-1025.
    [53] List, K., Haudenschild, C. C., Szabo, R., Chen, W., Wahl, S. M., Swaim, W., ... & Bugge, T. H. (2002). Matriptase/MT-SP1 is required for postnatal survival, epidermal barrier function, hair follicle development, and thymic homeostasis. Oncogene, 21(23), 3765-3779.
    [54] List, K., Kosa, P., Szabo, R., Bey, A. L., Wang, C. B., Molinolo, A., & Bugge, T. H. (2009). Epithelial integrity is maintained by a matriptase-dependent proteolytic pathway. The American journal of pathology, 175(4), 1453-1463.
    [55] Sun, P., Xue, L., Song, Y., Mao, X., Chen, L., Dong, B., ... & Sehouli, J. (2018). Regulation of matriptase and HAI-1 system, a novel therapeutic target in human endometrial cancer cells. Oncotarget, 9(16), 12682.
    [56] Tsai, C. H., Teng, C. H., Tu, Y. T., Cheng, T. S., Wu, S. R., Ko, C. J., ... & Lee, M. S. (2014). HAI-2 suppresses the invasive growth and metastasis of prostate cancer through regulation of matriptase. Oncogene, 33(38), 4643-4652.
    [57] Ji, M., Li, S., Xie, Y., Zhao, Z., Chang, W., Li, Y., ... & Wang, Z. (2017). Expression and prognostic value of matriptase in ovarian serous adenocarcinoma. Oncology letters, 13(3), 1741-1744.
    [58] Yu, J. X., Chao, L., & Chao, J. (1994). Prostasin is a novel human serine proteinase from seminal fluid. Purification, tissue distribution, and localization in prostate gland. Journal of Biological Chemistry, 269(29), 18843-18848.
    [59] Jack, X. Y., Chao, L., Ward, D. C., & Chao, J. (1996). Structure and chromosomal localization of the human prostasin (PRSS8) gene. Genomics, 32(3), 334-340.
    [60] Leyvraz, C., Charles, R. P., Rubera, I., Guitard, M., Rotman, S., Breiden, B., ... & Hummler, E. (2005). The epidermal barrier function is dependent on the serine protease CAP1/Prss8. The Journal of cell biology, 170(3), 487-496.
    [61] Rickert, K. W., Kelley, P., Byrne, N. J., Diehl, R. E., Hall, D. L., Montalvo, A. M., ... & Su, H. P. (2008). Structure of human prostasin, a target for the regulation of hypertension. Journal of Biological Chemistry, 283(50), 34864-34872.
    [62] Jack, X. Y., Chao, L., & Chao, J. (1995). Molecular Cloning, Tissue-specific Expression, and Cellular Localization of Human Prostasin mRNA∗. Journal of Biological Chemistry, 270(22), 13483-13489.
    [63] Kitamura, K., & Tomita, K. (2010). Regulation of renal sodium handling through the interaction between serine proteases and serine protease inhibitors. Clinical and experimental nephrology, 14, 405-410.
    [64] Chang, S. C., Chiang, C. P., Lai, C. H., Du, P. W. A., Hung, Y. S., Chen, Y. H., ... & Lin, C. Y. (2020). Matriptase and prostasin proteolytic activities are differentially regulated in normal and wounded skin. Human Cell, 33, 990-1005.
    [65] Mok, S. C., Chao, J., Skates, S., Wong, K. K., Yiu, G. K., Muto, M. G., ... & Cramer, D. W. (2001). Prostasin, a potential serum marker for ovarian cancer: identification through microarray technology. Journal of the National Cancer Institute, 93(19), 1458-1464.
    [66] Sakashita, K., Mimori, K., Tanaka, F., Tahara, K., Inoue, H., Sawada, T., ... & Mori, M. (2008). Clinical significance of low expression of Prostasin mRNA in human gastric cancer. Journal of surgical oncology, 98(7), 559-564.
    [67] Chen, L. M., Hodge, G. B., Guarda, L. A., Welch, J. L., Greenberg, N. M., & Chai, K. X. (2001). Down‐regulation of prostasin serine protease: A potential invasion suppressor in prostate cancer. The Prostate, 48(2), 93-103.
    [68] Chen, L. M., & Chai, K. X. (2002). Prostasin serine protease inhibits breast cancer invasiveness and is transcriptionally regulated by promoter DNA methylation. International journal of cancer, 97(3), 323-329.
    [69] Shimomura, T., Denda, K., Kitamura, A., Kawaguchi, T., Kito, M., Kondo, J., ... & Kitamura, N. (1997). Hepatocyte growth factor activator inhibitor, a novel Kunitz-type serine protease inhibitor. Journal of Biological Chemistry, 272(10), 6370-6376.
    [70] Nagaike, K., Kawaguchi, M., Takeda, N., Fukushima, T., Sawaguchi, A., Kohama, K., ... & Kataoka, H. (2008). Defect of hepatocyte growth factor activator inhibitor type 1/serine protease inhibitor, Kunitz type 1 (Hai-1/Spint1) leads to ichthyosis-like condition and abnormal hair development in mice. The American journal of pathology, 173(5), 1464-1475.
    [71] Mitchell, A. C., Kannan, D., Hunter, S. A., Sperberg, R. A. P., Chang, C. H., & Cochran, J. R. (2018). Engineering a potent inhibitor of matriptase from the natural hepatocyte growth factor activator inhibitor type-1 (HAI-1) protein. Journal of Biological Chemistry, 293(14), 4969-4980.
    [72] Oberst, M. D., Chen, L. Y. L., Kiyomiya, K. I., Williams, C. A., Lee, M. S., Johnson, M. D., ... & Lin, C. Y. (2005). HAI-1 regulates activation and expression of matriptase, a membrane-bound serine protease. American Journal of Physiology-Cell Physiology, 289(2), C462-C470.
    [73] Kawaguchi, T., Qin, L., Shimomura, T., Kondo, J., Matsumoto, K., Denda, K., & Kitamura, N. (1997). Purification and cloning of hepatocyte growth factor activator inhibitor type 2, a Kunitz-type serine protease inhibitor. Journal of Biological Chemistry, 272(44), 27558-27564.
    [74] Lai, Y. J. J., Chang, H. H. D., Lai, H., Xu, Y., Shiao, F., Huang, N., ... & Lin, C. Y. (2015). N-glycan branching affects the subcellular distribution of and inhibition of matriptase by HAI-2/placental bikunin. PLoS One, 10(7), e0132163.
    [75] Heinz-Erian, P., Müller, T., Krabichler, B., Schranz, M., Becker, C., Rüschendorf, F., ... & Janecke, A. R. (2009). Mutations in SPINT2 cause a syndromic form of congenital sodium diarrhea. The American Journal of Human Genetics, 84(2), 188-196.
    [76] Parr, C., & Jiang, W. G. (2006). Hepatocyte growth factor activation inhibitors (HAI‐1 and HAI‐2) regulate HGF‐induced invasion of human breast cancer cells. International journal of cancer, 119(5), 1176-1183.
    [77] Ko, C. J., Hsu, T. W., Wu, S. R., Lan, S. W., Hsiao, T. F., Lin, H. Y., ... & Lee, M. S. (2020). Inhibition of TMPRSS2 by HAI-2 reduces prostate cancer cell invasion and metastasis. Oncogene, 39(37), 5950-5963.
    [78] Nakamura, K., Hongo, A., Kodama, J., & Hiramatsu, Y. (2011). The role of hepatocyte growth factor activator inhibitor (HAI)‐1 and HAI‐2 in endometrial cancer. International journal of cancer, 128(11), 2613-2624.
    [79] Dong, W., Chen, X., Xie, J., Sun, P., & Wu, Y. (2010). Epigenetic inactivation and tumor suppressor activity of HAI‐2/SPINT2 in gastric cancer. International journal of cancer, 127(7), 1526-1534.
    [80] Tseng, I. C., Xu, H., Chou, F. P., Li, G., Vazzano, A. P., Kao, J. P., ... & Lin, C. Y. (2010). Matriptase activation, an early cellular response to acidosis. Journal of Biological Chemistry, 285(5), 3261-3270.
    [81] Jia, B., Thompson, H. A., Barndt, R. B., Chiu, Y. L., Lee, M. J., Lee, S. C., ... & Johnson, M. D. (2020). Mild acidity likely accelerates the physiological matriptase autoactivation process: a comparative study between spontaneous and acid-induced matriptase zymogen activation. Human Cell, 33, 1068-1080.
    [82] Zeng, L., Cao, J., & Zhang, X. (2005). Expression of serine protease SNC19/matriptase and its inhibitor hepatocyte growth factor activator inhibitor type 1 in normal and malignant tissues of gastrointestinal tract. World journal of gastroenterology: WJG, 11(39), 6202.
    [83] Kang, J. Y., Dolled-Filhart, M., Ocal, I. T., Singh, B., Lin, C. Y., Dickson, R. B., ... & Camp, R. L. (2003). Tissue microarray analysis of hepatocyte growth factor/Met pathway components reveals a role for Met, matriptase, and hepatocyte growth factor activator inhibitor 1 in the progression of node-negative breast cancer. Cancer research, 63(5), 1101-1105.
    [84] Jin, J. S., Hsieh, D. S., Loh, S. H., Chen, A., Yao, C. W., & Yen, C. Y. (2006). Increasing expression of serine protease matriptase in ovarian tumors: tissue microarray analysis of immunostaining score with clinicopathological parameters. Modern pathology, 19(3), 447-452.
    [85] Vogel, L. K., Sæbø, M., Skjelbred, C. F., Abell, K., Pedersen, E. D., Vogel, U., & Kure, E. H. (2006). The ratio of Matriptase/HAI-1 mRNA is higher in colorectal cancer adenomas and carcinomas than corresponding tissue from control individuals. BMC cancer, 6, 1-8.
    [86] Riddick, A. C. P., Shukla, C. J., Pennington, C. J., Bass, R., Nuttall, R. K., Hogan, A., ... & Edwards, D. R. (2005). Identification of degradome components associated with prostate cancer progression by expression analysis of human prostatic tissues. British journal of cancer, 92(12), 2171-2180.
    [87] Hwang, S., Kim, H. E., Min, M., Raghunathan, R., Panova, I. P., Munshi, R., & Ryu, B. (2015). Epigenetic silencing of SPINT2 promotes cancer cell motility via HGF-MET pathway activation in melanoma. Journal of Investigative Dermatology, 135(9), 2283-2291.
    [88] Yue, D., Fan, Q., Chen, X., Li, F., Wang, L., Huang, L., ... & Zhang, Y. (2014). Epigenetic inactivation of SPINT2 is associated with tumor suppressive function in esophageal squamous cell carcinoma. Experimental cell research, 322(1), 149-158.
    [89] Betsunoh, H., Mukai, S., Akiyama, Y., Fukushima, T., Minamiguchi, N., Hasui, Y., ... & Kataoka, H. (2007). Clinical relevance of hepsin and hepatocyte growth factor activator inhibitor type 2 expression in renal cell carcinoma. Cancer science, 98(4), 491-498.
    [90] Nakamura, K., Abarzua, F., Hongo, A., Kodama, J., Nasu, Y., Kumon, H., & Hiramatsu, Y. (2010). Hepatocyte growth factor activator inhibitors (HAI-1 and HAI-2) are potential targets in uterine leiomyosarcoma. International journal of oncology, 37(3), 605-614.
    [91] Lai, C. H., Lai, Y. J. J., Chou, F. P., Chang, H. H. D., Tseng, C. C., Johnson, M. D., ... & Lin, C. Y. (2016). Matriptase complexes and prostasin complexes with HAI-1 and HAI-2 in human milk: significant proteolysis in lactation. PLoS One, 11(4), e0152904.
    [92] Su, H. C., Liang, Y. A., Lai, Y. J. J., Chiu, Y. L., Barndt, R. B., Shiao, F., ... & Lin, C. Y. (2016). Natural endogenous human matriptase and prostasin undergo zymogen activation via independent mechanisms in an uncoupled manner. PLoS One, 11(12), e0167894.
    [93] nanoPartica SZ-100V2 Series Nanoparticle Analyzer – HORIBA. Available from: https://www.horiba.com/int/scientific/products/detail/action/show/Product/nanopartica-sz-100v2-series-1945/
    [94]Coulter counter. Available from: https://www.beckman.com/cell counters
    and analyzers/multisizer 4e
    [95] Kushwah, H., Hans, T., Chauhan, M., Mittal, G., & Sandal, N. (2020). Development and Validation of the Spectrophotometric Method for the Determination of Menthol. Journal of Applied Spectroscopy, 87, 563-567.
    [96] ProspectT1system. Available from: https://www.s-sharp.com/web/products/products.jsp
    [97]The Privalsky Lab, U. Cell Counting with a Hemocytometer. Available from: http://microbiology.ucdavis.edu/privalsky/hemocytometer.
    [98] Suarez-Arnedo, A., Figueroa, F. T., Clavijo, C., Arbeláez, P., Cruz, J. C., & Muñoz-Camargo, C. (2020). An image J plugin for the high throughput image analysis of in vitro scratch wound healing assays. PloS one, 15(7), e0232565.

    無法下載圖示 全文公開日期 2025/08/29 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 2033/08/29 (國家圖書館:臺灣博碩士論文系統)
    QR CODE