簡易檢索 / 詳目顯示

研究生: Yeabsra Mekdim Hailu
Yeabsra Mekdim Hailu
論文名稱: 積層製造基於表面晶格結構之扭轉性能的設計與研究
Design and Investigation of Torsional Properties of Additively Manufactured Surface-Based Lattice Structures
指導教授: 鄭正元
Jeng-Ywan Jeng
Aamer Nazir
Aamer Nazir
口試委員: 鄭正元
Jeng-Ywan Jeng
Aamer Nazir
Aamer Nazir
許啟彬
Chi-Pin Hsu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 145
中文關鍵詞: 晶格結構扭轉設計積層製造功能梯度晶格扭轉剛度能量吸收失效行為
外文關鍵詞: Lattice Structures, Torsion, Design, Additive Manufacturing, Functionally Gradient Lattice, Torsional Stiffness, Energy Absorption, Failure behavior
相關次數: 點閱:263下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 晶格結構具有優異的機械性能,並正被應用於生物醫學、航空航天、汽車、建築與眾多其他領域。在週期性晶格結構中,基於TPMS的晶格結構由於其強化的機械性能而受到廣泛的關注。晶胞的相對密度和拓樸結構為影響晶格結構機械性能最重要的兩個因素。由於TPMS是藉由數學控制的拓樸結構,通過操作這些隱式方程控制他們的拓樸與相對密度,可以針對應用需求被有效率的精確設計。這些具有訂製特性的複雜結構可以藉由積層製造工藝輕易的製造,並有高精度、表面光潔度與機械性質。
    這項研究中,數種均勻密度、梯度密度、功能梯度TPMS與基於支柱的晶格結構被設計為圓柱形,並在所有設計中保持恆定的相對密度。為了研究晶結構的特性,例如扭轉剛度、能量吸收和破壞特徵,進行了將所有結構扭轉至破壞的扭轉實驗。實驗研究中所有樣品由 HP Multi Jet Fusion 4200機器製造。
    結果表明,結構的剛度和能量吸收率可以通過與扭轉負載引起的應力集中相對應的有效材料分布提升。此外有效的材料分布也會影響破壞機制、延緩結構的塑性變形,增加其抵抗扭轉負載的能力。


    Lattice structures have excellent mechanical properties and are being utilized in several applications in the biomedical, aerospace, automotive, construction, and other sectors. Among the periodic lattice structures, TPMS based lattices have gained considerable attention due to their enhanced mechanical properties. The relative density and topology of unit cells are the two most important factors affecting lattice structures' mechanical properties. Since TPMS structures are mathematically controlled topologies, they can efficiently be precisely designed for required applications by manipulating these implicit equations to control their topologies and relative density. These intricate and complex structures with tailored properties can easily be fabricated using additive manufacturing processes with high accuracy, surface finish, and mechanical properties. In this study, several uniform densities, gradient density, and functionally gradient TPMS and strut-based lattice structures were designed in cylindrical shapes keeping the relative density constant across all designs. Torsional experiment until failure of each structure was conducted to investigate properties of the lattice structures such as torsional stiffness, energy absorption, and failure characteristics. HP Multi Jet Fusion 4200 machine was used to fabricate all specimens for the experimental study. The results have shown that stiffness and energy absorption of structures can be improved by an effective material distribution that corresponds to stress concentration due to torsional load. In addition, effective material distribution also affects the failure mechanism and delay the plastic deformation of structures, increasing their resistance to torsional loads.

    TABLE OF CONTENTS TITLE PAGE I MASTER’S THESIS RECOMMENDATION FORM II QUALIFICATION FORM BY MASTER’S DEGREE EXAMINATION COMMITTEE III ACKNOWLEDGMENT IV ABSTRACT (CHINESE) V ABSTRACT (ENGLISH) VI TABLE OF CONTENTS VII LIST OF FIGURES X LIST OF TABLES XVI CHAPTER 1 - INTRODUCTION 1 1.1 Introduction to Cellular Structures 1 1.2 Problem Statement and Motivation 3 1.3 Objectives 5 1.4 Thesis Organization 5 CHAPTER 2 - LITERATURE REVIEW 6 2.1 Lattice Structures 6 2.1.1 Types 7 2.1.2 Benefits and Application 11 2.1.3 Patterning of Unit Cells and Functionally Gradient Lattices 13 2.1.4 Limitations of Conventional Manufacturing in Fabricating Lattice Structures 17 2.2 Additive Manufacturing 18 2.2.1 The Seven Categories of Additive Manufacturing 18 2.2.2 Advantages of Additive Manufacturing 21 2.2.3 Additive Manufacturing of Lattice Structures 23 2.3 Torsional and Mechanical Properties of TPMS Structures 24 CHAPTER 3 - DESIGN OF LATTICE STRUCTURES 28 3.1 Limitations of CAD systems to design TPMS structures 28 3.2 Design of Uniform Density Lattice Structures 30 3.2.1 Design of TPMS based Lattice Structure 31 3.2.2 Design of strut-based Lattice Structure 34 3.3 Design of Gradient Density Lattice Structures 38 3.3.1 Design of ‘DS-L’ Lattice Structure 39 3.3.2 Design of ‘DS-M’ Lattice Structure 41 3.3.3 Design of ‘DS-I’ Lattice Structure 42 3.3.4 Design of ‘DS-O’ Lattice Structure 44 3.4 Design of Functionally Gradient Lattice Structures 45 3.4.1 Design of ‘D’ Lattice Structure 48 3.4.2 Design of ‘VI’ Lattice Structure 50 3.4.3 Design of ‘CA’ Lattice Structure 53 3.4.4 Design of ‘CR’ Lattice Structure 54 3.4.5 Design of ‘CF’ Lattice Structure 56 CHAPTER 4 – MATERIALS AND METHODS 59 4.1 Additive Manufacturing of Lattice Structures 59 4.1.1 HP Multi Jet Fusion (MJF) 4200 Technology 60 4.1.2 Material Used 64 4.1.3 Printing Orientation and Placement in Powder Bed 65 4.1.4 Post-processing of Printed Samples 67 4.1.5 Manufactured Samples 68 4.2 Experimental Method 71 4.3 Result Calculation 72 4.3.1 Torsional Stiffness Calculation 72 4.3.2 Polar Moment of Inertia Calculation 73 4.3.3 Shear Stress-Strain Calculations 75 4.3.4 Energy Absorption Calculation 76 CHAPTER 5 – RESULTS AND DISCUSSION 77 5.1 Uniform Density Lattice Structures 77 5.1.1 Torsional Stiffness 77 5.1.2 Energy Absorption 83 5.1.3 Failure of Structures 86 5.2 Gradient Density Lattice Structures 89 5.2.1 Torsional Stiffness 90 5.2.2 Energy Absorption 93 5.2.3 Failure of Structures 95 5.3 Functionally Gradient Lattice Structures 97 5.3.1 Torsional Stiffness 98 5.3.2 Energy Absorption 101 5.3.3 Failure of Structures 104 5.4 Performance Comparison of Lattice Structures 105 5.4.1 Effect of Effective Material Distribution 106 5.4.2 Effect of Circularly Patterning Unit Cells 109 5.4.3 Comparison with Solid cylinder 112 5.5 Significance and Limitation of the Study 114 CHAPTER 6 – CONCLUSION AND FUTURE WORK 116 REFERENCES 119

    [1] M.Helou, S.Kara, Design, analysis and manufacturing of lattice structures: an overview, Https://Doi.Org/10.1080/0951192X.2017.1407456. 31 (2017) 243–261. https://doi.org/10.1080/0951192X.2017.1407456.
    [2] W.Tao, M.C.Leu, Design of lattice structure for additive manufacturing, in: Int. Symp. Flex. Autom. ISFA 2016, Institute of Electrical and Electronics Engineers Inc., 2016: pp. 325–332. https://doi.org/10.1109/ISFA.2016.7790182.
    [3] M.Bercovier, I.Soloveichik, Overlapping non Matching Meshes Domain Decomposition Method in Isogeometric Analysis, (2015). http://arxiv.org/abs/1502.03756 (accessed July27, 2021).
    [4] A.Nazir, K.M.Abate, A.Kumar, J.Y.Jeng, A state-of-the-art review on types, design, optimization, and additive manufacturing of cellular structures, Int. J. Adv. Manuf. Technol. 104 (2019) 3489–3510. https://doi.org/10.1007/s00170-019-04085-3.
    [5] D.Kretschmann, S.Cramer, The role of earlywood and latewood properties on dimensional stability of loblolly pine, Proc. Compromised Wood Work. January 29 (2007) 1–24. https://www.fs.usda.gov/treesearch/pubs/33315 (accessed October25, 2021).
    [6] O.Al-Ketan, R.Rowshan, R.K.Abu Al-Rub, Topology-mechanical property relationship of 3D printed strut, skeletal, and sheet based periodic metallic cellular materials, Addit. Manuf. 19 (2018) 167–183. https://doi.org/10.1016/J.ADDMA.2017.12.006.
    [7] K.Brakke, Triply Periodic Minimal Surfaces, AMS Not. (2000) 180. http://facstaff.susqu.edu/brakke/evolver/examples/periodic/periodic.html (accessed July22, 2021).
    [8] Minimal surface equations, in: 2016: pp. 115–160. https://doi.org/10.1090/gsm/171/05.
    [9] M.Weber, Classical minimal surfaces in Euclidean space by examples: geometric and computational aspects of the Weierstrass representation, Glob. Theory Minimal Surfaces. 2 (2001) 19–63.
    [10] Gyroid - Wikipedia, (2021). https://en.wikipedia.org/wiki/Gyroid (accessed July22, 2021).
    [11] Minimal surface - Wikipedia, (2021). https://en.wikipedia.org/wiki/Schwarz_minimal_surface (accessed July22, 2021).
    [12] Schoen I-WP – Minimal Surfaces, (2021). https://minimalsurfaces.blog/home/repository/triply-periodic/schoen-i-wp/ (accessed July22, 2021).
    [13] Neovius_surface @ wikivisually.com, (2021). https://en.wikipedia.org/wiki/Neovius_surface (accessed July22, 2021).
    [14] W.Tao, M.C.Leu, Design of lattice structure for additive manufacturing, Int. Symp. Flex. Autom. ISFA 2016. (2016) 325–332. https://doi.org/10.1109/ISFA.2016.7790182.
    [15] Lattice Structures | Lattice Generation Software | nTopology, (2021). https://ntopology.com/lattice-structures/ (accessed July27, 2021).
    [16] K.J.Kang, A wire-woven cellular metal of ultrahigh strength, Acta Mater. 57 (2009) 1865–1874. https://doi.org/10.1016/J.ACTAMAT.2008.12.027.
    [17] Y.Tang, Y.Zhou, T.Hoff, M.Garon, Y.F.Zhao, Elastic modulus of 316 stainless steel lattice structure fabricated via binder jetting process, Http://Dx.Doi.Org/10.1179/1743284715Y.0000000084. 32 (2016) 648–656. https://doi.org/10.1179/1743284715Y.0000000084.
    [18] D.Snelling, Q.Li, N.Meisel, C.B.Williams, R.C.Batra, A.P.Druschitz, Lightweight Metal Cellular Structures Fabricated via 3D Printing of Sand Cast Molds, Adv. Eng. Mater. 17 (2015) 923–932. https://doi.org/10.1002/ADEM.201400524.
    [19] A.G.Evans, M.Y.He, V.S.Deshpande, J.W.Hutchinson, A.J.Jacobsen, W.B.Carter, Concepts for enhanced energy absorption using hollow micro-lattices, Int. J. Impact Eng. 37 (2010) 947–959. https://doi.org/10.1016/J.IJIMPENG.2010.03.007.
    [20] H.N.G.Wadley, D.T.Queheillalt, Thermal Applications of Cellular Lattice Structures, Mater. Sci. Forum. 539–543 (2007) 242–247. https://doi.org/10.4028/WWW.SCIENTIFIC.NET/MSF.539-543.242.
    [21] R.Vrana, D.Koutny, D.Palousek, Impact resistance of different types of lattice structures manufactured by SLM, MM Sci. J. 2016 (2016) 1579–1585. https://doi.org/10.17973/MMSJ.2016_12_2016186.
    [22] R.Wang, J.Shang, X.Li, Z.Luo, W.Wu, Vibration and damping characteristics of 3D printed Kagome lattice with viscoelastic material filling, Sci. Reports 2018 81. 8 (2018) 1–13. https://doi.org/10.1038/s41598-018-27963-4.
    [23] A.O.Aremu, I.Maskery, C.Tuck, I.A.Ashcroft, R.D.Wildman, R.I.M.Hague, A comparative finite element study of cubic unit cells for selective laser melting, in: 25th Annu. Int. Solid Free. Fabr. Symp. � An Addit. Manuf. Conf. SFF 2014, 2014: pp. 1238–1249. https://pureportal.coventry.ac.uk/en/publications/a-comparative-finite-element-study-of-cubic-unit-cells-for-select (accessed July22, 2021).
    [24] D.-J.Yoo, Advanced porous scaffold design using multi-void triply periodic minimal surface models with high surface area to volume ratios, Int. J. Precis. Eng. Manuf. 15 (2014) 1657–1666. https://doi.org/10.1007/s12541-014-0516-5.
    [25] L.Zhang, S.Feih, S.Daynes, S.Chang, M.Y.Wang, J.Wei, W.F.Lu, Energy absorption characteristics of metallic triply periodic minimal surface sheet structures under compressive loading, Addit. Manuf. 23 (2018) 505–515. https://doi.org/10.1016/j.addma.2018.08.007.
    [26] S.Vijayavenkataraman, L.Zhang, S.Zhang, J.Y.H.Fuh, W.F.Lu, Triply periodic minimal surfaces sheet scaffolds for tissue engineering applications: An optimization approach toward biomimetic scaffold design, ACS Appl. Bio Mater. 1 (2018) 259–269. https://doi.org/10.1021/ACSABM.8B00052.
    [27] S.C.Kapfer, S.T.Hyde, K.Mecke, C.H.Arns, G.E.Schröder-Turk, Minimal surface scaffold designs for tissue engineering, Biomaterials. 32 (2011) 6875–6882. https://doi.org/10.1016/j.biomaterials.2011.06.012.
    [28] L.Yuan, S.Ding, C.Wen, Additive manufacturing technology for porous metal implant applications and triple minimal surface structures: A review, Bioact. Mater. 4 (2019) 56–70. https://doi.org/10.1016/j.bioactmat.2018.12.003.
    [29] Z.A.Qureshi, S.A.B.Al-Omari, E.Elnajjar, O.Al-Ketan, R.A.Al-Rub, Using triply periodic minimal surfaces (TPMS)-based metal foams structures as skeleton for metal-foam-PCM composites for thermal energy storage and energy management applications, Int. Commun. Heat Mass Transf. 124 (2021) 105265. https://doi.org/10.1016/J.ICHEATMASSTRANSFER.2021.105265.
    [30] W.Li, G.Yu, Z.Yu, Bioinspired heat exchangers based on triply periodic minimal surfaces for supercritical CO2 cycles, Appl. Therm. Eng. 179 (2020) 115686. https://doi.org/10.1016/J.APPLTHERMALENG.2020.115686.
    [31] T.Maconachie, M.Leary, B.Lozanovski, X.Zhang, M.Qian, O.Faruque, M.Brandt, SLM lattice structures: Properties, performance, applications and challenges, Mater. Des. 183 (2019) 108137. https://doi.org/10.1016/j.matdes.2019.108137.
    [32] E.Olmo, E.Grande, C.R.Samartin, M.Bezdenejnykh, J.Torres, N.Blanco, M.Frovel, J.Cañas, Lattice structures for aerospace applications, Eur. Sp. Agency, (Special Publ. ESA SP. 691 (2012).
    [33] nTopology, Consumer Engineering Design Software/Aerospace Engineering, (2021). https://ntopology.com/applications/consumer-products/ (accessed July21, 2021).
    [34] H.N.G.Wadley, D.T.Queheillalt, Applications of cellular lattice structures, Mater. Sci. Forum. 539–543 (2007) 242–247. https://doi.org/10.4028/WWW.SCIENTIFIC.NET/MSF.539-543.242.
    [35] T.A.Schaedler, C.J.Ro, A.E.Sorensen, Z.Eckel, S.S.Yang, W.B.Carter, A.J.Jacobsen, Designing Metallic Microlattices for Energy Absorber Applications, Adv. Eng. Mater. 16 (2014) 276–283. https://doi.org/10.1002/ADEM.201300206.
    [36] Z.Ozdemir, E.Hernandez-Nava, A.Tyas, J.A.Warren, S.D.Fay, R.Goodall, I.Todd, H.Askes, Energy absorption in lattice structures in dynamics: Experiments, Int. J. Impact Eng. 89 (2016) 49–61. https://doi.org/10.1016/J.IJIMPENG.2015.10.007.
    [37] S.Yin, H.Chen, Y.Wu, Y.Li, J.Xu, Introducing composite lattice core sandwich structure as an alternative proposal for engine hood, Compos. Struct. 201 (2018) 131–140. https://doi.org/10.1016/J.COMPSTRUCT.2018.06.038.
    [38] S.K.Moon, Y.E.Tan, J.Hwang, Y.J.Yoon, Application of 3D printing technology for designing light-weight unmanned aerial vehicle wing structures, Int. J. Precis. Eng. Manuf. - Green Technol. 1 (2014) 223–228. https://doi.org/10.1007/S40684-014-0028-X.
    [39] L.Magerramova, M.Volkov, A.Afonin, M.Svinareva, D.Kalinin, APPLICATION OF LIGHT LATTICE STRUCTURES FOR GAS TURBINE ENGINE FAN BLADES, (2018).
    [40] L.Cheng, X.Liang, E.Belski, X.Wang, J.M.Sietins, S.Ludwick, A.To, Natural Frequency Optimization of Variable-Density Additive Manufactured Lattice Structure: Theory and Experimental Validation, J. Manuf. Sci. Eng. 140 (2018). https://doi.org/10.1115/1.4040622.
    [41] S.Yin, L.Wu, J.Yang, L.Ma, S.Nutt, Damping and low-velocity impact behavior of filled composite pyramidal lattice structures:, Http://Dx.Doi.Org/10.1177/0021998313490582. 48 (2013) 1789–1800. https://doi.org/10.1177/0021998313490582.
    [42] M.Xu, Z.Qiu, Free vibration analysis and optimization of composite lattice truss core sandwich beams with interval parameters, Compos. Struct. 106 (2013) 85–95. https://doi.org/10.1016/J.COMPSTRUCT.2013.05.048.
    [43] J.Lou, L.Ma, L.Z.Wu, Free vibration analysis of simply supported sandwich beams with lattice truss core, Mater. Sci. Eng. B. 177 (2012) 1712–1716. https://doi.org/10.1016/J.MSEB.2012.02.003.
    [44] T.J.Horn, D.O.L.A.Harrysson, Overview of Current Additive Manufacturing Technologies and Selected Applications:, Https://Doi.Org/10.3184/003685012X13420984463047. 95 (2012) 255–282. https://doi.org/10.3184/003685012X13420984463047.
    [45] B.Jackson, HRL, nTopology, and Morf3D explore advanced design and materials with 7A77 – the world’s strongest additive aluminum, 3D Print. Ind. (2019). https://3dprintingindustry.com/news/hrl-ntopology-and-morf3d-explore-advanced-design-and-materials-with-7a77-the-worlds-strongest-additive-aluminum-164521/ (accessed July27, 2021).
    [46] NTopology - Btech Innovation, (2021). https://www.btech.com.tr/en/ntopology/ (accessed July27, 2021).
    [47] nTopology, Consumer Engineering Design Software/Aerospace Engineering, (2021). https://ntopology.com/applications/consumer-products/ (accessed July27, 2021).
    [48] J.Harris, 5 Techniques for Lightweighting: Doing More With Less, NTopology Blog. (2019). https://ntopology.com/blog/2019/10/18/5-techniques-for-lightweighting/ (accessed July27, 2021).
    [49] Automotive design handbook, 2021. https://ntopology.com/applications/automotive/ (accessed July27, 2021).
    [50] Materialise, Titanium inserts for spacecraft 66% lighter metal 3D printing, (2021). https://www.materialise.com/en/cases/spacecraft-titanium-inserts-metal-3d-printing (accessed July27, 2021).
    [51] T.Tan, N.Rahbar, S.M.Allameh, S.Kwofie, D.Dissmore, K.Ghavami, W.O.Soboyejo, Mechanical properties of functionally graded hierarchical bamboo structures, Acta Biomater. 7 (2011) 3796–3803. https://doi.org/10.1016/J.ACTBIO.2011.06.008.
    [52] E.C.N.Silva, M.C.Walters, G.H.Paulino, Modeling bamboo as a functionally graded material: lessons for the analysis of affordable materials, J. Mater. Sci. 2006 4121. 41 (2006) 6991–7004. https://doi.org/10.1007/S10853-006-0232-3.
    [53] M.K.Habibi, A.T.Samaei, B.Gheshlaghi, J.Lu, Y.Lu, Asymmetric flexural behavior from bamboo’s functionally graded hierarchical structure: Underlying mechanisms, Acta Biomater. 16 (2015) 178–186. https://doi.org/10.1016/J.ACTBIO.2015.01.038.
    [54] B.D.Wilts, B.A.Zubiri, M.A.Klatt, B.Butz, M.G.Fischer, S.T.Kelly, E.Spiecker, U.Steiner, G.E.Schröder-Turk, Butterfly gyroid nanostructures as a time-frozen glimpse of intracellular membrane development, Sci. Adv. 3 (2017) e1603119. https://doi.org/10.1126/SCIADV.1603119.
    [55] A.Miserez, J.C.Weaver, P.B.Pedersen, T.Schneeberk, R.T.Hanlon, D.Kisailus, H.Birkedal, Microstructural and Biochemical Characterization of the Nanoporous Sucker Rings from Dosidicus gigas, Adv. Mater. 21 (2009) 401–406. https://doi.org/10.1002/ADMA.200801197.
    [56] S.H.Hiew, A.Miserez, Squid Sucker Ring Teeth: Multiscale Structure–Property Relationships, Sequencing, and Protein Engineering of a Thermoplastic Biopolymer, ACS Biomater. Sci. Eng. 3 (2016) 680–693. https://doi.org/10.1021/ACSBIOMATERIALS.6B00284.
    [57] M.A.Kasapi, J.M.Gosline, Design complexity and fracture control in the equine hoof wall., J. Exp. Biol. 200 (1997) 1639–1659. https://doi.org/10.1242/JEB.200.11.1639.
    [58] M.Eder, K.Jungnikl, I.Burgert, A close-up view of wood structure and properties across a growth ring of Norway spruce (Picea abies [L] Karst.), Trees 2008 231. 23 (2008) 79–84. https://doi.org/10.1007/S00468-008-0256-1.
    [59] T.Speck, I.Burgert, Plant Stems: Functional Design and Mechanics, Http://Dx.Doi.Org/10.1146/Annurev-Matsci-062910-100425. 41 (2011) 169–193. https://doi.org/10.1146/ANNUREV-MATSCI-062910-100425.
    [60] Field-Driven Design | nTopology, (2021). https://ntopology.com/field-driven-design/ (accessed July28, 2021).
    [61] Z.Liu, M.A.Meyers, Z.Zhang, R.O.Ritchie, Functional gradients and heterogeneities in biological materials: Design principles, functions, and bioinspired applications, Prog. Mater. Sci. 88 (2017) 467–498. https://doi.org/10.1016/J.PMATSCI.2017.04.013).
    [62] C.H.P.Nguyen, Y.Kim, Y.Choi, Design for Additive Manufacturing of Functionally Graded Lattice Structures: A Design Method with Process Induced Anisotropy Consideration, Int. J. Precis. Eng. Manuf. - Green Technol. 8 (2021) 29–45. https://doi.org/10.1007/S40684-019-00173-7.
    [63] F.Tamburrino, S.Graziosi, M.Bordegoni, The Design Process of Additively Manufactured Mesoscale Lattice Structures: A Review, J. Comput. Inf. Sci. Eng. 18 (2018). https://doi.org/10.1115/1.4040131.
    [64] Lightweighting with Implicit Models | nTopology, (2021). https://ntopology.com/blog/2019/05/08/lightweighting-with-implicit-models/ (accessed July30, 2021).
    [65] M.G.Rashed, M.Ashraf, R.A.W.Mines, P.J.Hazell, Metallic microlattice materials: A current state of the art on manufacturing, mechanical properties and applications, Mater. Des. 95 (2016) 518–533. https://doi.org/10.1016/J.MATDES.2016.01.146.
    [66] G.Ryan, A.Pandit, D.P.Apatsidis, Fabrication methods of porous metals for use in orthopaedic applications, Biomaterials. 27 (2006) 2651–2670. https://doi.org/10.1016/J.BIOMATERIALS.2005.12.002.
    [67] Y.Chen, J.E.Frith, A.Dehghan-Manshadi, H.Attar, D.Kent, N.D.M.Soro, M.J.Bermingham, M.S.Dargusch, Mechanical properties and biocompatibility of porous titanium scaffolds for bone tissue engineering, J. Mech. Behav. Biomed. Mater. 75 (2017) 169–174. https://doi.org/10.1016/J.JMBBM.2017.07.015.
    [68] Y.W.Gu, M.S.Yong, B.Y.Tay, C.S.Lim, Synthesis and bioactivity of porous Ti alloy prepared by foaming with TiH2, Mater. Sci. Eng. C. 29 (2009) 1515–1520. https://doi.org/10.1016/J.MSEC.2008.11.003.
    [69] F.Calignano, M.Galati, L.Iuliano, A metal powder bed fusion process in industry: Qualification considerations, Machines. 7 (2019). https://doi.org/10.3390/MACHINES7040072.
    [70] O.Abdulhameed, A.Al-Ahmari, W.Ameen, S.H.Mian, Additive manufacturing: Challenges, trends, and applications, Adv. Mech. Eng. 11 (2019). https://doi.org/10.1177/1687814018822880.
    [71] SmarTech Markets Publishing, 3D Printing in Footwear, 2020. https://www.smartechanalysis.com/reports/3d-printed-footwear-2020-2030-an-analysis-of-the-market-potential-of-3d-printing-in-the-footwear-industry/ (accessed July21, 2021).
    [72] R.vanWoensel, T.vanOirschot, M.J.H.Burgmans, M.Mohammadi, Ph D, K.Hermans, Printing Architecture: An Overview of Existing and Promising Additive Manufacturing Methods and Their Application in the Building Industry, Int. J. Constr. Environ. 9 (2018) 57–81. https://doi.org/10.18848/2154-8587/cgp/v09i01/57-81.
    [73] M.Javaid, A.Haleem, Current status and applications of additive manufacturing in dentistry: A literature-based review, J. Oral Biol. Craniofacial Res. 9 (2019) 179–185. https://doi.org/10.1016/j.jobcr.2019.04.004.
    [74] R.Dhakshyani, Y.Nukman, N.A.Abu Osman, C.Vijay, Preliminary report: Rapid prototyping models for dysplastic hip surgery, Cent. Eur. J. Med. 6 (2011) 266–270. https://doi.org/10.2478/S11536-011-0012-6.
    [75] T.Vaneker, A.Bernard, G.Moroni, I.Gibson, Y.Zhang, Design for additive manufacturing: Framework and methodology, CIRP Ann. 69 (2020) 578–599. https://doi.org/10.1016/J.CIRP.2020.05.006.
    [76] A.Wiberg, J.Persson, J.Ölvander, Design for additive manufacturing – a review of available design methods and software, Rapid Prototyp. J. 25 (2019) 1080–1094. https://doi.org/10.1108/RPJ-10-2018-0262.
    [77] A.Nazir, J.Y.Jeng, A high-speed additive manufacturing approach for achieving high printing speed and accuracy, Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 234 (2020) 2741–2749. https://doi.org/10.1177/0954406219861664.
    [78] 5 Steps to Better Additive Manufacturing Through Software | Machine Design, (n.d.). https://www.machinedesign.com/3d-printing-cad/article/21837790/5-steps-to-better-additive-manufacturing-through-software (accessed July21, 2021).
    [79] M.Pérez, D.Carou, E.M.Rubio, R.Teti, Current advances in additive manufacturing, Procedia CIRP. 88 (2020) 439–444. https://doi.org/10.1016/J.PROCIR.2020.05.076.
    [80] X.Zhao, S.Li, M.Zhang, Y.Liu, T.Sercombe, S.Wang, Y.Hao, R.Yang, L.E.Murr, Comparison of the microstructures and mechanical properties of Ti-6Al-4V fabricated by selective laser melting and electron beam melting, Mater. Des. 95 (2016) 21–31. https://doi.org/10.1016/J.MATDES.2015.12.135.
    [81] L.E.Murr, S.M.Gaytan, D.A.Ramirez, E.Martinez, J.Hernandez, K.N.Amato, P.W.Shindo, F.R.Medina, R.B.Wicker, Metal Fabrication by Additive Manufacturing Using Laser and Electron Beam Melting Technologies, J. Mater. Sci. Technol. 28 (2012) 1–14. https://doi.org/10.1016/S1005-0302(12)60016-4.
    [82] M.Helou, S.Vongbunyong, S.Kara, Finite Element Analysis and Validation of Cellular Structures, Procedia CIRP. 50 (2016) 94–99. https://doi.org/10.1016/J.PROCIR.2016.05.018.
    [83] R.Gümrük, R.A.W.Mines, Compressive behaviour of stainless steel micro-lattice structures, Int. J. Mech. Sci. 68 (2013) 125–139. https://doi.org/10.1016/J.IJMECSCI.2013.01.006.
    [84] Efficient use of resources in manufacture of metal components - Metal Working World Magazine, (2018). https://www.metalworkingworldmagazine.com/efficient-use-of-resources-in-manufacture-of-metal-components/ (accessed August2, 2021).
    [85] L.Yang, O.Harrysson, D.Cormier, H.West, H.Gong, B.Stucker, Additive Manufacturing of Metal Cellular Structures: Design and Fabrication, JOM. 67 (2015) 608–615. https://doi.org/10.1007/S11837-015-1322-Y.
    [86] C.Ling, A.Cernicchi, M.D.Gilchrist, P.Cardiff, Mechanical behaviour of additively-manufactured polymeric octet-truss lattice structures under quasi-static and dynamic compressive loading, Mater. Des. 162 (2019) 106–118. https://doi.org/10.1016/J.MATDES.2018.11.035.
    [87] M.R.Karamooz Ravari, M.Kadkhodaei, M.Badrossamay, R.Rezaei, Numerical investigation on mechanical properties of cellular lattice structures fabricated by fused deposition modeling, Int. J. Mech. Sci. 88 (2014) 154–161. https://doi.org/10.1016/J.IJMECSCI.2014.08.009.
    [88] I.Paoletti, L.Ceccon, The Evolution of 3D Printing in AEC: From Experimental to Consolidated Techniques, 3D Print. (2018). https://doi.org/10.5772/INTECHOPEN.79668.
    [89] S.Vangapally, K.Agarwal, A.Sheldon, S.Cai, Effect of Lattice Design and Process Parameters on Dimensional and Mechanical Properties of Binder Jet Additively Manufactured Stainless Steel 316 for Bone Scaffolds, Procedia Manuf. 10 (2017) 750–759. https://doi.org/10.1016/J.PROMFG.2017.07.069.
    [90] M.Sharma, H.Dobbelstein, M.Thiele, A.Ostendorf, Laser metal deposition of lattice structures by columnar built-up, Procedia CIRP. 74 (2018) 218–221. https://doi.org/10.1016/J.PROCIR.2018.08.098.
    [91] D.W.Abueidda, M.Bakir, R.K.Abu Al-Rub, J.S.Bergström, N.A.Sobh, I.Jasiuk, Mechanical properties of 3D printed polymeric cellular materials with triply periodic minimal surface architectures, Mater. Des. 122 (2017) 255–267. https://doi.org/10.1016/j.matdes.2017.03.018.
    [92] L.Wang, J.Lau, E.L.Thomas, M.C.Boyce, Co-continuous composite materials for stiffness, strength, and energy dissipation, Adv. Mater. 23 (2011) 1524–1529. https://doi.org/10.1002/adma.201003956.
    [93] M.Zhao, F.Liu, G.Fu, D.Z.Zhang, T.Zhang, H.Zhou, Improved mechanical properties and energy absorption of BCC lattice structures with triply periodic minimal surfaces fabricated by SLM, Materials (Basel). 11 (2018). https://doi.org/10.3390/ma11122411.
    [94] L.Han, S.Che, An Overview of Materials with Triply Periodic Minimal Surfaces and Related Geometry: From Biological Structures to Self-Assembled Systems, Adv. Mater. 30 (2018) 1705708. https://doi.org/10.1002/adma.201705708.
    [95] D.W.Abueidda, M.Elhebeary, C.S. (Andrew)Shiang, S.Pang, R.K.Abu Al-Rub, I.M.Jasiuk, Mechanical properties of 3D printed polymeric Gyroid cellular structures: Experimental and finite element study, Mater. Des. 165 (2019) 107597. https://doi.org/10.1016/j.matdes.2019.107597.
    [96] M.M.Sychov, L.A.Lebedev, S.V.Dyachenko, L.A.Nefedova, Mechanical properties of energy-absorbing structures with triply periodic minimal surface topology, Acta Astronaut. 150 (2018) 81–84. https://doi.org/10.1016/j.actaastro.2017.12.034.
    [97] N.Kladovasilakis, K.Tsongas, D.Tzetzis, Mechanical and FEA-Assisted Characterization of Fused Filament Fabricated Triply Periodic Minimal Surface Structures, J. Compos. Sci. 5 (2021) 58. https://doi.org/10.3390/jcs5020058.
    [98] S.Yu, J.Sun, J.Bai, Investigation of functionally graded TPMS structures fabricated by additive manufacturing, Mater. Des. 182 (2019) 108021. https://doi.org/10.1016/j.matdes.2019.108021.
    [99] L.Zhang, S.Feih, S.Daynes, S.Chang, M.Y.Wang, J.Wei, W.F.Lu, Energy absorption characteristics of metallic triply periodic minimal surface sheet structures under compressive loading, Addit. Manuf. 23 (2018) 505–515. https://doi.org/10.1016/J.ADDMA.2018.08.007.
    [100] J.Maszybrocka, B.Gapiński, M.Dworak, G.Skrabalak, A.Stwora, The manufacturability and compression properties of the Schwarz Diamond type Ti6Al4V cellular lattice fabricated by selective laser melting, Int. J. Adv. Manuf. Technol. 2019 1057. 105 (2019) 3411–3425. https://doi.org/10.1007/S00170-019-04422-6.
    [101] S.Ma, Q.Tang, X.Han, Q.Feng, J.Song, R.Setchi, Y.Liu, Y.Liu, A.Goulas, D.S.Engstrøm, Y.Y.Tse, N.Zhen, Manufacturability, Mechanical Properties, Mass-Transport Properties and Biocompatibility of Triply Periodic Minimal Surface (TPMS) Porous Scaffolds Fabricated by Selective Laser Melting, Mater. Des. 195 (2020) 109034. https://doi.org/10.1016/J.MATDES.2020.109034.
    [102] S.SE, A.A, M.NS, M.A, N.M, S.S, E.M, K.HE, Mechanical and shape memory properties of triply periodic minimal surface (TPMS) NiTi structures fabricated by selective laser melting, Biol. Eng. Med. 3 (2018). https://doi.org/10.15761/bem.1000152.
    [103] Y.Ni, L.Wang, Y.Fan, Mechanical properties of triply periodic minimal surface structures mimicking the microstructure of Woodpecker’s cranial bone, Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS. (2017) 1873–1876. https://doi.org/10.1109/EMBC.2017.8037212.
    [104] X.Guo, X.Zheng, Y.Yang, X.Yang, Y.Yi, Mechanical behavior of TPMS-based scaffolds: a comparison between minimal surfaces and their lattice structures, SN Appl. Sci. 2019 110. 1 (2019) 1–11. https://doi.org/10.1007/S42452-019-1167-Z.
    [105] A.Yánez, A.Cuadrado, O.Martel, H.Afonso, D.Monopoli, Gyroid porous titanium structures: A versatile solution to be used as scaffolds in bone defect reconstruction, Mater. Des. 140 (2018) 21–29. https://doi.org/10.1016/j.matdes.2017.11.050.
    [106] U.Mittag, A.Kriechbaumer, J.Rittweger, Torsion-an underestimated form shaping entity in bone adaptation?, J. Musculoskelet. Neuronal Interact. 18 (2018) 407–418. http://www.ismni.org (accessed May25, 2021).
    [107] E.Boccini, R.Furferi, L.Governi, E.Meli, A.Ridolfi, A.Rindi, Y.Volpe, Toward the integration of lattice structure-based topology optimization and additive manufacturing for the design of turbomachinery components, Adv. Mech. Eng. 11 (2019) 1–14. https://doi.org/10.1177/1687814019859789.
    [108] R.Sharma, An Investigation into the Stiffness Response of Lattice Shapes under Various Loading Conditions, 2019.
    [109] F.Concli, A.Gilioli, Numerical and experimental assessment of the mechanical properties of 3D printed 18-Ni300 steel trabecular structures produced by Selective Laser Melting–a lean design approach, Virtual Phys. Prototyp. 14 (2019) 267–276. https://doi.org/10.1080/17452759.2019.1565596.
    [110] G.Allen, Whitepaper: Implicit modeling | nTopology, (2021). https://ntopology.com/resources/whitepaper-implicit-modeling-technology/ (accessed August17, 2021).
    [111] Andrew Reitz, Implicits and Fields for Beginners, Sp. Tech Expo USA, Pasadena, CA, May 20-22, Booth 6014. (2019). https://ntopology.com/blog/2019/05/13/implicits-and-fields-for-beginners/ (accessed August17, 2021).
    [112] Standard Test Method for Shear Modulus at Room Temperature, in: ASTM B. Stand., 2002. https://compass.astm.org/Standards/HISTORICAL/E143-13.htm (accessed June22, 2021).
    [113] A.Nazir, A.BinArshad, J.-Y.Jeng, Buckling and Post-Buckling Behavior of Uniform and Variable-Density Lattice Columns Fabricated Using Additive Manufacturing, Materials (Basel). 12 (2019) 3539. https://doi.org/10.3390/ma12213539.
    [114] Hewlett-Packard, HP 3D Jet Fusion 5200 - Commercial & Industrial 3D Printer | HP® Official Site, (2021). https://www.hp.com/us-en/printers/3d-printers/products/multi-jet-fusion-4200.html (accessed June22, 2021).
    [115] HP3D Technical White Paper, (2021). https://reinvent.hp.com/us-en-3dprint-wp-technical (accessed June22, 2021).
    [116] H.P.Mjf, General recommendations for printing processes Tuning your HP MJF to the design, 11 (2021).
    [117] HP SmartStream 3D Build Manager Software and Driver Downloads | HP® Customer Support, (2021). https://support.hp.com/us-en/drivers/selfservice/hp-smartstream-software-for-hp-jet-fusion-3d-printers/15831735/model/15831736 (accessed August25, 2021).
    [118] P.Lohmuller, J.Favre, S.Kenzari, B.Piotrowski, L.Peltier, P.Laheurte, Architectural effect on 3D elastic properties and anisotropy of cubic lattice structures, Mater. Des. 182 (2019) 108059. https://doi.org/10.1016/j.matdes.2019.108059.
    [119] SOLIDWORKS, (2021). https://www.solidworks.com/ (accessed June22, 2021).

    QR CODE