簡易檢索 / 詳目顯示

研究生: 高浩倫
Hao-lun Kao
論文名稱: LCD生醫動態光罩積層製造系統之開發與組織工程支架製作
Development of LCD Biomedical dynamic mask additive manufacturing system and fabrication of tissue engineering scaffolds
指導教授: 鄭逸琳
Yih-lin Cheng
口試委員: 鄭正元
Jeng-ywan Jeng
蘇威年
Wei-nien Su
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 113
中文關鍵詞: 積層製造組織工程液晶顯示面板PCLPEG
外文關鍵詞: LCD panel, tissue engineering, additive manufacturing, PCL, PEG
相關次數: 點閱:336下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來由於許多積層製造相關的技術日趨成熟,提供了組織工程領域在製作更加良好尺寸精度之微小支架一些更好的製程方式。改善了傳統製程在支架製作時無法控制孔洞大小、形狀與聯通性的缺點。本研究室之前利用光固化成型技術開發出DLP生醫動態光罩成型系統,雖然在精度上達到20m的精度,但加工面積小無法一次生產大面積或是大量的支架,因此本研究利用液晶顯示面板取代DLP來達到大面積製作的需求。
    本研究成功開發出以液晶顯示面板作為動態光罩之積層製造系統,並利用先前開發之光罩程式進行圖案輸出製作組織工程支架。主材料的部分選擇PCL-diacrylate(PCL-DA)與PEG-diacrylate(PEG-DA)以重量比6:4混合之配方,同時由於本系統選擇可見光鹵素燈,因此光起始劑亦改用Irgacure784使材料能吸收可見光的波長能量產生交聯反應。經過熱示差掃描與熱重量分析的結果顯示,依舊符合穩定存在人體體溫的條件。合成出的生醫材料也能夠在使用本系統進行組織工程支架的製作。但在PCL-DA混合PEG-DA之材料在小尺寸圖形仍會出現誤差,初步測試可能的影響因素在於材料合成、含有機溶劑丙酮以及LCD面板成像方式。


    In recent years, many additive manufacturing related technologies have got matured increasingly. Some better process methods are provided for manufacturing better sized precise miniaturized scaffold in tissue engineering field. The shortages of conventional processes with respect to incapability of controlling size, shape and communication of holes in manufacturing scaffolds are improved. A DLP biomedical dynamic mask forming system was developed by means of photo-curing forming technology in the laboratory previously. Although the precision achieves 20m, the processing area is small and one-time production of large area or large quantity of scaffolds is impossible. Therefore, in this research, the liquid crystal display panel is used to replace DLP to achieve large production needs.
    In the research, a additive manufacturing system using LCD (liquid crystal display) panel as dynamic mask is developed in order to satisfy large area manufacturing. Also, the mask program developed previously is utilized to perform pattern output for making tissue engineering scaffolds. For main material part, PCL-diacrylate(PCL-DA) and PEG-diacrylate(PEG-DA) is mixed recipe with weight ratio as 6:4. Moreover, visible halogen lamp is selected for the system. Therefore, Irgacure784 is used instead as phpotoinitiator for material to absorb energy of visible length to generate crosslinking reaction. From the results of DSC (Differential scanning calorimetry) and TGA (thermogravimetric analysis) the condition existing human body temperature stably is still compliant. The synthesized biomedical materials may also be used in the system for making tissue engineering scaffolds. But in the material PCL-DA mixed PEG-DA in small graphical errors still occur, preliminary testing of possible factors that the processing of synthetic materials, containing organic solvents acetone and LCD panel imaging modalities.

    第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 1 1.3 研究方法 2 1.4 論文架構 3 第二章 文獻探討 5 2.1 組織工程(Tissue Engineering)介紹 5 2.1.1 PCL相關文獻 9 2.1.3傳統支架製程 11 2.2 積層製造技術於組織工程相關研究 16 2.2.1 積層製造製程原理 16 2.2.2 於組織工程之相關研究 18 第三章 系統簡介與機構設計 36 3.1 動態光罩成型系統與其它製程系統之比較 36 3.1.1 上、下照式系統之差異 37 3.2 光罩系統細部架構 40 3.2.1 光罩程式 43 3.2.2 輸出檔案改善 46 3.2.3 LCD動態光罩產生器 49 3.2.4 材料槽、曝光與散熱系統 53 第四章 材料合成介紹與性質檢測 56 4.1 材料系統介紹 57 4.1.1 光聚合生醫材料 58 4.1.2 PCL-DA簡介與合成 59 4.1.3 PEG-DA 60 4.1.4 Irgacure 784光起始劑 61 4.1.5 HydropalatR 3275分散劑 63 4.2 材料性質測試 64 4.2.1 熱示差掃描分析(DSC) 64 4.2.2 熱重量分析(TGA) 67 4.2.3 MTT細胞活性測試 70 第五章 系統參數以及精度測試 74 5.1 材料固化時間、成型性與支架疊層測試 74 5.1.1 材料固化時間 74 5.1.2 成型性比較 75 5.1.3 材料疊層測試 75 5.2 各項測試實驗結果 77 5.2.1 固化時間實驗結果 77 5.2.2 成型性比較結果 79 5.2.3 材料疊層測試結果 85 5.3 LCD系統與DLP系統比較 87 5.4 固化時間、成型性與疊層測試結果與討論 88 第六章 結論與未來展望 90 6.1結論 90 6.2未來展望 91

    【1】http://textile.iitd.ac.in/highlights/fol8/01.htm
    【2】C. Becker and G. Jakse, "Stem Cells for Regeneration of Urological Structures" european urolo g y , Volume 51 (2 0 0 7),1217 – 1228.
    【3】宋信文 梁晃千 ,“建立人類的身體工房-組織工程” ,科學發展第362期,2003年2月,6-11
    【4】楊婷琪,“組織工程的重要元件-生物分子”,工研院經貿中心生醫組,2002年7月。
    【5】S. Yang, K. F. Leong, Z. DU, and C. K. Chua, “The design of scaffolds for use in tissue engineering. Part I. Traditional Factors,” Tissue Engineering, Volume 7(2001), 679-689.
    【6】H. Y. Kweon, M. K. Yoo, I. K. Park, T. H. Kim, H. C. Lee, H. S. Lee, J. S. Oh, T. Akaike, and C. S. Cho, “A novel degradable poly caprolactone networks for tissue engineering,” Biomaterials,Volume 24 (2003) 801-808.
    【7】T. W. Chung , M. C. Yang , C. C. Tseng , S. H. Sheu , S. S. Wang ,Y. Y. Huang , S. D. Chen,“Promoting regeneration of peripheral nerves in-vivo using new PCL-NGF/Tirofiban nerve conduits”Biomaterials ,Volume 32 (2011) 734-743.
    【8】Y. Z. Bian , Y. Wang , G. Aibaidoula, “Evaluation of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) conduits for peripheral nerve regeneration, ” Biomaterials, Volume30(2009) 217-225.
    【9】Masoud Mozafari”Development of macroporous nanocomposite”
    【10】K. Whang, C. H. Thomas, K. E. Healy, and G. Nuber, “A novel method to fabricate bioabsorbable scaffolds,” Polymer,Volume 36 (1995), 837-842.
    【11】G. Wei and P. X. Ma, “Structure and properties of nano-hydroxyapatite/ polymer composite scaffolds for bone tissue engineering,” Biomaterials 25 (2004) 4749-4757
    【12】D. Yucel, G. T. Kose, V. Hasirci, “Polyester based nerve guidance conduit design, ”Biomaterials,Volume31(2010), 1596-1603
    【13】M. S. Widmer, P. K. Gupta, L. Lu, R. K. Meszlenyi ,G. R. Evans, K. Brandt, T. Savel, A. Gurlek, C. W. Patrick Jr. and A. G. Mikos, “Manufacture of porous biodegradable polymer conduits by an extrusion process for guided tissue regeneration,” Biomaterials, Volume 19(1998),1945-1955
    【14】M. J. Moore, J. A. Friedman, E. B. Lewellyn, S. M. Mantila, A. J. Krych, S. Ameenuddin, A. M. Knight, L. Lu, B. L. Currier, R. J. Spinner, R. W. Marsh, A. J. Windebank, M. J. Yaszemski, “Multiple-channel scaffolds to promote spinal cord axon regeneration, ” Biomaterials , Volume 27(2006), 419–429
    【15】F. P.W. Melchels , J. Feijen , D. W. Grijpma,“A review on stereolithography and its applications in biomedical engineering,”Biomaterials , Volume 31(2010) ,6121-6130
    【16】http://www.custompartnet.com/wu/fused-deposition-modeling
    【17】K.F. Leong, C.M. Cheah, C.K. Chua, “Solid freeform fabrication of 3D scaffolds for engineering replacement tissue and organs,” Biomaterials ,Volume24(2003), 2363–2378
    【18】M. J. Mondrinosa, R. Dembzynskib, L. Lub, V. K. C. Byrapogub, D. M. Woottonb, P. I. Lelkesa, Jack Zhoub,123“Porogen-based solid freeform fabrication of polycaprolactone–calcium phosphate scaffolds for tissue engineering,” Biomaterials, Volume 27(2006), 4399-4408
    【19】S. Khalil, W. Sun, “Biopolymer deposition for freeform fabrication of hydrogel tissue constructs,”Materials Science and Engineering C, Volume 27(2007), 469–478
    【20】L. Shor, S. Guceri, X. Wen, M. Gandhi, W. Sun,“Fabrication of three-dimensional polycaprolactone/hydroxyapatite tissue scaffolds and osteoblast-scaffold interactions in vitr,”Biomaterials, Volume 28(2007),5291-5297
    【21】W. Zeng, F. Lin, T. Shi, R. Zhang,Y. Nian, J. Ruan, T. Zhou“Fused deposition modelling of an auricle framework for microtia reconstruction based on CT images,” Rapid Prototyping Journal, Volume14/5 (2008), 280–284
    【22】T. Cui, Y. Yan, R. Zhang, “Biomodeling and fabrication of a hybrid PU-collagen nerve regeneration conduit, ” VECIMS,Volume1(2009),3809-3815
    【23】http://www.azom.com/article.aspx?ArticleID=1648
    【24】J. M. Williams, A. Adewunmi, R. M. Schek, C. L. Flanagan, Paul H. Krebsbach, S. E. Feinberg, S. J. Hollister and S. Das, “Bone tissue engineering using polycaprolactoe scaffolds fabricated via selective laser sintering,” Biomaterials, Volume 26 (2005) 4817-4827.
    【25】M. M. Savalani, L. Hao, Y. Zhang, K. E. Tanner, and R. A. Harris,“Fabrication of porous bioactive structures using the selective laser sintering technique”Engineering in Medicine,Volume 221(2007),873-886
    【26】C. Mangano, A. D. Rosa, V. Desiderio, R.d’Aquino, A. Piattelli, F. D. Francesco , Virginia Tirino, Francesco Mangano, Gianpaolo Papaccio, “The osteoblastic differentiation of dental pulp stem cells and bone formation on different titanium surface textures,” Biomaterials, Volume 31(2010), 3543-3551.
    【27】http://www.custompartnet.com/wu/3d-printing
    【28】C. X. F. Lam, X. M. Mo, S.H. Teoh and Hutmacher, “Scaffold development using 3D printing with a starch-based polymer,” Materials Science and Engineering ,Volume 20(2002) 49-56.
    【29】M. Lee, J. C.Y. Dunn and B. M. Wu, “Scaffold fabrication by indirect three-dimensional printing,” Biomaterials, Volume 26 (2005), 4281-4289.
    【30】M. L. Macdonald, R. E. Samuel, N. J. Shah, R. F. Padera , Y. M. Beben,P. T. Hammond, “ Tissue integration of growth factor-eluting layer-by-layer polyelectrolyte multilayer coated implants” Biomaterials, Volume 32(2011),1446-1453.
    【31】H. Jiankang, L. Dichen, L. Yaxiong, Y. Bo, L. Bingheng, L. Qin “Fabrication and characterization of chitosan/gelatin porous scaffolds with predefined internal microstructures,” Polymer, Volume. 48(2007), 4578-4588.
    【32】F. P.W. Melchels, J. Feijen, D. W. Grijpma, “A poly(D,L-lactide) resin for the preparation of tissue engineering scaffolds by stereolithography,” Biomaterials, Volume. 30(2009),3801-3809.
    【33】J. W. Choi, R. Wicker, S. H. Lee,K. H. Choi, C. S. Ha and I. Chung“Fabrication of 3D biocompatible/biodegradable micro-scaffolds using dynamic mask projection microstereolithography” , Journal of Materials Processing Technology, Volume 209(2009), 5494-5503

    【34】R. C. Luo, J. H. Tzou “Development of a LCD Photomask Based Desktop Manufacturing System” Industrial Electronics, Vol. 55, No. 10, October 2008
    【35】R. Gauvin, Y. C. Chen, J. W. Lee, P. Soman, P. Zorlutuna, J. W. Nichol, H. Bae, S. Chen, A. Khademhosseini “Microfabrication of complex porous tissue engineering scaffolds using
    3D projection stereolithography” Biomaterials, Volume. 33 (2012) 3824-3834
    【36】李孟龍,“動態光罩快速原型系統製造組織工程支架之研發”,國立台灣科技大學機械工程研究所,碩士論文,2005。
    【37】陳俊豪,“光固化快速成型技術製作組織工程支架之研究”,國立台灣科技大學機械工程研究所,碩士論文,2006。
    【38】許貽玨,“光聚合生物可分解材料應用於RP技術製作組織工程支架性質之研究”,國立台灣科技大學機械工程研究所,碩士論文,2007。
    【39】 陳茂揚 “光固化快速成型系統製作3D組織工程支架”國立台灣科技大學機械工程研究所,碩士論文,2008。
    【40】曾俊元“動態光罩快速成型系統光聚合PCL-PEG-PCL製作3D組織工程支架”,國立台灣科技大學機械工程研究所,碩士論文,2008。
    【41】薛智仁“動態光罩快速成型系統製作3D PCL管狀多孔性組織工程支架之研究”,國立台灣科技大學機械工程研究所,碩士論文,2009。
    【42】謝浚雄“光聚合PCL材料系統成份探討及其應用於快速成型3D組織工程支架”,國立台灣科技大學機械工程研究所,碩士論文,2011。
    【43】孫凱閔 “PCL結合PEG-acrylate透過動態光罩成行系統製作3D多孔性組織工程支架”,國立台灣科技大學機械工程研究所,碩士論文,2011。
    【44】侯佳延 “PCL結合PEG-acrylate透過反射式動態光罩成行系統製作3D多孔性組織工程支架”,國立台灣科技大學機械工程研究所,碩士論文,2012。
    【45】楊淯凱 “以積層製造技術光顧畫PCL-PEG-diacrylate之材料性質與組織工程支架成型性探討”,國立台灣科技大學機械工程研究所,碩士論文,2013。

    無法下載圖示 全文公開日期 2019/07/29 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE