簡易檢索 / 詳目顯示

研究生: 邱瑞晟
Ruei-Cheng Ciou
論文名稱: 高強韌形狀記憶光敏樹脂研發與在光固化積層製造之應用研究
Development and application study of high strength-toughness shape memory photo-sensitive resin in vat photopolymerization additive manufacturing
指導教授: 鄭正元
Jeng-Ywan Jeng
謝志華
Chih-Hua Hsieh
口試委員: 陳俊名
Chun-Ming Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 112
語文別: 中文
論文頁數: 104
中文關鍵詞: 積層製造4D列印丙烯酸酯基樹脂雙固化形狀記憶聚合物
外文關鍵詞: Additive manufacturing, 4D printing, Acrylate resin, Dual curing, Shape memory polymer
相關次數: 點閱:40下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 積層製造 (Additive Manufacturing, AM) 又稱3D列印 (Three Dimensional Printing, 3DP),具有可輕鬆製造出複雜形狀物件,以及大幅減少材料浪費的特點,使其在近十幾年來快速的發展,並且基於製造時間及成本考量,已逐漸在一些領域上取代了傳統製造技術。而光固化 (Vat Photopolymerization, VP) 技術因具有速度快、精度高、表面品質良好等優勢而在3DP中備受矚目,然而其受到光敏樹脂材料性質普遍不佳的限制,因而無法被廣泛的在工程應用中被使用。而隨著智能材料出現,結合3DP誕生出了4D列印,其可通過施加外部刺激,而隨時間以受控方式產生變化,然而目前仍然缺乏具備良好機械強度的智能材料,可應用層面較少。
    本研究以開發具有高強度、高韌性及形狀記憶功能,且可用於市售常見光固化列印機之光敏樹脂材料為目的,期望可以改善光固化技術在材料上的限制,並進一步拓展其應用領域。因此本研究以聚氨酯丙烯酸酯 (Polyurethane Acrylate, PUA) 寡聚物,及三羥甲基丙烷三丙烯酸酯 (Trimethylolpropane triacrylate, TMPTA) 稀釋單體,與TPO光起始劑及熱自由基起始劑混合。並添加了Bis(1,2,2,6,6-pentamethyl-4-piperidyl) sebacate光穩定劑,最終製備出一款使用光/熱雙固化系統增強性能之Tough-H樹脂。
    實驗結果顯示,Tough-H樹脂配方在室溫下黏度約603.5 cP,較多數市售高強韌樹脂更低,且適用於下照式光固化列印機。由DSC及TMA測試玻璃轉化溫度(Tg)結果分別約為55.1°C及51.6°C。浸泡水中24小時的吸水率僅約0.92%。機械性質方面,邵氏硬度達到84 HD,拉伸強度及拉伸模量高達57.8 MPa及2481.7 MPa,同時有斷裂伸長率10.7%及耐衝擊強度19.37 J/m的良好韌性。形狀記憶測試結果表示,形狀固定率及形狀恢復率皆有達到90%以上。總結以上結果,並與市售高強韌樹脂相比,本研究成功地開發出了具低黏度、低收縮率、低吸水率、高強度、良好韌性及形狀記憶功能的光敏樹脂材料,並且已經探討了該樹脂材料在輕量化晶格結構的適用性。


    Additive manufacturing (AM), also known as three dimensional printing (3DP), is characterized by its ability to easily produce complex-shaped objects and significantly reduce material waste, leading to its rapid development in recent years. Furthermore, considering manufacturing time and costs, it has gradually replaced traditional manufacturing technologies in some fields. Among many AM technologies, vat photopolymerization (VP) technologies have gained significant attention due to its advantages of high speed, superior resolution, and excellent surface quality. However, it is limited by the subpar properties of the photosensitive resin materials, hindering its widespread use in engineering applications. And with the emergence of smart materials, the combination of additive manufacturing technologies has given rise to 4D printing. It can undergo changes over time by applying external stimuli such as light, electricity, or temperature. However, there is still a lack of smart materials with superior mechanical strength.
    This study aimed to develop photosensitive resin with high strength, toughness, and shape memory ability for use in commercially available VP printers, with the expectation of further expanding the application scope of VP technologies. Therefore, this study utilized polyurethane acrylate (PUA) as the oligomer and trimethylolpropane triacrylate (TMPTA) as the monomer, mixed with diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide (TPO) as the photo-initiator and thermal radical initiators, and incorporated Bis(1,2,2,6,6-pentamethyl-4-piperidyl) sebacate as the stabilizer. Finally, a Tough-H resin with enhanced material properties using photo-thermal dual curing system has been developed.
    The experimental results indicated that the viscosity of Tough-H resin at room temperature is approximately 603.5cP, which is lower than many commercially available high strength and tough resins. It is suitable for use in bottom-up VP printers. The glass transition temperature (Tg) obtained from DSC and TMA testing are approximately 55.1°C and 51.6°C, respectively. The water absorption rate after 24 hours of immersion in water is only approximately 0.92%. As for the mechanical properties, the Shore hardness reaches 84 HD, tensile strength and elastic modulus reaching 57.8 MPa and 2481.7 MPa, respectively. Furthermore, it exhibited good fracture toughness at 10.7% and an impact strength of 19.37 J/m. In shape memory testing, the shape fixing ratio and shape recovery ratio have both exceeded 90%. In summary, compared to commercially available resins, this study has successfully developed a photosensitive resin with low viscosity, low shrinkage, low water absorption, high strength, good toughness, and excellent shape memory functionality. And the applicability of this resin material in lightweight lattice structures has also been explored.

    摘要 I Abstract II 誌謝 IV 目錄 V 圖目錄 VII 表目錄 X 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 1 1.3 論文架構 2 第二章 積層製造技術原理介紹 4 2.1 積層製造簡介 4 2.2 光聚合固化技術 5 2.2.1 SLA立體光刻成型 6 2.2.2 DLP數位光處理 6 2.2.3 LCD液晶顯示 7 2.3 研究流程架構 8 第三章 高強韌形狀記憶光敏樹脂開發 10 3.1 紫外光固化樹脂 11 3.1.1 寡聚物 12 3.1.2 單體 14 3.1.3 光起始劑 15 3.2 形狀記憶效應 17 3.2.1 形狀記憶聚合物 18 3.2.2 SMP文獻回顧 18 3.3 高強韌形狀記憶樹脂調配 20 3.3.1 增強增韌樹脂文獻回顧 20 3.3.2 實驗藥品 24 3.3.3 實驗儀器與設備 26 3.3.4 光固化樹脂調配 28 3.4 Tough-H樹脂特性分析 30 3.4.1 實驗儀器 30 3.4.2 黏度測試 34 3.4.3 熱性質測試 35 3.4.4 吸水性測試 38 3.5 總結 39 第四章 樹脂列印及機械性質測試與應用 40 4.1 實驗儀器與設備 41 4.2 設備調校與參數測試 46 4.2.1 曝光均勻度測試 46 4.2.2 列印水平度測試 48 4.2.3 列印參數與精度測試 50 4.3 Tough-H樹脂機械性質分析 53 4.3.1 硬度測試 53 4.3.2 拉伸試驗 54 4.3.3 衝擊試驗 62 4.3.4 形狀記憶測試 66 4.4 輕量化晶格結構與工程應用 69 4.4.1 晶格結構簡介 69 4.4.2 SU晶格結構 70 4.4.3 壓縮試驗 72 4.4.4 高強韌形狀記憶聚合物應用 77 4.5 總結 78 第五章 結論 81 參考文獻 83

    [1] Tamez, M.B.A. and I. Taha, A review of additive manufacturing technologies and markets for thermosetting resins and their potential for carbon fiber integration. Additive Manufacturing, 2021. 37: p. 101748.
    [2] Hull, C.W., Apparatus for production of three-dimensional objects by stereolithography. United States Patent, Appl., No. 638905, Filed, 1984.
    [3] 蕭勝元(2015)。光固化3D列印彩色漸層製程參數優化之研究。碩士論文。國立臺灣科技大學自動化及控制研究所。取自https://hdl.handle.net/11296/b7463z。
    [4] Jandyal, A., et al., 3D printing – A review of processes, materials and applications in industry 4.0. Sustainable Operations and Computers, 2022. 3: p. 33-42.
    [5] 葉育嘉(2022)。應用田口方法於3D列印之光固化材料性質最適化。碩士論文,國立中興大學化學工程學系所。取自https://hdl.handle.net/11296/pben8p。
    [6] 黃曼薇(2021)。含奈米碳管的光固化樹脂列印成品導電性探討。碩士論文,國立臺灣大學機械工程學研究所。取自https://hdl.handle.net/11296/ag253y。
    [7] Tan, S., et al., Waste nitrile rubber powders enabling tougher 3D printing photosensitive resin composite. Polymer, 2022. 243: p. 124609.
    [8] Sun, X., et al., Novel photosensitive resin simultaneously with outstanding cryogenic strength and toughness for digital light processing three-dimensional Printing. Materials Today Chemistry, 2023. 27: p. 101301.
    [9] Chen, S., et al., Synergistic strengthening and toughening of 3D printing photosensitive resin by bismaleimide and acrylic liquid-crystal resin. Journal of Science: Advanced Materials and Devices, 2023. 8(3): p. 100565.
    [10] 蔡侑霖(2022)。增材製造光固化形狀記憶聚合物之製程與材料性質分析。碩士論文,逢甲大學機械與電腦輔助工程學系。取自https://hdl.handle.net/11296/hba6jp。
    [11] Andreu, A., et al., 4D printing materials for vat photopolymerization. Additive Manufacturing, 2021. 44: p. 102024.
    [12] Ma, B., et al., 4D printing of multi-stimuli responsive rigid smart composite materials with self-healing ability. Chemical Engineering Journal, 2023. 466: p. 143420.
    [13] Kholkhoev, B.C., et al., A photosensitive composition based on an aromatic polyamide for LCD 4D printing of shape memory mechanically robust materials. Chemical Engineering Journal, 2023. 454: p. 140423.
    [14] Sachdeva, I., et al., Computational AI models in VAT photopolymerization: a review, current trends, open issues, and future opportunities. Neural Computing and Applications, 2022. 34(20): p. 17207-17229.
    [15] 陳成揚(2022)。具感測特性之彈性高分子材料用於光固化積層製造技術之研究。碩士論文,逢甲大學機械與電腦輔助工程學系。取自https://hdl.handle.net/11296/px7t6z。
    [16] ASTM, I., ASTM52900-21. Additive Manufacturing—General Principles—Fundamentals and Vocabulary. ASTM: West Conshohocken, PA, USA, 2021.
    [17] Nohut, S. and M. Schwentenwein Vat Photopolymerization Additive Manufacturing of Functionally Graded Materials: A Review. Journal of Manufacturing and Materials Processing, 2022. 6, DOI: 10.3390/jmmp6010017.
    [18] Wohlers, T., et al., History of additive manufacturing. 2016.
    [19] Snyder, T.J., et al., 3D Systems' Technology Overview and New Applications in Manufacturing, Engineering, Science, and Education. 3D Printing and Additive Manufacturing, 2014. 1(3): p. 169-176.
    [20] Quan, H., et al., Photo-curing 3D printing technique and its challenges. Bioactive Materials, 2020. 5(1): p. 110-115.
    [21] Zheng, Y., et al., A Review of Conductive Carbon Materials for 3D Printing: Materials, Technologies, Properties, and Applications. Materials, 2021. 14(14): p. 3911.
    [22] Quanjing, L. and L. Yu, Application of Additive Manufacturing Technology in Ceramic Preparation. Light Industry Machinery, 2021. 39(6).
    [23] Roohani, I., A. Entezari, and H. Zreiqat, Liquid crystal display technique (LCD) for high resolution 3D printing of triply periodic minimal surface lattices bioceramics. Additive Manufacturing, 2023. 74: p. 103720.
    [24] 林詣烜(2022)。填料含量及其光學性能對液晶顯示3D列印機用光固化樹脂力學性能和尺寸偏差的影響。碩士論文,中山醫學大學口腔科學研究所。取自https://hdl.handle.net/11296/5h2nr2。
    [25] Shaukat, U., E. Rossegger, and S. Schlögl, A Review of Multi-Material 3D Printing of Functional Materials via Vat Photopolymerization. Polymers, 2022. 14(12): p. 2449.
    [26] Chen, H., et al., Comparison of flexural properties and cytotoxicity of interim materials printed from mono-LCD and DLP 3D printers. The Journal of Prosthetic Dentistry, 2021. 126(5): p. 703-708.
    [27] 簡勝彥(2019)。光固化聚氨酯丙烯酸酯之合成與特性探討。碩士論文,國立勤益科技大學化工與材料工程系。取自https://hdl.handle.net/11296/xuwu89。
    [28] 鄭正元等(2021),3D列印積層製造技術與應用(第二版)。新北市:全華圖書股份有限公司。
    [29] 陳柏宇(2020)。聚氨酯衍生物之光固化3D列印樹酯開發及其表面改質於人工血管之應用。碩士論文,明志科技大學材料工程系碩士班。取自https://hdl.handle.net/11296/bwrhrj。
    [30] Seraji, S.M., et al., Fire-retardant unsaturated polyester thermosets: The state-of-the-art, challenges and opportunities. Chemical Engineering Journal, 2022. 430: p. 132785.
    [31] White, B.T., et al., Vat photopolymerization of unsaturated polyesters utilizing a polymerizable ionic liquid as a non-volatile reactive diluent. Polymer, 2021. 223: p. 123727.
    [32] Barker, C.M., et al., Solvent-free vat photopolymerization of unsaturated polyesters: Structure-property relationships for depolymerization. MRS Communications, 2023.
    [33] Chen, H., S.-Y. Lee, and Y.-M. Lin, Synthesis and Formulation of PCL-Based Urethane Acrylates for DLP 3D Printers. Polymers, 2020. 12(7): p. 1500.
    [34] Hu, Y., et al., Rubber Seed Oil-Based UV-Curable Polyurethane Acrylate Resins for Digital Light Processing (DLP) 3D Printing. Molecules, 2021. 26(18): p. 5455.
    [35] Bednarczyk, P., et al., Novel Multifunctional Epoxy (Meth)Acrylate Resins and Coatings Preparation via Cationic and Free-Radical Photopolymerization. Polymers, 2021. 13(11): p. 1718.
    [36] Zhao, T., et al., A comparative study on 3D printed silicone-epoxy/acrylate hybrid polymers via pure photopolymerization and dual-curing mechanisms. Journal of Materials Science, 2019. 54(6): p. 5101-5111.
    [37] Pérocheau Arnaud, S., et al., Optimized synthesis of highly reactive UV-curable hyperbranched polyester acrylates. Journal of Coatings Technology and Research, 2020. 17(1): p. 127-143.
    [38] 謝季翰(2016)。含Cardo結構單官能基單體合成及物性/化性研究。碩士論文,國立高雄應用科技大學化學工程與材料工程系博碩士班。取自https://hdl.handle.net/11296/vhfg93。
    [39] Su, W.-F., Radical Chain Polymerization, in Principles of Polymer Design and Synthesis, W.-F. Su, Editor. 2013, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 137-183.
    [40] 鄧力升(2016)。無溶劑氧化鋯樹脂漿料於光固化技術之研究。碩士論文,國立臺北科技大學製造科技研究所。取自https://hdl.handle.net/11296/g5ue8w。
    [41] Yagci, Y., S. Jockusch, and N.J. Turro, Photoinitiated Polymerization: Advances, Challenges, and Opportunities. Macromolecules, 2010. 43(15): p. 6245-6260.
    [42] Sangermano, M., N. Razza, and J.V. Crivello, Cationic UV-Curing: Technology and Applications. Macromolecular Materials and Engineering, 2014. 299(7): p. 775-793.
    [43] Rastogi, P. and B. Kandasubramanian, Breakthrough in the printing tactics for stimuli-responsive materials: 4D printing. Chemical Engineering Journal, 2019. 366: p. 264-304.
    [44] Su, M. and Y. Song, Printable Smart Materials and Devices: Strategies and Applications. Chemical Reviews, 2022. 122(5): p. 5144-5164.
    [45] Zare, M., et al., Thermally-induced two-way shape memory polymers: Mechanisms, structures, and applications. Chemical Engineering Journal, 2019. 374: p. 706-720.
    [46] Zhao, Q., H.J. Qi, and T. Xie, Recent progress in shape memory polymer: New behavior, enabling materials, and mechanistic understanding. Progress in Polymer Science, 2015. 49-50: p. 79-120.
    [47] Li, J. and T. Xie, Significant Impact of Thermo-Mechanical Conditions on Polymer Triple-Shape Memory Effect. Macromolecules, 2011. 44(1): p. 175-180.
    [48] Huang, W.M., et al., Shape memory materials. Materials Today, 2010. 13(7): p. 54-61.
    [49] Shan, W., et al., 4D printing of shape memory polymer via liquid crystal display (LCD) stereolithographic 3D printing. Materials Research Express, 2020. 7(10): p. 105305.
    [50] Shan, W., et al., Epoxy acrylate-based shape memory polymer via 3D printing. Express Polymer Letters, 2021. 15(12): p. 1126-1134.
    [51] Zhao, T., et al., 4D printing of shape memory polyurethane via stereolithography. European Polymer Journal, 2018. 101: p. 120-126.
    [52] Li, X., et al., Four-dimensional printing of shape memory polyurethanes with high strength and recyclability based on Diels-Alder chemistry. Polymer, 2020. 200: p. 122532.
    [53] Tessanan, W., P. Daniel, and P. Phinyocheep, Development of Photosensitive Natural Rubber as a Mechanical Modifier for Ultraviolet-Curable Resin Applied in Digital Light Processing-Based Three-Dimensional Printing Technology. ACS Omega, 2021. 6(23): p. 14838-14847.
    [54] Wang, H., et al., Design of enhanced mechanical properties by interpenetrating network of 3D printing dual-curing resins. Polymer, 2023. 282: p. 126153.
    [55] Nechausov, S., et al., Heat-Resistant Phthalonitrile-Based Resins for 3D Printing via Vat Photopolymerization. ACS Applied Polymer Materials, 2022. 4(10): p. 6958-6968.
    [56] Nechausov, S., et al., Effects of ionic liquids and dual curing on vat photopolymerization process and properties of 3d-printed ionogels. Additive Manufacturing, 2022. 56: p. 102895.
    [57] Zhao, J., et al., Digital light processing 3D printing Kevlar composites based on dual curing resin. Additive Manufacturing, 2021. 41: p. 101962.
    [58] Vahid, K., et al., High-Resolution Additive Manufacturing of a Biodegradable Elastomer with a Low-Cost LCD 3D Printer. bioRxiv, 2023: p. 2023.06.15.545079.
    [59] Chen, H., et al., Development of Ultra-Low Viscosity Hydroxyapatite Slurries for Printing Bone Scaffolds Using Scrapper-Free Liquid Crystal Display Based Vat Photopolymerization Printer. Available at SSRN 4517001.
    [60] Abu Bakar, A.A., et al., The 3D Printability and Mechanical Properties of Polyhydroxybutyrate (PHB) as Additives in Urethane Dimethacrylate (UDMA) Blends Polymer for Medical Application. Polymers, 2022. 14(21): p. 4518.
    [61] American Society for Testing and Materials, ASTM E1356: Standard Test Method for Assignment of the Glass Transition Temperatures by Differential Scanning Calorimetry, ASTM International, 2023.
    [62] American Society for Testing and Materials, ASTM E1824: Standard Test Method for Assignment of a Glass Transition Temperature Using Thermomechanical Analysis: Tension Method, ASTM International, 2019.
    [63] American Society for Testing and Materials, ASTM E831: Standard Test Method for Linear Thermal Expansion of Solid Materials by Thermomechanical Analysis, ASTM International, 2019.
    [64] Fernandes, J., et al. Study of the influence of 3D printing parameters on the mechanical properties of PLA. in Proc. Int. Conf. Prog. Addit. Manuf. 2018.
    [65] American Society for Testing and Materials, ASTM D570: Standard Test Method for Water Absorption of Plastics, ASTM International, 2022. https://doi.org/10.1520/D0570-22.
    [66] American Society for Testing and Materials, ASTM D638: Standard Test Method for Tensile Properties of Plastics, ASTM International, 2022.
    [67] 石偉誌(2015)。陽離子型環氧樹脂(CE/Siloxane/Oxetane) 之光固化動力學與機械性質分析。碩士論文,國立臺北科技大學。取自https://hdl.handle.net/11296/29pt2m。
    [68] American Society for Testing and Materials, ASTM D256: Standard test methods for determining the izod pendulum impact resistance of plastics, ASTM international, 2010.
    [69] Liu, Y., et al., Thermal, mechanical and shape memory properties of shape memory epoxy resin. Materials Science and Engineering: A, 2010. 527(10): p. 2510-2514.
    [70] 熊艾吉(2020)。應用於能量吸收之開放/封閉式細胞晶格結構的仿生設計與積層製造。博士論文,國立臺灣科技大學。取自https://hdl.handle.net/11296/7q4hh9。
    [71] 蕭綜萬(2022)。利用顆粒模擬探討以深海玻璃海綿啟發之高強度和輕量仿生結構與力學行為。碩士論文,國立臺灣大學。取自https://hdl.handle.net/11296/h42j6y。
    [72] 阿米爾 那錫爾(2019)。晶格結構之設計、最佳化和分析用於高速積層製造。博士論文,國立臺灣科技大學。取自https://hdl.handle.net/11296/283tcu。
    [73] Arshad, A.B., A. Nazir, and J.-Y. Jeng, The effect of fillets and crossbars on mechanical properties of lattice structures fabricated using additive manufacturing. The International Journal of Advanced Manufacturing Technology, 2020. 111(3): p. 931-943.
    [74] Kumar, A., et al., Design and additive manufacturing of closed cells from supportless lattice structure. Additive Manufacturing, 2020. 33: p. 101168.
    [75] Bhat, C., et al., Design of tessellation based load transfer mechanisms in additively manufactured lattice structures to obtain hybrid responses. Additive Manufacturing, 2023. 76: p. 103774.
    [76] Bhat, C., A. Kumar, and J.-Y. Jeng, Effect of atomic tessellations on structural and functional properties of additive manufactured lattice structures. Additive Manufacturing, 2021. 47: p. 102326.
    [77] Bhat, C., et al., Design, fabrication, and properties evaluation of novel nested lattice structures. Additive Manufacturing, 2023. 68: p. 103510.
    [78] Prajapati, M.J., et al. Supportless Lattice Structure for Additive Manufacturing of Functional Products and the Evaluation of Its Mechanical Property at Variable Strain Rates. Materials, 2022. 15, DOI: 10.3390/ma15227954.
    [79] American Society for Testing and Materials, ASTM D1621: Standard test method for compressive properties of rigid plastics, ASTM international, 2010.
    [80] Sun, P.-C., et al., Effects of varying material properties on the load deformation characteristics of heel cushions. Medical Engineering & Physics, 2008. 30(6): p. 687-692.
    [81] Khalid, M.Y., et al., 4D printing of shape memory polymer composites: A review on fabrication techniques, applications, and future perspectives. Journal of Manufacturing Processes, 2022. 81: p. 759-797.
    [82] Wang, X., et al., Advances in shape memory polymers: Remote actuation, multi-stimuli control, 4D printing and prospective applications. Materials Science and Engineering: R: Reports, 2022. 151: p. 100702.

    無法下載圖示 全文公開日期 2034/02/06 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE