簡易檢索 / 詳目顯示

研究生: 吳冠陞
Guan-Sheng Wu
論文名稱: 化學熱浸式超音波輔助後處理應用於粉末熔融積層製造之表面平滑
Chemical Hot-Dipping Ultrasonic-assisted Post-Processing for Surface Smoothing of Powder Fused Additive Manufacturing
指導教授: 鄭正元
Jeng-Ywan Jeng
謝志華
Chih-Hua Hsieh
口試委員: 鄭正元
Jeng-Ywan Jeng
謝志華
Chih-Hua Hsieh
陳俊名
Chun-Ming Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 118
中文關鍵詞: 積層製造化學熱浸式超音波輔助後處理PA12 脊椎側彎背架TPU 晶格結構鞋墊二甲基乙醯胺苯氧乙醇AMT
外文關鍵詞: Additive manufacturing, Chemical hot-dipping ultrasonic-assisted post-processing, PA12 scoliosis back frame, TPU lattice structure insole, DMAC, Phenoxyethanol, AMT
相關次數: 點閱:383下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用化學熱浸式超音波輔助後處理進行積層製造MJF PA12與SLS TPU之後處理研究,並分別以脊椎側彎背架以及晶格結構鞋墊作為後處理應用。除了探討列印件經過後處理之表面形貌、表面粗糙度以及表面微觀情形,同時也將分析材料之機械性質變化。此外本研究以AMT(Additive Manufacturing Technologies)公司作為比較對象,分析不同後處理製程技術之處理效果差異。
    本研究利用漢森溶解度參數查找與PA12和TPU材料溶解度相符之化學溶劑,溶劑包含二甲基乙醯胺和苯氧乙醇。研究結果顯示,兩種溶劑以60/40wt%濃度可得到較佳之表面品質,後續在PA12脊椎側彎背架進行後處理可以成功改善表面粗糙度,以140℃和處理時間5分鐘可以得到最佳的Ra 1.52µm。而TPU方面,則是以90℃和處理時間0.5分鐘可以獲得最好的Ra 0.62µm,並且能成功應用於晶格結構鞋墊。從實驗過程得知,PA12表面平滑機制是由於化學溶劑中的強氫鍵於表面反應形成液態溶劑薄膜;然而TPU表面平滑機制則是以化學溶劑溶解材料表面之後再結晶進而形成平滑表面。在機械性質方面,PA12經過後處理之後雖然拉伸強度略有降低,不過其在斷裂伸長率有所增加,顯示出材料增加其彈性性質。而TPU經過後處理之後,在拉伸強度與斷裂伸長率皆有顯著降低,顯示出材料從原先較為彈性特質轉變為脆性特質。綜合以上結果可以證明本研究開發之化學熱浸式超音波輔助後處理能有效改善粉床式積層製造列印件表面品質,並能應用於較複雜之3D大物件後處理,可望在未來開發出此後處理之商用設備,達成高速積層製造大量生產之目標。


    In this study, the post-processing research of MJF PA12 and SLS TPU was carried out by using chemical hot-dipping ultrasonic-assisted post-processing, and the scoliosis back frame and lattice structure insole were used as post-processing applications respectively. In addition to discussing the surface morphology, surface roughness, and surface microscopic conditions of the printed parts after post-processing, the mechanical properties of the materials will also be analyzed. In addition, this study takes AMT (Additive Manufacturing Technologies) as the comparison object to analyze the differences in the treatment effects of different post-processing technologies.
    In this study, Hansen solubility parameters were used to find chemical solvents that matched the solubility of PA12 and TPU materials. The solvents included DMAC and Phenoxyethanol. The research results show that the two solvents can obtain better surface quality at the concentration of 60/40wt%, and the subsequent post-treatment on the PA12 scoliosis back frame can successfully improve the surface roughness with the best Ra 1.52µm by 140℃ and a processing time of 5 minutes. As for TPU, the best Ra 0.62µm can be obtained at 90°C and a processing time of 0.5 minutes, and it can be successfully applied to lattice structure insoles. From the experimental process, it is known that the surface smoothing mechanism of PA12 is due to the strong hydrogen bonds in the chemical solvent reacting on the surface to form a liquid solvent film; however, the surface smoothing mechanism of TPU is to dissolve the surface of the material with a chemical solvent and then recrystallize to form a smooth surface. In terms of mechanical properties, although the tensile strength of PA12 is slightly reduced after post-treatment, its elongation at break increases, showing that the material increases its elastic properties. After TPU is post-treated, both the tensile strength and elongation at break are significantly reduced, showing that the material has changed from the original relatively elastic properties to the brittle properties. Based on the above results, it can be proved that the chemical hot-dipping ultrasonic-assisted post-processing developed in this research can effectively improve the surface quality of powder-bed additive manufacturing printed parts, and can be applied to the post-processing of more complex 3D large objects. It is expected to developed post-processing commercial equipment in the future to achieve the goal of high-speed additive manufacturing and mass production.

    摘要 I ABSTRACT II 誌謝 III 目錄 IV 圖目錄 VIII 表目錄 XIII 第一章、緒論 1 1.1 前言 1 1.2 研究動機 2 1.3 論文架構 3 第二章、文獻回顧 4 2.1 積層製造 4 2.1.1 快速燒結技術(High Speed Sintering, HSS) 5 2.1.2 多射流熔融技術(Multi Jet Fusion, MJF) 7 2.1.3 選擇性雷射燒結(Selective Laser Sintering, SLS) 8 2.2 積層製造後處理技術 10 2.2.1 高分子聚合物材料後處理 10 2.2.2 化學蒸氣平滑處理 11 2.2.3 化學熱浴式後處理 12 2.2.4 積層製造後處理市售機台 16 2.3 積層製造醫工領域之應用 19 2.3.1 積層製造矯正背架 19 2.3.2 積層製造小腿假肢套 21 2.4 漢森溶解度參數(HANSEN SOLUBILITY PARAMETERS, HSP) 23 第三章、化學熱浸式超音波輔助後處理製程之可行性分析 25 3.1 化學熱浸式超音波輔助後處理製程 25 3.1.1 後處理設備之設計與架構 25 3.1.2 化學熱浸式溶液 28 3.2 MJF PA12後處理實驗架設 31 3.2.1 MJF PA12後處理實驗流程 31 3.2.2 多射流熔融技術設備 36 3.2.3 MJF PA12後處理試片設計與製作 37 3.2.4 MJF PA12熱性質分析 40 3.3 SLS TPU後處理實驗架設 41 3.3.1 SLS TPU後處理實驗流程 41 3.3.2 選擇性雷射燒結技術設備 45 3.3.3 SLS TPU後處理試片設計與製作 46 3.3.4 SLS TPU熱性質分析 49 3.4 後處理製程之量化分析 51 3.4.1 熱性質分析 51 3.4.2 質量與幾何尺寸分析 52 3.4.3 表面形貌分析 53 3.4.4 機械性質分析 55 第四章、化學熱浸式超音波輔助之MJF PA12後處理結果分析 56 4.1 不同溶劑濃度之表面處理效果實驗結果 56 4.1.1 表面形貌 56 4.1.2 質量變化 59 4.1.3 幾何尺寸變化 60 4.1.4 表面粗糙度變化 61 4.2 MJF PA12後處理實驗結果 63 4.2.1 表面形貌 63 4.2.2 質量變化 66 4.2.3 幾何尺寸變化 67 4.2.4 表面粗糙度變化 68 4.2.5 熱燈絲式電子顯微鏡(Scanning Electron Microscope, SEM) 69 4.3 與邊界層自動平滑技術之性能比較實驗結果 73 4.3.1 表面形貌 73 4.3.2 幾何尺寸 74 4.3.3 表面粗糙度 75 4.3.4 熱燈絲式電子顯微鏡(Scanning Electron Microscope, SEM) 76 4.3.5 機械性能 77 第五章、化學熱浸式超音波輔助之SLS TPU 後處理結果分析 78 5.1 SLS TPU後處理實驗結果 78 5.1.1 表面形貌 78 5.1.2 質量變化 83 5.1.3 幾何尺寸變化 84 5.1.4 表面粗糙度變化 85 5.1.5 熱燈絲式電子顯微鏡(Scanning Electron Microscope, SEM) 86 5.1.6 拉伸試驗 95 5.2 3D物件後處理 96 第六章、結論與未來展望 97 6.1 結論 97 6.2 未來展望 99 參考文獻 100

    [1] 何辰彥 , “化學熱浸式後處理製程應用於高速積層製造聚合物粉末列印
    件 ,” 2022.
    [2] N. Hopkinson and P. Erasenthiran, “High Speed Sintering – Early Research into a New Rapid Manufacturing Process.”
    [3] H. R. Thomas, N. Hopkinson, and P. Erasenthiran, “High Speed Sintering-Continuing research into a new Rapid Manufacturing process.”
    [4] 鄭正元 , “3D 列印 —積層製造技術與應用 (第二版 )”.
    [5] A. Wahab Hashmi, H. Singh Mali, and A. Meena, “Improving the surface characteristics of additively manufactured parts: A review,” Mater Today Proc, 2022, doi: 10.1016/j.matpr.2021.04.223.
    [6] M. Mu, C. Y. Ou, J. Wang, and Y. Liu, “Surface modification of prototypes in fused filament fabrication using chemical vapour smoothing,” Addit Manuf, vol. 31, Jan. 2020, doi: 10.1016/j.addma.2019.100972.
    [7] N. B. Crane, Q. Ni, A. Ellis, and N. Hopkinson, “Impact of chemical finishing on laser-sintered nylon 12 materials,” Addit Manuf, vol. 13, pp. 149–155, Jan. 2017, doi: 10.1016/j.addma.2016.10.001.
    [8] L. M. Galantucci, F. Lavecchia, and G. Percoco, “Experimental study aiming to enhance the surface finish of fused deposition modeled parts,” CIRP Ann Manuf Technol, vol. 58, no. 1, pp. 189–192, 2009, doi: 10.1016/j.cirp.2009.03.071.
    [9] Additive Manufacturing Technologies, “Home Page.”
    [10] ACMT協會 /季刊 , “AMT: HP 3D列印的後處理 專題報導 ,” 2022. [Online]. Available: https://3dprintingindustry.
    [11] PostProcess Technologies, “Home Page.”
    [12] PostProcess Technologies, “Redefining PolyJet Support Removal with Automation Minimizing touch time, breakage, and the learning curve to advancement.” [Online]. Available: www.postprocess.com
    [13] PostProcess Technologies, “Eliminating Manual Surface Finishing For Multi Jet Fusion (MJF) 3D Printed Solutions.”
    [14] 陳怡文 , “3D 列印技術應用於臨床醫療技術發展 ,” 2017.
    [15] A. Ronca et al., “A Comparative Study for Material Selection in 3D Printing of Scoliosis Back Brace,” Materials, vol. 15, no. 16, Aug. 2022, doi: 10.3390/ma15165724.
    [16] C. Nedolisa and K. Rybalcenko, “PP Smoothing Process Using Green
    102
    Solvents,” Transactions on Additive Manufacturing Meets Medicine Trans. AMMM, vol. 4, no. 1, 2023, doi: 10.18416/AMMM.2022.2203708.
    [17] S. Sato, D. Gondo, T. Wada, S. Kanehashi, and K. Nagai, “Effects of various liquid organic solvents on solvent-induced crystallization of amorphous poly(lactic acid) film,” J Appl Polym Sci, vol. 129, no. 3, pp. 1607–1617, Aug. 2013, doi: 10.1002/app.38833.
    [18] F. Gharagheizi, M. Sattari, and M. T. Angaji, “Effect of calculation method on values of Hansen solubility parameters of polymers,” Polymer Bulletin, vol. 57, no. 3, pp. 377–384, Jul. 2006, doi: 10.1007/s00289-006-0568-5.
    [19] Charles M. Hansen, Hansen Solubility Parameters A User’s Handbook, Second Edition. 2007.
    [20] 成太化工原料有限公司成太化工原料有限公司, “二甲基乙醯胺二甲基乙醯胺_物質安全資料表物質安全資料表.”
    [21] 台灣巴斯夫股份有限公司台灣巴斯夫股份有限公司, “苯氧乙醇苯氧乙醇_物質安全資料表物質安全資料表”.
    [22] HP, “HP Jet Fusion 4200 Industrial 3D Printing Solution.”
    [23] HP, “HP 3D High Reusability PA 12 Strong, lowest cost,1 quality parts Picture taken after graphite post-processing,” 2017. [Online]. Available: www.hp.com/go/biocompatibilitycertificate/PA12.
    [24] Additive Manufacturing Technologies, “PostPro3D_HP_MJF_Whitepaper.”
    [25] 三帝瑪三帝瑪3DMart, “Sinterit Lisa SLS 3D列印機列印機.”
    [26] 葉東權葉東權, “開發碳黑殼核開發碳黑殼核TPU彈性粉末應用於半導體雷射燒熔積層製彈性粉末應用於半導體雷射燒熔積層製造造,” 2022.

    無法下載圖示 全文公開日期 2033/08/10 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE