簡易檢索 / 詳目顯示

研究生: 黃煥元
Huan-Yuan Huang
論文名稱: 藉由樹脂-壓電PVDF薄膜複合材料增強骨母細胞之增殖及分化行為
Enhanced Osteoblast Proliferation and Differentiation through Resin-Piezoelectric PVDF Membrane Composite Material
指導教授: 何明樺
Ming-Hua Ho
口試委員: 李忠興
Chung‐Hsing Li
洪維松
Wei-Song Hung
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 130
中文關鍵詞: 壓電材料PVDF薄膜細胞增殖組織工程
外文關鍵詞: Piezoelectric Material, Pizeoelectric PVDF Membrane, Cell Proliferation, Tissue Engineering
相關次數: 點閱:469下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 生物壓電材料中的壓電效應可促進骨骼生長,然而,傳統之細胞培養方法多為二維靜態培養,與實際人體內部差異極大,無法準確了解細胞在體內的真實情況。在本研究中,成功設計並製造出可模擬體內環境的體外培養裝置,此機械裝置透過在細胞培養時為三維支架提供週期性的循環壓縮,模擬人體的日常運動行為,並表達骨母細胞在三維結構上受壓電效應刺激時的真實反應。
    本實驗使用彈性樹脂-壓電PVDF薄膜複合支架研究動態培養系統對骨母細胞 (7F2)之影響。彈性樹脂底材使用積層製造之DLP (digital light processing)技術,而薄膜的製備使用乾式法製膜,並透過添加非質子溶劑NMP及石墨烯奈米片做為成核劑誘導壓電β相的結晶。首先探討不同膜厚對薄膜性能改變,結果顯示厚度增加並沒有對壓電性能造成變化,但可使薄膜之電導度些微上升,而透過準靜態實驗分析壓電訊號的結果則顯示,藉由TPMS (triply periodic minimal surface)多孔結構的導入可使壓電效應大幅提升。
    接著研究在動態培養系統中壓電效應對細胞生長所造成的影響,實驗結果顯示,當生物支架受到循環壓縮時,產生之壓電效應可增強骨母細胞之增殖與分化行為,在TPMS結構中的表現尤其明顯。相較於靜態培養,在動態培養之多孔支架上觀察到較好的細胞貼附與活性、且亦發現骨分化時程被提前與較優異的礦化表現。結果顯示此複合支架不僅具有良好的生物相容性,更有助於細胞的各項生化表現,極有淺力應用於組織工程與骨間植入物等領域中。


    The piezoelectricity of piezoelectric biomaterial stimulates bone growth. However, conventional cell culture method is conducted within two-dimensional static system which is very different from in vivo human condition. In this research, a novel machinery for in vitro experiment was established. This equipment setup could simulate human daily motion by applying periodic compression force to the three-dimensional scaffolds and reflected the actual behavior of osteoblast in three-dimensional structures with piezoelectric stimulation.
    The resin/PVDF membrane composite scaffolds with different structure bases were used to incubate osteoblast (7F2) in dynamic culture system. The photo-polymerized resin bases were manufactured with digital light processing (DLP) technique, and the PVDF membranes were coated by dry-casting method. With the addition of aprotic solvent, NMP, and graphene nanoplatelets, the piezoelectric β crystal of PVDF could be induced. According to the results, thickness change of membrane would not affect the piezoelectricity but slightly increased the conductivity. Piezoelectric signal which was tested through quasi-static experimental setup proved that triply periodic minimal surface (TPMS) structures could highly increase the piezoelectricity.
    In the second part, osteoblast (7F2) were incubated with composite scaffolds in dynamic culture system. When scaffolds were compressed with cycle loading, the piezoelectricity of PVDF membrane enahnced the proliferation and differentiation of osteoblast, especially in porous structures. Compared to static incubation, cell adhesion and viability were promoted in dynamic ones, also, differentiation stage was moved up and a better mineralization behavior was shown. These results supported that the composite scaffolds in this research was biocompatible and would be potential in further biomedical applications such as bone implants.

    摘要 I Abstract II 致謝 IV 目錄 V 圖目錄 IX 表目錄 XIII 方程式目錄 XIV 專有名詞及縮寫 XV 第一章 緒論 1 第二章 文獻回顧 3 2.1 積層製造技術簡介 3 2.1.1 積層製造技術種類 3 2.1.2 光聚合固化成型機制 6 2.1.3 光固化樹脂主要成分 7 2.1.4 光固化系統於生醫領域之應用 9 2.2 壓電材料簡介 10 2.2.1 壓電作用機制 10 2.2.2 壓電材料種類及其主要應用 13 2.2.3 壓電聚合物簡介 16 2.2.4 壓電型高分子於生醫領域之應用 17 2.3 壓電型PVDF簡介 19 2.3.1 PVDF壓電性成因 19 2.3.2 PVDF合成方法 20 2.4 壓電材料對細胞培養之影響 24 2.4.1 電刺激與細胞生長之關係 24 2.4.2 壓電材料於細胞上之培養系統 25 第三章 實驗材料與方法 28 3.1 實驗藥品 28 3.2 實驗儀器 30 3.3. 生物支架製備 32 3.3.1 光固化樹脂配方 32 3.3.2 光固化樹脂列印 32 3.3.3 PVDF壓電薄膜製備 33 3.4 材料鑑定與性質分析 34 3.4.1 薄膜SEM分析 34 3.4.2 表面形貌檢測 34 3.4.3 薄膜導電性能分析 35 3.4.4 結晶型態鑑定 35 3.4.5 準靜態壓電分析 36 3.4.6 親疏水性檢測 37 3.5 基材結構設計與機械性質分析 38 3.5.1 底材結構設計 38 3.5.2 壓縮試驗 38 3.5.3 蒲松比測試 39 3.6 動態培養系統建立 40 3.6.1 棒槌敲擊之培養系統 40 3.6.2 機械裝置之培養系統 40 3.7 體外細胞測試 42 3.7.1 光固化材料試片製作 42 3.7.2 細胞毒性檢測方式與操作 42 3.7.3 細胞來源 43 3.7.4 細胞培養 43 3.7.5 細胞冷凍保存 44 3.7.6 細胞解凍及培養 44 3.7.7 細胞計數 45 3.7.8 體外細胞培養 46 3.7.9 粒線體活性測試 47 3.7.10 鹼性磷酸酶測試 49 3.7.11 蛋白質濃度測定 50 3.7.12 ARS染色方法 52 3.7.13 電子顯微鏡樣品製備 53 第四章 結果與討論 55 4.1 壓電PVDF薄膜性質分析 55 4.1.1 薄膜SEM分析 55 4.1.2 材料表面形貌分析 58 4.1.3 壓電薄膜之結晶型態分析 61 4.1.4 材料親疏水性分析 64 4.1.5 薄膜導電性能分析 66 4.2 底材結構與壓電訊號關聯性之分析 68 4.2.1 底材結構變化與壓縮模數之關係 68 4.2.2 結構變化與蒲松比之關係 71 4.2.3 壓電訊號分析 72 4.3 壓電複合材料之生物相容性分析 74 4.3.1 材料細胞毒性分析 74 4.3.2 靜態培養之細胞親和性分析 76 4.3.3 靜態培養之細胞前期骨分化分析 78 4.4 細胞於靜態系統與動態系統之差異 80 4.4.1 細胞活性表現比較 80 4.4.2 細胞型態比較 85 4.4.3 細胞分化表現比較 89 4.4.4 細胞成骨表現比較 94 第五章 結論 96 參考文獻 98 Appendix 110

    1.      Parthasarathy, J., B. Starly, and S. Raman, A design for the additive manufacture of functionally graded porous structures with tailored mechanical properties for biomedical applications. Journal of Manufacturing Processes, 2011. 13: p. 160-170.
    2.      Lee, J.Y., J. An, and C.K. Chua, Fundamentals and applications of 3D printing for novel materials. Applied Materials Today, 2017. 7: p. 120-133.
    3.      Antonov, E.N., V. N. Bagratashvili, M. J. Whitaker, J. J. A. Barry, K. M. Shakesheff, A. N. Konovalov, V. K. Popov and S. M. Howdle, Three‐dimensional bioactive and biodegradable scaffolds fabricated by surface‐selective laser sintering. Advanced Materials, 2005. 17: p. 327-330.
    4.      Calignano, F., D. Manfredi, E.P. Ambrosio, S. Biamino, M. Lombardi, E. Atzeni, A. Salmi, P. Minetola, L. Iuliano and P. Fino, Overview on additive manufacturing technologies. Proceedings of the IEEE, 2017. 105: p. 593-612.
    5.      Kurzynowski, T., E. Chlebus, B. Kuźnicka and J. Reiner, Parameters in selective laser melting for processing metallic powders. High Power Laser Materials Processing: Lasers, Beam Delivery, Diagnostics, and Applications, 2012. 8239: p. 317-322.
    6.      Gleeson, M.R., S. Liu, S. O’Duill and J.T. Sheridan, Examination of the photoinitiation processes in photopolymer materials. Journal of Applied Physics, 2008. 104: p. 064917-1-064917-8.
    7.      Goodner, M.D., H.R. Lee, and C.N. Bowman, Method for determining the kinetic parameters in diffusion-controlled free-radical homopolymerizations. Industrial & Engineering Chemistry Research, 1997. 36: p. 1247-1252.
    8.      Kauffmann, H.F., Mechanism of the Photo-Polymerization of Styrene. 1. Deactivation of Electronically Excited Styrene by Chemical Concentration Quenching Processes-Photo-Oligomers and Photopolymers. Macromolecular Chemistry and Physics, 1979. 180: p. 2649-2663.
    9.      Kilambi, H., S.K. Reddy, L. Schneidewind, T.Y. Lee, J.W. Stansbury, and C.N. Bowman, Design, development, and evaluation of monovinyl acrylates characterized by secondary functionalities as reactive diluents to diacrylates. Macromolecules, 2007. 40: p. 6112-6118.
    10.    Quan, H., T. Zhang, H. Xu, S. Luo, J. Nie and X. Zhu., Photo-curing 3D printing technique and its challenges. Bioactive Materials, 2020. 5: p. 110-115.
    11.    Cui, X., K. Breitenkamp, M.G. Finn, M. Lotz, and D.D. D'Lima, Direct human cartilage repair using three-dimensional bioprinting technology. Tissue Engineering Part A, 2012. 18: p. 1304-1312.
    12.    Danilevicius, P., L. Georgiadi, C.J. Pateman, F. Claeyssens, M. Chatzinikolaidou and M. Farsari, The effect of porosity on cell ingrowth into accurately defined, laser-made, polylactide-based 3D scaffolds. Applied Surface Science, 2015. 336: p. 2-10.
    13.    Curie, J. and P. Curie, Développement par compression de l'électricité polaire dans les cristaux hémièdres à faces inclinées. Bulletin de Minéralogie, 1880. 3: p. 90-93.
    14.    Rim, Y.S., S.H. Bae, H. Chen, N.D. Marco and Y. Yang, Recent progress in materials and devices toward printable and flexible sensors. Advanced Materials, 2016. 28: p. 4415-4440.
    15.    Ramadan, K.S., D. Sameoto, and S. Evoy, A review of piezoelectric polymers as functional materials for electromechanical transducers. Smart Materials and Structures, 2014. 23: p. 033001-1-033001-26.
    16.    Brown, C., R. Kell, R. Taylor and L. Thomas, Piezoelectric materials, a review of progress. IRE Transactions on Component Parts, 1962. 9: p. 193-211.
    17.    Kholkin, A.L., N.A. Pertsev, and A.V. Goltsev, Piezoelectricity and crystal symmetry in Piezoelectric and Acoustic Materials for Transducer Applications. 2008, Springer. p. 17-38.
    18.    Jean-Mistral, C., S. Basrour, and J. Chaillout, Comparison of electroactive polymers for energy scavenging applications. Smart Materials and Structures, 2010. 19: p. 085012-1-085012-14.
    19.    Dineva, P., D. Gross, R. Müller and T. Rangelov, Piezoelectric materials, in Dynamic fracture of piezoelectric materials. 2014, Springer. p. 7-32.
    20.    Li, H., C. Tian, and Z.D. Deng, Energy harvesting from low frequency applications using piezoelectric materials. Applied Physics Reviews, 2014. 1: p. 041301-1-041301-20.
    21.    Hao, J., W. Li, J. Zhai and H. Chen, Progress in high-strain perovskite piezoelectric ceramics. Materials Science and Engineering: R: Reports, 2019. 135: p. 1-57.
    22.    Mishra, S., L. Unnikrishnan, S.K. Nayak and S. Mohanty, Advances in piezoelectric polymer composites for energy harvesting applications: a systematic review. Macromolecular Materials and Engineering, 2019. 304: p. 1800463-1-1800463-25.
    23.    Kim, H.S., J.H. Kim, and J. Kim, A review of piezoelectric energy harvesting based on vibration. International Journal of Precision Engineering and Manufacturing, 2011. 12: p. 1129-1141.
    24.    Shenck, N.S. and J.A. Paradiso, Energy scavenging with shoe-mounted piezoelectrics. IEEE Micro, 2001. 21: p. 30-42.
    25.    Karami, M.A., O. Bilgen, D.J. Inman and M.I. Friswell, Experimental and analytical parametric study of single-crystal unimorph beams for vibration energy harvesting. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2011. 58: p. 1508-1520.
    26.    Narita, F. and M. Fox, A review on piezoelectric, magnetostrictive, and magnetoelectric materials and device technologies for energy harvesting applications. Advanced Engineering Materials, 2018. 20: p. 1700743-1-1700743-22.
    27.    Shrout, T.R. and S.J. Zhang, Lead-free piezoelectric ceramics: Alternatives for PZT? Journal of Electroceramics, 2007. 19: p. 113-126.
    28.    Bowen, C., H.A. Kim, P.M. Weaver and S. Dunn, Piezoelectric and ferroelectric materials and structures for energy harvesting applications. Energy & Environmental Science, 2014. 7: p. 25-44.
    29.    Berlincourt, D. and H. Jaffe, Elastic and piezoelectric coefficients of single-crystal barium titanate. Physical Review, 1958. 111: p. 143-148.
    30.    Zhang, J., Z. Wu, Y. Jia, J. Kan and G. Cheng, Piezoelectric Bimorph Cantilever for Vibration-Producing-Hydrogen. Sensors, 2013. 13: p. 367-374.
    31.    Zhang, R., B. Jiang, and W. Cao, Elastic, piezoelectric, and dielectric properties of multidomain 0.67 Pb(Mg1/3Nb2/3)O3–0.33 PbTiO3 single crystals. Journal of Applied Physics, 2001. 90: p. 3471-3475.
    32.    Seung-Eek, P. and T.R. Shrout, Characteristics of relaxor-based piezoelectric single crystals for ultrasonic transducers. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1997. 44: p. 1140-1147.
    33.    Gomes, J., J.S. Nunes, V. Sencadas and S. Lanceros-Méndez, Influence of the β-phase content and degree of crystallinity on the piezo-and ferroelectric properties of poly (vinylidene fluoride). Smart Materials and Structures, 2010. 19: p. 065010-1-065010-7.
    34.    Koga, K. and H. Ohigashi, Piezoelectricity and related properties of vinylidene fluoride and trifluoroethylene copolymers. Journal of Applied Physics, 1986. 59: p. 2142-2150.
    35.    Lovinger, A.J., Ferroelectric polymers. Science, 1983. 220: p. 1115-1121.
    36.    Lutkenhaus, J.L., K. McEnnis, A. Serghei and T.P. Russell, Confinement Effects on Crystallization and Curie Transitions of Poly(vinylidene fluoride-co-trifluoroethylene). Macromolecules, 2010. 43: p. 3844-3850.
    37.    Aldas, M., G. Boiteux, G. Seytre and Z. Ghallabi, Dielectric behaviour of BaTiO3 / P(VDF-HFP) composite thin films prepared by solvent evaporation method. IEEE International Conference on Solid Dielectrics, 2010. p. 1-4
    38.    Frübing, P., A. Kremmer, R. Gerhard-Multhaupt, A. Spanoudaki and P. Pissis, Relaxation processes at the glass transition in polyamide 11: From rigidity to viscoelasticity. The Journal of Chemical Physics, 2006. 125: p. 214701-1-214701-8.
    39.    Gururaja, T.R., W.A. Schulze, L.E. Cross, R.E. Newnham, B.A. Auld and Y.J. Wang, Piezoelectric Composite Materials for Ultrasonic Transducer Applications. Part I: Resonant Modes of Vibration of PZT Rod-Polymer Composites. IEEE Transactions on Sonics and Ultrasonics, 1985. 32: p. 481-498.
    40.    Sappati, K.K. and S. Bhadra, Piezoelectric Polymer and Paper Substrates: A Review. Sensors, 2018. 18: p. 3605-1-3605-30.
    41.    Setter, N., D. Damjanovic, L. Eng, G. Fox, S. Gevorgian, S. Hong, A. Kingon, H. Kohlstedt, N.Y. Park, G.B. Stephenson, I. Stolitchnov, A.K. Taganstev, D.V. Taylor, T. Yamada and S. Streiffer, Ferroelectric thin films: Review of materials, properties, and applications. Journal of Applied Physics, 2006. 100: p. 051606-1-051606-46.
    42.    Sharma, T., S.S. Je, B. Gill and J.X.J. Zhang, Patterning piezoelectric thin film PVDF–TrFE based pressure sensor for catheter application. Sensors and Actuators A: Physical, 2012. 177: p. 87-92.
    43.    Chiu, Y.Y., W.Y. Lin, H.Y. Wang, S.B. Huang and M.H. Wu, Development of a piezoelectric polyvinylidene fluoride (PVDF) polymer-based sensor patch for simultaneous heartbeat and respiration monitoring. Sensors and Actuators A: Physical, 2013. 189: p. 328-334.
    44.    Kalimuldina, G., N. Turdakyn, I. Abay, A. Medeubayev, A. Nurpeissova, D. Adair and Z. Bakenov, A Review of Piezoelectric PVDF Film by Electrospinning and Its Applications. Sensors, 2020. 20: p. 5214-1-5214-43.
    45.    Mathur, S., J. Scheinbeim, and B. Newman, Piezoelectric properties and ferroelectric hysteresis effects in uniaxially stretched nylon‐11 films. Journal of Applied Physics, 1984. 56: p. 2419-2425.
    46.    Huang, L., X. Zhuang, J. Hu, L. Lang, P. Zhang, Y. Wang, X. Chen, Y. Wei, and X. Jing, Synthesis of biodegradable and electroactive multiblock polylactide and aniline pentamer copolymer for tissue engineering applications. Biomacromolecules, 2008. 9: p. 850-858.
    47.    Bryan, D.J., J.B. Tang, S.A. Doherty, D.D. Hile, D.J. Trantolo, D.L. Wise and I.C. Summerhayes, Enhanced peripheral nerve regeneration through a poled bioresorbable poly (lactic-co-glycolic acid) guidance channel. Journal of Neural Engineering, 2004. 1: p. 91-98.
    48.    Fukada, E., History and recent progress in piezoelectric polymers. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2000. 47: p. 1277-1290.
    49.    Chang, Y.M., J.S. Lee, and K.J. Kim. Heartbeat monitoring technique based on corona-poled PVDF film sensor for smart apparel application. Solid State Phenomena, 2007. 124-126: p. 299-302
    50.    Giannetti, E., Semi‐crystalline fluorinated polymers. Polymer International, 2001. 50: p. 10-26.
    51.    El Mohajir, B.-E. and N. Heymans, Changes in structural and mechanical behaviour of PVDF with processing and thermomechanical treatments. 1. Change in structure. Polymer, 2001. 42: p. 5661-5667.
    52.    Salimi, A. and A. Yousefi, FTIR studies of β-phase crystal formation in stretched PVDF films. Polymer Testing, 2003. 22: p. 699-704.
    53.    Correia, H.M. and M.M. Ramos, Quantum modelling of poly (vinylidene fluoride). Computational Materials Science, 2005. 33: p. 224-229.
    54.    Chen, C., F. Cai1, Y. Zhu, L. Liao, J. Qian, F.G. Yuan and N. Zhang, 3D printing of electroactive PVDF thin films with high β-phase content. Smart Materials and Structures, 2019. 28: p. 065017-1-065017-9.
    55.    Ueberschlag, P., PVDF piezoelectric polymer. Sensor Review, 2001. 21: p. 118-126
    56.    Bidsorkhi, H.C., A.G. D’Aloia, G.D. Bellis, A. Proietti, A. Rinaldi, M. Fortunato, P. Ballirano, M. Bracciale, M.L. Santarelli and M.S. Sarto, Nucleation effect of unmodified graphene nanoplatelets on PVDF/GNP film composites. Materials Today Communications, 2017. 11: p. 163-173.
    57.    Low, Y., N. Meenubharathi, N.D. Niphadkar, F.Y.C. Boey and K.W. Ng, α- and β-poly (vinylidene fluoride) evoke different cellular behaviours. Journal of Biomaterials Science, Polymer Edition, 2011. 22: p. 1651-1667.
    58.    Wu, L., M. Jing, Y. Liu, H. Ning, X. Liu, S. Liu, L. Lin, N. Hu and L. Liua, Power generation by PVDF-TrFE/graphene nanocomposite films. Composites Part B: Engineering, 2019. 164: p. 703-709.
    59.    Ruan, L., X. Yao, Y. Chang, L. Zhou, G. Qin and X. Zhang, Properties and applications of the β phase poly (vinylidene fluoride). Polymers, 2018. 10: p. 228-1-228-27.
    60.    Davis, G., J.E. McKinney, M.G. Broadhurst and S.C. Roth, Electric‐field‐induced phase changes in poly (vinylidene fluoride). Journal of Applied Physics, 1978. 49: p. 4998-5002.
    61.    Lovinger, A.J., Crystallization of the β phase of poly(vinylidene fluoride) from the melt. Polymer, 1981. 22: p. 412-413.
    62.    Yang, D. and Y. Chen, β-phase formation of poly(vinylidene fluoride) from the melt induced by quenching. Journal of Materials Science Letters, 1987. 6: p. 599-603.
    63.    Kawai, H., The piezoelectricity of poly (vinylidene fluoride). Japanese Journal of Applied Physics, 1969. 8: p. 975-976.
    64.    Mohammadi, B., A.A. Yousefi, and S.M. Bellah, Effect of tensile strain rate and elongation on crystalline structure and piezoelectric properties of PVDF thin films. Polymer Testing, 2007. 26: p. 42-50.
    65.    Sencadas, V., M.V. Moreira, S. Lanceros-Méndez, A.S. Pouzada and R.G. Filho, α-to β Transformation on PVDF films obtained by uniaxial stretch. Materials Science Forum, 2006. 514-516: p. 872-876
    66.    Ramos, M.M., H.M. Correia, and S. Lanceros-Mendez, Atomistic modelling of processes involved in poling of PVDF. Computational Materials Science, 2005. 33: p. 230-236.
    67.    Zhao, Z., J. Li, X. Yuan, X. Li, Y. Zhang and J. Sheng, Preparation and properties of electrospun poly (vinylidene fluoride) membranes. Journal of Applied Polymer Science, 2005. 97: p. 466-474.
    68.    Andrew, J.S., J.J. Mack, and D.R. Clarke, Electrospinning of polyvinylidene difluoride-based nanocomposite fibers. Journal of Materials Research, 2008. 23: p. 105-114.
    69.    Kang, S.J., Y.J. Park, J. Sung, P.S. Jo, C. Park, K.J. Kim and B.O. Cho, Spin cast ferroelectric beta poly (vinylidene fluoride) thin films via rapid thermal annealing. Applied Physics Letters, 2008. 92: p. 012921-1-012921-3.
    70.    Ramasundaram, S., S. Yoon, K.J. Kim and J.S. Lee, Direct preparation of nanoscale thin films of poly (vinylidene fluoride) containing β‐crystalline phase by heat‐controlled spin coating. Macromolecular Chemistry and Physics, 2008. 209: p. 2516-2526.
    -1-technique of processing highly oriented poly (vinylidene fluoride) films exclusively in the β phase. Journal of Polymer Science Part B: Polymer Physics, 2007. 45: p. 2793-2801.
    72.    Sencadas, V., R.G. Filho, and S. Lanceros-Mendez, Processing and characterization of a novel nonporous poly (vinilidene fluoride) films in the β phase. Journal of Non-Crystalline Solids, 2006. 352: p. 2226-2229.
    73.    Low, Y.K.A., L.Y. Tan, L.P. Tan, F.Y.C. Boey and K.W. Ng, Increasing solvent polarity and addition of salts promote β‐phase poly (vinylidene fluoride) formation. Journal of Applied Polymer Science, 2013. 128: p. 2902-2910.
    74.    Mendes, S.F., C.M. Costa, C. Caparros, V. Sencadas ans S. Lanceros-Méndez, Effect of filler size and concentration on the structure and properties of poly (vinylidene fluoride)/BaTiO3 nanocomposites. Journal of Materials Science, 2012. 47: p. 1378-1388.
    75.    Ye, H.J., W.Z. Shao, and L. Zhen, Crystallization kinetics and phase transformation of poly (vinylidene fluoride) films incorporated with functionalized BaTiO3 nanoparticles. Journal of Applied Polymer Science, 2013. 129: p. 2940-2949.
    76.    Ma, W., J. Zhang, S. Chen and X. Wang, β-Phase of poly (vinylidene fluoride) formation in poly (vinylidene fluoride)/poly (methyl methacrylate) blend from solutions. Applied Surface Science, 2008. 254: p. 5635-5642.
    77.    Yu, S., W. Zheng, W. Yu, Y. Zhang, Q. Jiang and Z. Zhao, Formation Mechanism of β-Phase in PVDF/CNT Composite Prepared by the Sonication Method. Macromolecules, 2009. 42: p. 8870-8874.
    78.    Rahman, M.A. and G.S. Chung, Synthesis of PVDF-graphene nanocomposites and their properties. Journal of Alloys and Compounds, 2013. 581: p. 724-730.
    79.    Lee, Y.S. and T.L. Arinzeh, The influence of piezoelectric scaffolds on neural differentiation of human neural stem/progenitor cells. Tissue Engineering Part A, 2012. 18: p. 2063-2072.
    80.    Tofail, S.A., Biological Interactions with surface charge in biomaterials. Royal Society of Chemistry, 2011.
    81.    Chen, C., X. Bai, Y. Ding and I.S. Lee, Electrical stimulation as a novel tool for regulating cell behavior in tissue engineering. Biomaterials Research, 2019. 23: p. 1-12.
    82.    Liu, Q. and B. Song, Electric field regulated signaling pathways. The International Journal of Biochemistry & Cell Biology, 2014. 55: p. 264-268.
    83.    Erickson, C.A. and R. Nuccitelli, Embryonic fibroblast motility and orientation can be influenced by physiological electric fields. The Journal of Cell Biology, 1984. 98: p. 296-307.
    84.    Santos, N., M. Cicuéndez, T. Holz, V.S. Silva, A.J.S. Fernandes, M. Vila, and F.M. Costa, Diamond-graphite nanoplatelet surfaces as conductive substrates for the electrical stimulation of cell functions. ACS Applied Materials & Interfaces, 2017. 9: p. 1331-1342.
    85.    Wiesmann, H.P., M. Hartig, U. Stratmann, U. Meyer and U. Joos, Electrical stimulation influences mineral formation of osteoblast-like cells in vitro. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 2001. 1538: p. 28-37.
    86.    Ribeiro, C., J. Pärssinen, V. Sencadas, V. Correia, S. Miettinen, V.P. Hytönen and S. Lanceros-Méndez, Dynamic piezoelectric stimulation enhances osteogenic differentiation of human adipose stem cells. Journal of Biomedical Materials Research Part A, 2015. 103: p. 2172-2175.
    87.    Rodrigues, M., M.E. Gomes, J.F. Mano and R.L. Reis, β-PVDF membranes induce cellular proliferation and differentiation in static and dynamic conditions. Materials Science Forum, 2008. 587-588: p. 72-76
    88.    Tang, Y., C. Wu, Z. Wu, L. Hu, W. Zhang and K. Zhao, Fabrication and in vitro biological properties of piezoelectric bioceramics for bone regeneration. Scientific Reports, 2017. 7: p. 1-12.
    89.    Fialka, J. and P. Beneš, Comparison of Methods for the Measurement of Piezoelectric Coefficients. IEEE Transactions on Instrumentation and Measurement, 2013. 62: p. 1047-1057.
    90.    Ko, Y.C., B.D. Ratner, and A.S. Hoffman, Characterization of hydrophilic—hydrophobic polymeric surfaces by contact angle measurements. Journal of Colloid and Interface Science, 1981. 82: p. 25-37.
    91.    Mesa-Múnera, E., J.F. Ramírez-Salazar, P. Boulanger and J.W. Branch, Inverse-FEM characterization of a brain tissue phantom to simulate compression and indentation. Ingeniería y Ciencia, 2012. 8: p. 11-36.
    92.    Kleemann, J., F. Finsterwalder, and W. Tillmetz, Characterisation of mechanical behaviour and coupled electrical properties of polymer electrolyte membrane fuel cell gas diffusion layers. Journal of Power Sources, 2009. 190: p. 92-102.
    93.    Greaves, G.N., A.L. Greer, R.S. Lakes and T. Rouxel, Poisson's ratio and modern materials. Nature Materials, 2011. 10: p. 823-837.
    94.    Gregory, C.A., W.G. Gunn, A. Peister and D.J. Prockop, An Alizarin red-based assay of mineralization by adherent cells in culture: comparison with cetylpyridinium chloride extraction. Analytical Biochemistry, 2004. 329: p. 77-84.
    95.    Zhao, Y., Y. Zhou, Y. Yang, J. Xu, Z.D. Chen and Y. Jiang, The impact of solvents on properties of solution-cast poly(vinylidene fluoride) films for energy storage. Materials Letters, 2018. 219: p. 201-204.
    96.    Gregorio, R. and D.S. Borges, Effect of crystallization rate on the formation of the polymorphs of solution cast poly(vinylidene fluoride). Polymer, 2008. 49: p. 4009-4016.
    97.    Zha, D., S. Mei, Z. Wang, H. Li, Z. Shi and Z. Jin, Superhydrophobic polyvinylidene fluoride/graphene porous materials. Carbon, 2011. 49: p. 5166-5172.
    98.    Wu, X., B. Zhao, L. Wang, Z. Zhang, H. Zhang, X. Zhao and X. Guo, Hydrophobic PVDF/graphene hybrid membrane for CO2 absorption in membrane contactor. Journal of Membrane Science, 2016. 520: p. 120-129.
    99.    Abd El-Kader, M.F.H., N.S. Awwad, H.A. Ibrahium and M.K. Ahmed, Graphene oxide fillers through polymeric blends of PVC/PVDF using laser ablation technique: electrical behavior, cell viability, and thermal stability. Journal of Materials Research and Technology, 2021. 13: p. 1878-1886.
    100.  Cai, X., T. Lei, D. Sun and L. Lin, A critical analysis of the α, β and γ phases in poly (vinylidene fluoride) using FTIR. RSC Advances, 2017. 7: p. 15382-15389.
    101.  RP, V., D.V. Khakhar, and A. Misra, Studies on α to β phase transformations in mechanically deformed PVDF films. Journal of Applied Polymer Science, 2010. 117: p. 3491-3497.
    102.  Anithakumari, P., B.P. Mandal, E. Abdelhamid, R. Naik and A.K. Tyagi, Enhancement of dielectric, ferroelectric and magneto-dielectric properties in PVDF–BaFe12O19 composites: a step towards miniaturizated electronic devices. RSC Advances, 2016. 6: p. 16073-16080.
    103.  El Achaby, M., F.Z. Arrakhiz, S. Vaudreuil, E.M. Essassi and A. Qaiss, Piezoelectric β-polymorph formation and properties enhancement in graphene oxide–PVDF nanocomposite films. Applied Surface Science, 2012. 258: p. 7668-7677.
    104.  Ng, K.E., P.C. Ooi, M.A.S.M. Haniff, B.T. Goh, C.F. Dee, W.S. Chang, M.F.M.R. Wee and M.A. Mohamed, Performance of all-solution-processed, durable 2D MoS2 flakes−BaTiO3 nanoparticles in polyvinylidene fluoride matrix nanogenerator devices using N-methyl-2-pyrrolidone polar solvent. Journal of Alloys and Compounds, 2020. 820: p. 153160-1-153160-7.
    105.  Liu, Y.L., Y. Li, J.T. Xu and Z.Q. Fan, Cooperative Effect of Electrospinning and Nanoclay on Formation of Polar Crystalline Phases in Poly(vinylidene fluoride). ACS Applied Materials & Interfaces, 2010. 2: p. 1759-1768.
    106.  Huang, X., P. Jiang, C. Kim, F. Liu and Y. Yin, Influence of aspect ratio of carbon nanotubes on crystalline phases and dielectric properties of poly(vinylidene fluoride). European Polymer Journal, 2009. 45: p. 377-386.
    107.  Martins, P., C.M. Costa, M. Benelmekki, G. Botelho and S. Lanceros-Mendez, On the origin of the electroactive poly (vinylidene fluoride) β-phase nucleation by ferrite nanoparticles via surface electrostatic interactions. CrystEngComm, 2012. 14: p. 2807-2811.
    108.  Huang, L., C.M. Costa, M. Benelmekki, G. Botelho and S. Lanceros-Mendez, Piezoelectric property of PVDF/graphene composite films using 1H, 1H, 2H, 2H-Perfluorooctyltriethoxysilane as a modifying agent. Journal of Alloys and Compounds, 2016. 688: p. 885-892.
    109.  Sigal, G.B., M. Mrksich, and G.M. Whitesides, Effect of Surface Wettability on the Adsorption of Proteins and Detergents. Journal of the American Chemical Society, 1998. 120: p. 3464-3473.
    110.  Rosales-Leal, J.I., M.A. Rodríguez-Valverde, G.Mazzaglia, P.J. Ramón-Torregrosa, L. Díaz-Rodríguez, O. García-Martínez, M. Vallecillo-Capilla, C. Ruiz and M.A. Cabrerizo-Vílchez, Effect of roughness, wettability and morphology of engineered titanium surfaces on osteoblast-like cell adhesion. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010. 365: p. 222-229.
    111.   Wang, Z., H. Yu, J. Xia, F. Zhang, F. Li, Y. Xia and Y. Li, Novel GO-blended PVDF ultrafiltration membranes. Desalination, 2012. 299: p. 50-54.
    112.  Leenaerts, O., B. Partoens, and F.M. Peeters, Water on graphene: Hydrophobicity and dipole moment using density functional theory. Physical Review B, 2009. 79: p. 235440-1-235440-5.
    113.  Park, J.K., G.H. Lee, J.H. Kim, M.G. Park, C.C. Ko, H.I. Kim and Y.H. Kown, Polymerization shrinkage, flexural and compression properties of low-shrinkage dental resin composites. Dental Materials Journal, 2014. 33: p. 104-110.
    114.  Kapfer, S.C., S.T. Hyde, K. Mecke, C.H. Arns, G.E. Schröder-Turk, Minimal surface scaffold designs for tissue engineering. Biomaterials, 2011. 32: p. 6875-6882.
    115.  Cansizoglu, O., O. Harrysson, D. Cormier, H. West and T. Mahale, Properties of Ti–6Al–4V non-stochastic lattice structures fabricated via electron beam melting. Materials Science and Engineering: A, 2008. 492: p. 468-474.
    116.  Cheng, X., S.J. Li, L.E. Murr, Z.B. Zhang, Y.L. Hao, R.Yang, F.Medina and R.B. Wicker, Compression deformation behavior of Ti–6Al–4V alloy with cellular structures fabricated by electron beam melting. Journal of the Mechanical Behavior of Biomedical Materials, 2012. 16: p. 153-162.
    117.  Kadkhodapour, J., H. Montazerian, A.Ch. Darabi, A.P. Anaraki, S.M. Ahmadi, A.A. Zadpoor and S. Schmauderb, Failure mechanisms of additively manufactured porous biomaterials: Effects of porosity and type of unit cell. Journal of the Mechanical Behavior of Biomedical Materials, 2015. 50: p. 180-191.
    118.  Abueidda, D.W., M. Elhebeary, C.-S.Shiang, S. Pang, R.K.A. Al-Rub and I.M. Jasiuk, Mechanical properties of 3D printed polymeric Gyroid cellular structures: Experimental and finite element study. Materials & Design, 2019. 165: p. 107597-1-107597-9.
    119.  Dunn, M.L. and H. Ledbetter, Poisson's ratio of porous and microcracked solids: Theory and application to oxide superconductors. Journal of Materials Research, 1995. 10: p. 2715-2722.
    120.  Molchadsky, A., N. Rivlin, R. Brosh, V. Rotter, and R. Sarig, p53 is balancing development, differentiation and de-differentiation to assure cancer prevention. Carcinogenesis, 2010. 31: p. 1501-1508.
    121.  Williams, D.F., On the mechanisms of biocompatibility. Biomaterials, 2008. 29: p. 2941-2953.
    122.  Zhang, B., P.S. Lung, S. Zhao, Z. Chu, W. Chrzanowski and Q. Li, Shape dependent cytotoxicity of PLGA-PEG nanoparticles on human cells. Scientific Reports, 2017. 7: p. 7315-1-7315-8.
    123.  Ravi, M., V. Paramesh, S.R. Kaviya, E. Anuradha and F.D.P. Solomon, 3D cell culture systems: advantages and applications. Journal of Cellular Physiology, 2015. 230: p. 16-26.
    124.  Yilgor, P., R.A. Sousa, R.L. Reis, N. Hasirci, V. Hasirci, 3D plotted PCL scaffolds for stem cell based bone tissue engineering. Macromolecular Symposia, 2008. 269: p. 92-99
    125.  Beck Jr, G.R., Inorganic phosphate as a signaling molecule in osteoblast differentiation. Journal of Cellular Biochemistry, 2003. 90: p. 234-243.
    126.  Bellows, C.G., J.N.M. Heersche, and J.E. Aubin, Inorganic phosphate added exogenously or released from β-glycerophosphate initiates mineralization of osteoid nodules in vitro. Bone and Mineral, 1992. 17: p. 15-29.
    127.  Ribeiro, C., S. Moreira, V. Correia, V. Sencadas, J.G. Rocha, F.M. Gama, J.L. Gómez Ribelles and S. Lanceros-Méndez, Enhanced proliferation of pre-osteoblastic cells by dynamic piezoelectric stimulation. RSC Advances, 2012. 2: p. 11504-11509.
    128.  Stein, G.S., J.B. Lian, J.L. Stein, A.J. Van Wijnen, and M. Montecino, Transcriptional control of osteoblast growth and differentiation. Physiological Reviews, 1996. 76: p. 593-629.
    129.  Venugopal, J.R., V.R.G. Dev, T. Senthilram, D. Sathiskumar, D. Gupta, S. Ramakrishna, Osteoblast mineralization with composite nanofibrous substrate for bone tissue regeneration. Cell Biology International, 2011. 35: p. 73-80.

    無法下載圖示 全文公開日期 2033/04/24 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE