簡易檢索 / 詳目顯示

研究生: 曾子威
Tzu-Wei Tseng
論文名稱: 多噴孔壓電噴頭之波形設計研究應用於材料噴塗積層製造
Study on Waveform Design for Multi-Nozzle Piezo Inkjet Head in Material-Jetting Additive Manufacturing
指導教授: 鄭逸琳
Yih-Lin Cheng
口試委員: 周振嘉
Chen-Chia Chou
蔡明忠
Ming-Jong Tsai
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 115
中文關鍵詞: 材料噴塗成型脈衝波形液滴速度液滴尺寸
外文關鍵詞: Material jetting, Waveform, Droplet velocity, Droplet size
相關次數: 點閱:234下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來材料噴塗成型技術以使用多樣化的材料為發展趨勢,對於不同性質的材料,一種壓電驅動波形將無法適用,將需要重新設定。由於驅動波形直接影響噴出液滴的好壞,而液滴的型態決定物件成型的完整性與精度。因此本研究針對波形參數的調整,發展一套波形設計方法,快速針對不同材料性質的應用去設計波形,且能夠噴出良好的液滴型態。
    因應噴印圖形之噴墨量需求,定義三脈衝波形的各項參數如:驅動電壓、停留時間、間隔時間等,分析其對液滴飛行速度、體積的影響。主要以高速攝影機搭建觀墨系統,實際觀測調整參數後的噴墨現象,以液滴飛行速度與衛星液滴為實驗指標,調校最佳波形參數,以及訂定波形設計的流程。此設計方法將套用不同性質的材料做驗證,並探討單層列印時液滴的尺寸與厚度,回饋製程參數如層厚與位移填補的設計。實驗結果顯示,液滴的飛行速度的影響因子,為填充時間與停留時間,兩者合併的脈衝寬度將有一定值,使飛行速度最大化。而液滴體積依據脈衝個數的多寡而定,近乎以倍數成長,且使的液滴落在基質上的攤平直徑以線性增加。依據本研究歸納的波形設計方法,以單脈衝為基礎,延伸至三脈衝波形,可噴出三種不同尺寸的液滴,且只需調整特定參數,即可快速完成該材料可用的波形。且透過波形設計,可提供列印製程參數的設定,達成所需的精度要求。


    Recently, using a variety of materials is the development trend of the material jetting technology. But the same piezoelectric drive waveform will not be applicable for different property of photopolymer resin. As the waveform directly affects the droplet performance which determines the quality and accuracy of printing object. Therefore, this study developed a waveform design method by adjusting waveform parameters to rapidly apply various materials to the printing process.
    For gray level printing, the triple-pulse parameters such as voltage, hold time and separating time were defined and analyzed their effect on droplet velocity. An observation system with a high-speed camera could actually observe the material ejection after the parameters adjustment. The jetting drop without satellite is the target for the optimal waveform. Exploring the size and thickness of droplets when printed on one layer to feedback the process parameters such as layer height and printhead shift. As result, the droplet velocity is affected by fill time and hold time. Under the fixed pulse width, it jets droplet with maximum velocity. As the number of pulses increased, the droplet volume almost linearly grows, and its spreading diameter raise on based material. In the end, this design method will be applied to the other material to verify its feasibility. The design waveform base on single-pulse extending to triple-pulse, that can eject three different sizes of droplets. Through the waveform design, only a few parameters tuned, can provide the user setting the printing process to achieve the requirements of the accuracy.

    目錄 摘 要 I ABSTRACT II 目錄 IV 圖目錄 VI 表目錄 IX 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機與目的 2 1.3 研究方法 3 1.4 論文架構 4 第二章 文獻探討 5 2.1 噴墨列印技術(INKJET PRINTING TECHNOLOGY) 5 2.1.1 連續式噴墨(Continuous Inkjet, CIJ) 5 2.1.2 供需式噴墨(Drop-on-Demand, DOD) 6 2.2 壓電式噴頭工作原理 9 2.2.1 壓電效應 9 2.2.2 噴墨動作分析 10 2.2.3 液滴生成現象 11 2.2.4 波形設計方法 13 2.3 積層製造技術(ADDITIVE MANUFACTURING,AM) 18 2.3.1 材料噴塗成型技術(Material Jetting) 19 2.3.2 黏著劑噴塗成型技術(Binder Jetting) 20 第三章 壓電波形參數 22 3.1 波形參數分析 22 3.1.1 基礎單脈衝噴頭做動 22 3.1.2 單脈衝可調參數 25 3.1.3 多脈衝可調參數 27 3.2 定義設計參數 29 3.2.1 波形編輯器 30 3.2.2 單脈衝參數調校 31 3.2.3 雙脈衝參數調校 33 3.2.4 三脈衝參數調校 35 第四章 觀墨系統與測定標準 37 4.1 觀墨系統 37 4.1.1 壓電式噴墨頭 38 4.1.2 液滴拍攝設備 39 4.1.3 噴印材料 41 4.2 實驗操作流程 45 4.2.1 影像對焦 46 4.2.2 參數調校 48 4.2.3 取像處理與計算 48 4.3 取樣標準 52 4.3.1 液滴數目取樣 52 4.3.2 噴孔位置取樣 56 4.4 噴點測試與圖像列印 58 4.4.1 噴點測試 59 4.4.2 圖像列印 60 第五章 液滴觀測結果與討論 62 5.1 單脈衝設計 62 5.1.1 驅動電壓(Vp) 62 5.1.2 填充時間(Tf)與停留時間(Th) 66 5.2 雙脈衝設計 71 5.2.1 間隔時間(Ts) 71 5.2.2 電壓差距(Vd) 75 5.2.3 間隔時間與電壓差距的相關性 78 5.3 三脈衝設計 79 5.3.1 間隔時間2(Ts2) 79 5.4 波形實際應用 82 5.5 設計方法統整 86 第六章 波形設計方法驗證 88 6.1 單脈衝設計 88 6.1.1 停留時間表現驗證 88 6.1.2 填充時間選擇 89 6.2 雙脈衝設計 91 6.2.1 最短間隔時間 91 6.2.2 調升電壓差距 93 6.3 三脈衝設計 95 6.4 波形實際應用 97 第七章 結論 100 7.1 結論 100 7.2 未來展望 101 參考文獻 102

    參考文獻
    [1] Wijshoff, H., 2010, "The dynamics of the piezo inkjet printhead operation," Physics Reports, 491(4), pp. 77-177.
    [2] 呂椬圳, 2005, "連續噴墨式噴墨頭技術研究", 印刷科技卷期:21, 民94.09, 頁62-73
    [3] Le, H. P., 1998, "Progress and Trends in Ink-jet Printing Technology," Journal of Imaging Science and Technology, 42(1), pp. 49-62
    [4] 陳政雄, "噴墨科技的發展與構成分析", 印刷人第209期
    [5] Brünahl, J., 2003, "Physics of Piezoelectric Shear Mode Inkjet Actuators,” PhD. thesis
    [6] Waanders, J. W., 1991, "Piezoelectric Ceramics: Properties and Applications, " Philips Components.
    [7] Morita, N., Khalate, A. A., Buul, A. M. v., and Wijshoff, H., 2016, "Inkjet Printheads," Fundamentals of Inkjet Printing, Wiley-VCH Verlag GmbH & Co. KGaA, pp. 57-92.
    [8] 李悅慈, 2006, "溶液性質與噴墨設備對衛星液滴的改善之影響," 國立交通大學碩士論文
    [9] Martin, G. D., and Hutchings, I. M., 2012, "Fundamentals of Inkjet Technology," Inkjet Technology for Digital Fabrication, John Wiley & Sons, Ltd, pp. 21-44.
    [10] Wang, P., 2014, "NUMERICAL ANALYSIS OF DROPLET FORMATION AND TRANSPORT OF A HIGHLY VISCOUS LIQUID," Master thesis, University of Kentucky.
    [11] Kwon, K. S., 2009, "Waveform Design Methods for Piezo Inkjet Dispensers Based on Measured Meniscus Motion," Journal of Microelectromechanical Systems, 18(5), pp. 1118-1125.
    [12] Kwon, K. S., 2009, "Speed measurement of ink droplet by using edge detection techniques," Measurement, 42(1), pp. 44-50.
    [13] Shin, P., Sung, J., and Lee, M. H., 2011, "Control of droplet formation for low viscosity fluid by double waveforms applied to a piezoelectric inkjet nozzle," Microelectronics Reliability, 51(4), pp. 797-804.
    [14] Kwon, K. S., Kim, H. S., and Choi, M., 2016, "Measurement of inkjet first-drop behavior using a high-speed camera," Rev Sci Instrum, 87(3), p. 035101.
    [15] Ezzeldin, M., van den Bosch, P. P. J., and Weiland, S., 2013, "Experimental-based feedforward control for a DoD inkjet printhead," Control Engineering Practice, 21(7), pp. 940-952.
    [16] Takashi Satou, S. I., 2015, "Ink jet recording device and method of driving ink jet recording head ", Ricoh Company, Ltd., U.S.Patent No. 8960833 B2, Feb. 24, 2015
    [17] Yokomaku, H., 2015, "Image forming apparatus and method of driving and controlling head ", Ricoh Company Ltd., Tokyo (Jp). U.S.Patent No. 8936336 B2, Jan. 20, 2015
    [18] Gibson, I., Rosen, D., and Stucker, B., 2014, Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing, Springer New York.
    [19] Mueller, J., Shea, K., and Daraio, C., 2015, "Mechanical properties of parts fabricated with inkjet 3D printing through efficient experimental design," Materials & Design, 86, pp. 902-912.
    [20] About Additive Manufacturing, Material Jetting, http://www.lboro.ac.uk/research/amrg/about/the7categoriesofadditivemanufacturing/materialjetting/
    [21] Gibson, I., Rosen, D. W., Stucker, B., 2010, "Binder Jetting", Additive manufacturing technologies, Vol. 238, New York: Springer.
    [22] Binder Jetting (BJ), https://www.additively.com/en/learn-about/binder-jetting
    [23] 白硯方, 2012, "壓電噴墨技術中單脈衝波形之脈衝時間對液滴行為影響之研究," 國立成功大學碩士論文
    [24] Hoath, S. D., 2016, "Multi Pulse Train Modeling of Piezo-Drop-on-Demand Inkjet Print-Head Response," Journal of Imaging Science and Technology, 60(4), pp. 404041-404049..
    [25] Liu, Y.-F., Tsai, M.-H., Pai, Y.-F., and Hwang, W.-S., 2013, "Control of droplet formation by operating waveform for inks with various viscosities in piezoelectric inkjet printing," Applied Physics A, 111(2), pp. 509-516.
    [26] Ricoh, MH2620/2820 Printhead Specification, http://www.rpsa.ricoh.com/datasheets/2620_2820.html
    [27] i-SPEED 3 SERIES HIGH-SPEED CAMERAS,
    http://www.ix-cameras.com/high-speed_camera_ix_cameras.php
    [28] Jang, D., Kim, D., and Moon, J., 2009, "Influence of fluid physical properties on ink-jet printability," Langmuir, 25(5), pp. 2629-2635.
    [29] Martin, G. D., Price, W. C., and Hutchings, I. M., 2016, "Measurement of Inkjet Drop Volume—The Role of Image Processing," Journal of Imaging Science and Technology, 60(4), pp. 404011-404019.
    [30] Zhou, W., Loney, D., Fedorov, A. G., Degertekin, F. L., and Rosen, D. W., 2015, "Shape evolution of multiple interacting droplets in inkjet deposition," Rapid Prototyping Journal, 21(4), pp. 373-385.
    [31] 張智瑄, 2016, "光固化式彩色 3D 列印之滾輪整平模組設計與研究," 國立台灣科技大學碩士論文
    [32] Hsuan-Chung Wu1, T.-R. S., Weng-Sing Hwang1; and Huey-Jiuan Lin2, 2004, "Study of Micro-Droplet Behavior for a Piezoelectric Inkjet Printing Device Using a Single Pulse Voltage Pattern," Materials Transactions, 45, p. 1794 to 1801.
    [33] Kwon, K. S., Jang, M. H., Park, H. Y., and Ko, H. S., 2014, "An inkjet vision measurement technique for high-frequency jetting," Rev Sci Instrum, 85(6), p. 065101.
    [34] Morita, N., Hamazaki, T., and Ishiyama, T., 2016, "Observation on Satellite Behavior by Double-pulse Driving for High-speed Inkjet," Journal of Imaging Science and Technology, 60(4), pp. 405031-405035.
    [35] 黃介一, 2007, "具獨立可調變控制驅動波形之噴墨驅動系統設計," 國立交通大學碩士論文

    無法下載圖示 全文公開日期 2022/08/25 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE