簡易檢索 / 詳目顯示

研究生: 鄭祐丞
You-Cheng Cheng
論文名稱: 探討樹脂組成與固含量對 DLP-3D 列印製備 AlCrFeNi 高熵合金之固化行為影響
Study on the slurry component in the formation behavior of AlCrFeNi high-entropy alloy prepared by DLP-3D printing process
指導教授: 丘群
Chun Chiu
陳士勛
Shih-Hsun Chen
口試委員: 丘群
Chun Chiu
陳士勛
Shih-Hsun Chen
曾堯宣
Yao-Hsuan Tseng
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 79
中文關鍵詞: 高熵合金AlCrFeNi增材製造數位光固化技術(DLP)可光固化複合懸浮液
外文關鍵詞: High-entropy alloys, AlCrFeNi, Additive manufacturing, Digital light processing (DLP),, Photosensitive resin
相關次數: 點閱:191下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本研究解決高熵合金在製程加工上的困難,提供一種新型製程方式獲得具有優異精度的小型客製化高熵合金,同時解決金屬在數位光處理列印因附著力不足導致的未完成部件掉落,並進一步討論高熵合金層厚設定對生胚之影響、固含量提升對固化深度和燒結收縮之影響。
      高熵合金因其獨特的四大效應和優異的性能,在近幾年獲得大量學術和業界的關注,然而具有高混合熵之原因,使其擴散速度極為緩慢,運用傳統加工容易在冷卻速度不夠的情況下,由於元素間的差異,易使缺陷和相偏析產生,因此有必要開發新的加工方式,為此增材製造提供可行的方法,首先透過氣體霧化法獲得小粒徑高熵合金,因其快速冷卻,內外冷卻速率接近等優點,降低元素間的差異,以降低缺陷產生,後續透過數位光處理列印,由於使用光固化的方式成形,在樣品製程中不會因為溫度而影響其微觀結構,且先前陶瓷數位光處理列印技術發展較為成熟,同時比起其他增材製造具有較高列印速度和精度,因此使用數位光處理列印高熵合金被視為一個具有潛力的研究方向。
      根據實驗結果,添加多官能基單體有助於提高寡聚物固化性質,然而添加過多會使材料脆化,當 TMPTA 30 wt%、7201M 60 wt%、TPO 10 wt% 時具有最佳附著力,高熵合金列印層厚在 1/2 固化深度能在具有最少尺寸變形同時確保每層的結合強度,當層厚設定少於 1/2 時會因為光折射和反射導致生胚周圍固化產生毛邊,大於則會因貼附不良導致層與層分離,而固化深度隨著固體含量增加而下降,燒結收縮量則會隨固體含量增加而減少,由於固化深度的限制,若單純提高曝光時間,讓高固體含量獲得相同的固化深度會使懸浮液過度固化,導致尺寸變形,因此透過改變每層厚度控制固化能量,同時使用軟體補償,最終在 60 vol% 固含量下可獲得尺寸變形量 0.8% 燒結收縮量 3.98% 之高熵合金成品,並對不同固體含量塊材燒結形貌進行分析,後續使用相同方式,成功列印出 100、200 μm 線徑。本研究提供一種新方式製備高熵合金,有助於解決高熵合金製程的難處,有望提升高熵合金應用價值和領域,並能以此為基礎製造精密高熵合金零件。


      This study addresses the difficulties encountered in the processing of high-entropy alloys and proposes a novel manufacturing approach to obtain small-sized customized high-entropy alloys with excellent precision. It also addresses the issue of incomplete part retention in metal-based DLP (Digital Light Processing) printing due to insufficient adhesion. Furthermore, the influence of layer thickness setting on the size deformation of printed specimens and the shrinkage during sintering is discussed.
      High-entropy alloys have gained significant academic and industrial attention in recent years due to their unique four major effects and outstanding properties. However, the high mixing entropy hinders diffusion, leading to the formation of defects and phase segregation under conventional processing methods when cooling rates are insufficient. Therefore, it is necessary to develop new processing techniques, particularly additive manufacturing, to provide feasible solutions. Initially, gas atomization is employed to obtain small-sized high-entropy alloy powders, which exhibit advantages such as rapid cooling and similar cooling rates inside and outside the particles, thus reducing element segregation and minimizing defect formation. Subsequently, digital light processing (DLP) printing is utilized, which utilizes light-induced curing to shape the samples without temperature-related effects on their microstructure. Additionally, ceramic DLP printing technology is more mature compared to other additive manufacturing methods and offers higher printing speed and precision. Therefore, DLP printing of high-entropy alloys is considered a promising research direction.
      According to the experimental results, the addition of multifunctional monomers contributes to the improvement of oligomer curing properties. However, excessive addition leads to material embrittlement. Optimal adhesion is achieved with TMPTA 30 wt%, 7201M 60 wt%, and TPO 10 wt%. Setting the layer thickness of high-entropy alloy printing at 1/2 of the curing depth ensures minimal size deformation and maintains bonding strength in each layer. When the layer thickness is set below 1/2, edge defects occur due to light refraction and reflection during the solidification around the printed embryo. Conversely, a layer thickness greater than 1/2 results in poor adhesion between layers and layer separation. The curing depth decreases with an increase in solid content while sintering shrinkage decreases with an increase in solid content. However, due to the limitation of the curing depth, simply increasing the exposure time to achieve the same curing depth for high solid content would result in excessive solidification of the suspension, leading to size deformation. Therefore, controlling the curing energy by adjusting the thickness of each layer and employing software correction is necessary. Ultimately, a high-entropy alloy product with a size deformation of 0.8% and sintering shrinkage of 3.98% is obtained at a 60 vol% solid content. The sintering morphology of block samples with different solid contents is analyzed. Subsequently, 100 μm and 200 μm line diameters are successfully printed using the same approach. This study provides a new method for preparing high-entropy alloys, addressing the challenges encountered in their processing, and has the potential to enhance the application value and scope of high-entropy alloys, serving as a foundation for manufacturing precision high-entropy alloy components.

    摘要 I ABSTRACT II 誌謝 IV 目錄 V 圖目錄 VIII 表目錄 XI 第1章 前言 1 第2章 文獻回顧 3 2.1 合金系統的發展 3 2.2 高熵合金的定義 4 2.3 高熵合金的四大核心效應 6 2.4 高熵合金製程技術 14 2.5 增材製造 18 2.5.1 選擇性雷射燒結 20 2.5.2 立體光固化技術 21 2.5.3 數位光處理技術 22 2.6 數位光處理列印技術發展 24 2.6.1 純樹脂數位光處理列印 24 2.6.2 陶瓷數位光處理列印 24 2.6.3 金屬數位光處理列印 25 2.7 光固化漿料組成 27 2.7.1 丙烯酸酯光敏聚合物 27 2.7.2 光固化單體 28 2.7.3 光引發劑 29 2.8 數位光處理列印各項參數介紹 30 2.9 脫脂燒結和公差補償 32 2.10 前導文獻回顧與研究動機總結 34 第3章 實驗方法 35 3.1 實驗流程 35 3.2 實驗參數 36 3.2.1 粉末粒徑 36 3.2.2 機台參數 36 3.2.3 後處理燒結溫度 37 3.3 樣品製備 39 3.3.1 光固化漿料 39 3.3.2 光固化懸浮液 40 3.4 實驗分析及儀器原理 42 3.4.1 雷射界面電位分析儀暨粒徑分析儀 42 3.4.2 進階式熱重分析儀 43 3.4.3 光學顯微鏡 44 3.4.4 場發射掃描式電子顯微鏡 45 3.4.5 百格刀測試 46 第4章 結果與討論 47 4.1 高熵合金粉末性質探討 47 4.2 懸浮液成分優化 50 4.2.1 多官能基單體對光固化懸浮液附著力影響 50 4.2.2 高熵合金數位光處理列印層厚對成品影響 51 4.3 高熵合金固體含量對生胚尺寸和燒結收縮影響 54 4.3.1 固體含量對固化深度之影響 51 4.3.2 固定層厚探討固化時間對尺寸變形探討 54 4.3.3 固定曝光時間對尺寸變形和燒結收縮量之探討 55 4.4 尺寸補償 57 4.4.1 塊材尺寸補償 57 4.4.2 線徑尺寸補償 58 第5章 結論與未來展望 59 5.1 結論 59 5.2 未來展望 60 參考文獻 61

    [1] Gao, M.C., J.-W. Yeh, P.K. Liaw, and Y. Zhang, High-entropy alloys. Cham: Springer International Publishing, 2016.
    [2] Zhang, C., M. Gao, J. Yeh, P. Liaw, and Y. Zhang, High-Entropy alloys: fundamentals and applications. 2016.
    [3] Jien-Wei, Y., Recent progress in high entropy alloys. Ann. Chim. Sci. Mat, 2006. 31(6): p. 633-648.
    [4] Ian Gibson, I.G., Additive manufacturing technologies 3D printing, rapid prototyping, and direct digital manufacturing. 2015, Springer.
    [5] Steyrer, B., B. Busetti, G. Harakály, R. Liska, and J. Stampfl, Hot Lithography vs. room temperature DLP 3D-printing of a dimethacrylate. Additive Manufacturing, 2018. 21: p. 209-214.
    [6] Wang, D., L. Liu, G. Deng, C. Deng, Y. Bai, Y. Yang, W. Wu, J. Chen, Y. Liu, and Y. Wang, Recent progress on additive manufacturing of multi-material structures with laser powder bed fusion. Virtual and Physical Prototyping, 2022. 17(2): p. 329-365.
    [7] Honarvar, F. and A. Varvani-Farahani, A review of ultrasonic testing applications in additive manufacturing: Defect evaluation, material characterization, and process control. Ultrasonics, 2020. 108: p. 106227.
    [8] Svetlizky, D., M. Das, B. Zheng, A.L. Vyatskikh, S. Bose, A. Bandyopadhyay, J.M. Schoenung, E.J. Lavernia, and N. Eliaz, Directed energy deposition (DED) additive manufacturing: Physical characteristics, defects, challenges and applications. Materials Today, 2021. 49: p. 271-295.
    [9] Melchels, F.P., J. Feijen, and D.W. Grijpma, A review on stereolithography and its applications in biomedical engineering. Biomaterials, 2010. 31(24): p. 6121-6130.
    [10] Manapat, J.Z., Q. Chen, P. Ye, and R.C. Advincula, 3D printing of polymer nanocomposites via stereolithography. Macromolecular Materials and Engineering, 2017. 302(9): p. 1600553.
    [11] Xu, X.H., S.X. Zhou, J.F. Wu, Y. Liu, Y.Y. Wang, and Z.C. Chen, Relationship between the adhesion properties of UV-curable alumina suspensions and the functionalities and structures of UV-curable acrylate monomers for DLP-based ceramic stereolithography. Ceramics International, 2021. 47(23): p. 32699-32709.
    [12] Mulholland, J.A., History of Metals in Colonial America. 1981: University of Alabama Press.
    [13] Crane, F.A.A., J.A. Charles, and J. Furness, Selection and use of engineering materials. 1997: Elsevier.
    [14] Zhang, Y., T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, and Z.P. Lu, Microstructures and properties of high-entropy alloys. Progress in materials science, 2014. 61: p. 1-93.
    [15] Murty, B.S., J.-W. Yeh, S. Ranganathan, and P. Bhattacharjee, High-entropy alloys. 2019: Elsevier.
    [16] Han, C., Q. Fang, Y. Shi, S.B. Tor, C.K. Chua, and K. Zhou, Recent advances on high‐entropy alloys for 3D printing. Advanced Materials, 2020. 32(26): p. 1903855.
    [17] Cantor, B., Multicomponent and high entropy alloys. entropy, 2014. 16(9): p. 4749-4768.
    [18] Yeh, J.-W., Alloy design strategies and future trends in high-entropy alloys. Jom, 2013. 65: p. 1759-1771.
    [19] Tsai, M.-H. and J.-W. Yeh, High-entropy alloys: a critical review. Materials Research Letters, 2014. 2(3): p. 107-123.
    [20] Yeh, J.-W., Physical metallurgy of high-entropy alloys. Jom, 2015. 67(10): p. 2254-2261.
    [21] Pickering, E. and N. Jones, High-entropy alloys: a critical assessment of their founding principles and future prospects. International Materials Reviews, 2016. 61(3): p. 183-202.
    [22] Ye, Y., Q. Wang, J. Lu, C. Liu, and Y. Yang, High-entropy alloy: challenges and prospects. Materials Today, 2016. 19(6): p. 349-362.
    [23] Senkov, O.N., S.V. Senkova, C. Woodward, and D.B. Miracle, Low-density, refractory multi-principal element alloys of the Cr–Nb–Ti–V–Zr system: Microstructure and phase analysis. Acta Materialia, 2013. 61(5): p. 1545-1557.
    [24] MacDonald, B., Z. Fu, B. Zheng, W. Chen, Y. Lin, F. Chen, L. Zhang, J. Ivanisenko, Y. Zhou, and H. Hahn, Recent progress in high entropy alloy research. Jom, 2017. 69: p. 2024-2031.
    [25] 葉均蔚, 高熵合金的發展. 華岡工程學報, 2011(27): p. 1-18.
    [26] Wang, W.-R., W.-L. Wang, S.-C. Wang, Y.-C. Tsai, C.-H. Lai, and J.-W. Yeh, Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys. Intermetallics, 2012. 26: p. 44-51.
    [27] Zhang, C., F. Zhang, H. Diao, M.C. Gao, Z. Tang, J.D. Poplawsky, and P.K. Liaw, Understanding phase stability of Al-Co-Cr-Fe-Ni high entropy alloys. Materials & Design, 2016. 109: p. 425-433.
    [28] Chou, H.-P., Y.-S. Chang, S.-K. Chen, and J.-W. Yeh, Microstructure, thermophysical and electrical properties in AlxCoCrFeNi (0≤ x≤ 2) high-entropy alloys. Materials Science and Engineering: B, 2009. 163(3): p. 184-189.
    [29] Li, R., P. Liaw, and Y. Zhang, Synthesis of AlxCoCrFeNi high-entropy alloys by high-gravity combustion from oxides. Materials Science and Engineering: A, 2017. 707: p. 668-673.
    [30] Ma, S., P. Liaw, M. Gao, J. Qiao, Z. Wang, and Y. Zhang, Damping behavior of AlxCoCrFeNi high-entropy alloys by a dynamic mechanical analyzer. Journal of alloys and compounds, 2014. 604: p. 331-339.
    [31] Agustianingrum, M.P., U. Lee, and N. Park, High-temperature oxidation behaviour of CoCrNi medium-entropy alloy. Corrosion Science, 2020. 173: p. 108755.
    [32] Lu, J., L. Li, H. Zhang, Y. Chen, L. Luo, X. Zhao, F. Guo, and P. Xiao, Oxidation behavior of gas-atomized AlCoCrFeNi high-entropy alloy powder at 900-1100° C. Corrosion Science, 2021. 181: p. 109257.
    [33] Bieler, T.R., Advances in Material Studies for SRF. SRF2009, Berlin, Germany, SRF2009 WEB Proceedings, paper TUOAAU03, 2009: p. 102-108.
    [34] Zhang, Y., X. Yan, J. Ma, Z. Lu, and Y. Zhao, Compositional gradient films constructed by sputtering in a multicomponent Ti–Al–(Cr, Fe, Ni) system. Journal of materials research, 2018. 33(19): p. 3330-3338.
    [35] Wu, M., G. Diao, J. Yuan, D. Fraser, J. Li, R. Chung, and D. Li, Corrosion and corrosive wear of AlCrFeCoNi and Co-free AlCrFeNi-Tix (x= 0–1.5) high-entropy alloys in 3.5 wt% NaCl and H2SO4 (pH= 3) solutions. Wear, 2023. 523: p. 204765.
    [36] Srikanth, M., A.R. Annamalai, A. Muthuchamy, and C.-P. Jen, A review of the latest developments in the field of refractory high-entropy alloys. Crystals, 2021. 11(6): p. 612.
    [37] Fu, A., W. Guo, B. Liu, Y. Cao, L. Xu, Q. Fang, H. Yang, and Y. Liu, A particle reinforced NbTaTiV refractory high entropy alloy based composite with attractive mechanical properties. Journal of Alloys and Compounds, 2020. 815: p. 152466.
    [38] Jablonski, P.D., J.J. Licavoli, M.C. Gao, and J.A. Hawk, Manufacturing of high entropy alloys. Jom, 2015. 67: p. 2278-2287.
    [39] Chen, S., Y. Tong, and P.K. Liaw, Additive manufacturing of high-entropy alloys: a review. Entropy, 2018. 20(12): p. 937.
    [40] Eißmann, N., B. Klöden, T. Weißgärber, and B. Kieback, High-entropy alloy CoCrFeMnNi produced by powder metallurgy. Powder Metallurgy, 2017. 60(3): p. 184-197.
    [41] Meghwal, A., A. Anupam, B. Murty, C.C. Berndt, R.S. Kottada, and A.S.M. Ang, Thermal spray high-entropy alloy coatings: a review. Journal of Thermal Spray Technology, 2020. 29: p. 857-893.
    [42] Löbel, M., T. Lindner, C. Kohrt, and T. Lampke. Processing of AlCoCrFeNiTi high entropy alloy by atmospheric plasma spraying. in IOP Conference Series: Materials Science and Engineering. 2017. IOP Publishing.
    [43] Alshataif, Y.A., S. Sivasankaran, F.A. Al-Mufadi, A.S. Alaboodi, and H.R. Ammar, Manufacturing methods, microstructural and mechanical properties evolutions of high-entropy alloys: A review. Metals and Materials International, 2020. 26: p. 1099-1133.
    [44] Thompson, M.K., G. Moroni, T. Vaneker, G. Fadel, R.I. Campbell, I. Gibson, A. Bernard, J. Schulz, P. Graf, and B. Ahuja, Design for Additive Manufacturing: Trends, opportunities, considerations, and constraints. CIRP annals, 2016. 65(2): p. 737-760.
    [45] Gibson, I., D. Rosen, B. Stucker, M. Khorasani, I. Gibson, D. Rosen, B. Stucker, and M. Khorasani, Design for additive manufacturing. Additive manufacturing technologies, 2021: p. 555-607.
    [46] Shahrubudin, N., T.C. Lee, and R. Ramlan, An overview on 3D printing technology: Technological, materials, and applications. Procedia Manufacturing, 2019. 35: p. 1286-1296.
    [47] Sarvankar, S.G. and S.N. Yewale, Additive manufacturing in automobile industry. Int. J. Res. Aeronaut. Mech. Eng, 2019. 7(4): p. 1-10.
    [48] Yap, C.Y., C.K. Chua, Z.L. Dong, Z.H. Liu, D.Q. Zhang, L.E. Loh, and S.L. Sing, Review of selective laser melting: Materials and applications. Applied physics reviews, 2015. 2(4): p. 041101.
    [49] Frazier, W.E., Metal additive manufacturing: a review. Journal of Materials Engineering and performance, 2014. 23: p. 1917-1928.
    [50] Kruth, J.-P., M.-C. Leu, and T. Nakagawa, Progress in additive manufacturing and rapid prototyping. Cirp Annals, 1998. 47(2): p. 525-540.
    [51] Gao, Z., L. Wang, Y. Wang, F. Lyu, and X. Zhan, Crack defects and formation mechanism of FeCoCrNi high entropy alloy coating on TC4 titanium alloy prepared by laser cladding. Journal of Alloys and Compounds, 2022. 903: p. 163905.
    [52] Matias, E. and B. Rao. 3D printing: On its historical evolution and the implications for business. in 2015 Portland International Conference on Management of Engineering and Technology (PICMET). 2015. IEEE.
    [53] Quan, H., T. Zhang, H. Xu, S. Luo, J. Nie, and X. Zhu, Photo-curing 3D printing technique and its challenges. Bioactive materials, 2020. 5(1): p. 110-115.
    [54] Dawood, A., B.M. Marti, V. Sauret-Jackson, and A. Darwood, 3D printing in dentistry. British dental journal, 2015. 219(11): p. 521-529.
    [55] Chen, Z., Z. Li, J. Li, C. Liu, C. Lao, Y. Fu, C. Liu, Y. Li, P. Wang, and Y. He, 3D printing of ceramics: A review. Journal of the European Ceramic Society, 2019. 39(4): p. 661-687.
    [56] Cai, P., L. Guo, H. Wang, J. Li, J. Li, Y. Qiu, Q. Zhang, and Q. Lue, Effects of slurry mixing methods and solid loading on 3D printed silica glass parts based on DLP stereolithography. Ceramics International, 2020. 46(10): p. 16833-16841.
    [57] Zhou, L.Y., J. Fu, and Y. He, A review of 3D printing technologies for soft polymer materials. Advanced Functional Materials, 2020. 30(28): p. 2000187.
    [58] Chartrain, N.A., C.B. Williams, and A.R. Whittington, A review on fabricating tissue scaffolds using vat photopolymerization. Acta biomaterialia, 2018. 74: p. 90-111.
    [59] Munaz, A., R.K. Vadivelu, J.S. John, M. Barton, H. Kamble, and N.-T. Nguyen, Three-dimensional printing of biological matters. Journal of Science: Advanced Materials and Devices, 2016. 1(1): p. 1-17.
    [60] Hinton, T., A. Lee, and A.W. Feinberg, 3D bioprinting from the micrometer to millimeter length scales: Size does matter. Current Opinion in Biomedical Engineering, 2017. 1: p. 31-37.
    [61] Pagac, M., J. Hajnys, Q.-P. Ma, L. Jancar, J. Jansa, P. Stefek, and J. Mesicek, A review of vat photopolymerization technology: materials, applications, challenges, and future trends of 3D printing. Polymers, 2021. 13(4): p. 598.
    [62] Ligon, S.C., R. Liska, J. Stampfl, M. Gurr, and R. Mülhaupt, Polymers for 3D printing and customized additive manufacturing. Chemical reviews, 2017. 117(15): p. 10212-10290.
    [63] Monzón, M., Z. Ortega, A. Hernández, R. Paz, and F. Ortega, Anisotropy of photopolymer parts made by digital light processing. Materials, 2017. 10(1): p. 64.
    [64] Borrello, J., P. Nasser, J.C. Iatridis, and K.D. Costa, 3D printing a mechanically-tunable acrylate resin on a commercial DLP-SLA printer. Additive manufacturing, 2018. 23: p. 374-380.
    [65] Fiedor, P. and J. Ortyl, A new approach to micromachining: High-precision and innovative additive manufacturing solutions based on photopolymerization technology. Materials, 2020. 13(13): p. 2951.
    [66] Park, S.-M., J.-M. Park, S.-K. Kim, S.-J. Heo, and J.-Y. Koak, Flexural strength of 3D-printing resin materials for provisional fixed dental prostheses. Materials, 2020. 13(18): p. 3970.
    [67] Du, X., S. Fu, and Y. Zhu, 3D printing of ceramic-based scaffolds for bone tissue engineering: an overview. Journal of Materials Chemistry B, 2018. 6(27): p. 4397-4412.
    [68] Seitz, H., W. Rieder, S. Irsen, B. Leukers, and C. Tille, Three‐dimensional printing of porous ceramic scaffolds for bone tissue engineering. Journal of Biomedical Materials Research Part B: Applied Biomaterials: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 2005. 74(2): p. 782-788.
    [69] Faes, M., H. Valkenaers, F. Vogeler, J. Vleugels, and E. Ferraris, Extrusion-based 3D printing of ceramic components. Procedia Cirp, 2015. 28: p. 76-81.
    [70] He, R., W. Liu, Z. Wu, D. An, M. Huang, H. Wu, Q. Jiang, X. Ji, S. Wu, and Z. Xie, Fabrication of complex-shaped zirconia ceramic parts via a DLP-stereolithography-based 3D printing method. Ceramics International, 2018. 44(3): p. 3412-3416.
    [71] Feilden, E., C. Ferraro, Q. Zhang, E. García-Tuñón, E. D’Elia, F. Giuliani, L. Vandeperre, and E. Saiz, 3D printing bioinspired ceramic composites. Scientific reports, 2017. 7(1): p. 13759.
    [72] Mitteramskogler, G., R. Gmeiner, R. Felzmann, S. Gruber, C. Hofstetter, J. Stampfl, J. Ebert, W. Wachter, and J. Laubersheimer, Light curing strategies for lithography-based additive manufacturing of customized ceramics. Additive Manufacturing, 2014. 1: p. 110-118.
    [73] Kulkarni, A., G.D. Sorarù, and J.M. Pearce, Polymer-derived SiOC replica of material extrusion-based 3-D printed plastics. Additive Manufacturing, 2020. 32: p. 100988.
    [74] Layani, M., X. Wang, and S. Magdassi, Novel materials for 3D printing by photopolymerization. Advanced Materials, 2018. 30(41): p. 1706344.
    [75] Komissarenko, D.A., P.S. Sokolov, A.D. Evstigneeva, I.V. Slyusar, A.S. Nartov, P.A. Volkov, N.V. Lyskov, P.V. Evdokimov, V.I. Putlayev, and A.E. Dosovitsky, DLP 3D printing of scandia-stabilized zirconia ceramics. Journal of the European Ceramic Society, 2021. 41(1): p. 684-690.
    [76] Eckel, Z.C., C. Zhou, J.H. Martin, A.J. Jacobsen, W.B. Carter, and T.A. Schaedler, Additive manufacturing of polymer-derived ceramics. Science, 2016. 351(6268): p. 58-62.
    [77] Scheithauer, U., S. Weingarten, R. Johne, E. Schwarzer, J. Abel, H.-J. Richter, T. Moritz, and A. Michaelis, Ceramic-based 4D components: additive manufacturing (AM) of ceramic-based functionally graded materials (FGM) by thermoplastic 3D printing (T3DP). Materials, 2017. 10(12): p. 1368.
    [78] Roopavath, U.K., S. Malferrari, A. Van Haver, F. Verstreken, S.N. Rath, and D.M. Kalaskar, Optimization of extrusion based ceramic 3D printing process for complex bony designs. Materials & Design, 2019. 162: p. 263-270.
    [79] Chaudhary, R., P. Fabbri, E. Leoni, F. Mazzanti, R. Akbari, and C. Antonini, Additive manufacturing by digital light processing: a review. Progress in Additive Manufacturing, 2022: p. 1-21.
    [80] Li, Y., C. Li, X. Zhang, Y. Wang, Y. Tan, S. Chang, Z. Chen, G. Fu, Z. Kou, and A. Stefan, Incorporating Metal Precursors towards a Library of High-resolution Metal Parts by Stereolithography. Applied Materials Today, 2022. 29: p. 101553.
    [81] Nguyen, H.X., H. Suen, B. Poudel, P. Kwon, and H. Chung, Development of an innovative, high speed, large-scaled, and affordable metal additive manufacturing process. CIRP Annals, 2020. 69(1): p. 177-180.
    [82] Xu, X., S. Zhou, J. Wu, Q. Zhang, Y. Zhang, and G. Zhu, Preparation of highly dispersive solid microspherical α-Al2O3 powder with a hydrophobic surface for stereolithography-based 3D printing technology. Ceramics International, 2020. 46(2): p. 1895-1906.
    [83] Adake, C.V., P. Bhargava, and P. Gandhi, Effect of surfactant on dispersion of alumina in photopolymerizable monomers and their UV curing behavior for microstereolithography. Ceramics International, 2015. 41(4): p. 5301-5308.
    [84] Xu, J., W. Pang, and W. Shi, Synthesis of UV-curable organic–inorganic hybrid urethane acrylates and properties of cured films. Thin Solid Films, 2006. 514(1-2): p. 69-75.
    [85] Chang, C.-C., T.-Y. Oyang, F.-H. Hwang, C.-C. Chen, and L.-P. Cheng, Preparation of polymer/silica hybrid hard coatings with enhanced hydrophobicity on plastic substrates. Journal of non-crystalline solids, 2012. 358(1): p. 72-76.
    [86] Yin, W., X. Zeng, H. Li, Y. Hou, and Q. Gao, Synthesis, photopolymerization kinetics, and thermal properties of UV-curable waterborne hyperbranched polyurethane acrylate dispersions. Journal of coatings technology and research, 2011. 8: p. 577-584.
    [87] Lv, C., L. Hu, Y. Yang, H. Li, C. Huang, and X. Liu, Waterborne UV-curable polyurethane acrylate/silica nanocomposites for thermochromic coatings. Rsc Advances, 2015. 5(33): p. 25730-25737.
    [88] Fu, J.C., H.J. Yu, L. Wang, and S. Fahad, Preparation and properties of UV-curable diamine-based polyurethane acrylate hard coatings. Applied Surface Science, 2020. 533.
    [89] Fu, J.C., L. Wang, H.J. Yu, M. Haroon, F. Haq, W.L. Shi, B. Wu, and L.B. Wang, Research progress of UV-curable polyurethane acrylate-based hardening coatings. Progress in Organic Coatings, 2019. 131: p. 82-99.
    [90] Magnoni, F., A. Rannée, L. Marasinghe, B. El-Fouhaili, X. Allonas, and C. Croutxé-Barghorn, Correlation between the scratch resistance of UV-cured PUA-based coatings and the structure and functionality of reactive diluents. Progress in Organic Coatings, 2018. 124: p. 193-199.
    [91] Lee, H.-J., H.-Y. Park, E.-H. Kim, H.-H. Choi, J. Jin, J. Choi, S. Yang, and Y.-G. Jung, Relationship between mechanical properties of ceramic green body and structures of photo-cured acrylate polymer for ceramic 3D printing based on photo polymerization. Ceramics International, 2021. 47(3): p. 3867-3875.
    [92] Horigome, K., K. Ebe, and S.i. Kuroda, UV curable pressure‐sensitive adhesives for fabricating semiconductors. II. The effect of functionality of acrylate monomers on the adhesive properties. Journal of applied polymer science, 2004. 93(6): p. 2889-2895.
    [93] Borlaf, M., A. Serra-Capdevila, C. Colominas, and T. Graule, Development of UV-curable ZrO2 slurries for additive manufacturing (LCM-DLP) technology. Journal of the European Ceramic Society, 2019. 39(13): p. 3797-3803.
    [94] Zhang, K., C. Xie, G. Wang, R. He, G. Ding, M. Wang, D. Dai, and D. Fang, High solid loading, low viscosity photosensitive Al2O3 slurry for stereolithography based additive manufacturing. Ceramics International, 2019. 45(1): p. 203-208.
    [95] Xing, H., B. Zou, Q. Lai, C. Huang, Q. Chen, X. Fu, and Z. Shi, Preparation and characterization of UV curable Al2O3 suspensions applying for stereolithography 3D printing ceramic microcomponent. Powder technology, 2018. 338: p. 153-161.
    [96] Zakeri, S., M. Vippola, and E. Levänen, A comprehensive review of the photopolymerization of ceramic resins used in stereolithography. Additive Manufacturing, 2020. 35: p. 101177.
    [97] Chiang, T.H. and T.-E. Hsieh, A study of monomer's effect on adhesion strength of UV-curable resins. International journal of adhesion and adhesives, 2006. 26(7): p. 520-531.
    [98] Kamoun, E.A., A. Winkel, M. Eisenburger, and H. Menzel, Carboxylated camphorquinone as visible-light photoinitiator for biomedical application: Synthesis, characterization, and application. Arabian Journal of Chemistry, 2016. 9(5): p. 745-754.
    [99] Balta, D.K., N. Arsu, Y. Yagci, S. Jockusch, and N.J. Turro, Thioxanthone− anthracene: A new photoinitiator for free radical polymerization in the presence of oxygen. Macromolecules, 2007. 40(12): p. 4138-4141.
    [100] Lalevée, J., N. Blanchard, M.-A. Tehfe, M. Peter, F. Morlet-Savary, D. Gigmes, and J.P. Fouassier, Efficient dual radical/cationic photoinitiator under visible light: a new concept. Polymer Chemistry, 2011. 2(9): p. 1986-1991.
    [101] Dadashi-Silab, S., C. Aydogan, and Y. Yagci, Shining a light on an adaptable photoinitiator: advances in photopolymerizations initiated by thioxanthones. Polymer Chemistry, 2015. 6(37): p. 6595-6615.
    [102] Fouassier, J.-P. and J. Lalevée, Photoinitiators for polymer synthesis: scope, reactivity, and efficiency. 2012: John Wiley & Sons.
    [103] Scranton, A.B., C.N. Bowman, and R.W. Peiffer, Photopolymerization: fundamentals and applications. 1997: American Chemical Society.
    [104] Crivello, J., Cationic polymerization—iodonium and sulfonium salt photoinitiators. Initiators—poly-reactions—optical activity, 2005: p. 1-48.
    [105] Wu, D., Z. Zhao, Q. Zhang, H.J. Qi, and D. Fang, Mechanics of shape distortion of DLP 3D printed structures during UV post-curing. Soft matter, 2019. 15(30): p. 6151-6159.
    [106] Kovacev, N., S. Li, and K. Essa, Effect of the preparation techniques of photopolymerizable ceramic slurry and printing parameters on the accuracy of 3D printed lattice structures. Journal of the European Ceramic Society, 2021. 41(15): p. 7734-7743.
    [107] Farzadi, A., M. Solati-Hashjin, M. Asadi-Eydivand, and N.A. Abu Osman, Effect of layer thickness and printing orientation on mechanical properties and dimensional accuracy of 3D printed porous samples for bone tissue engineering. PloS one, 2014. 9(9): p. e108252.
    [108] Hanon, M.M., L. Zsidai, and Q. Ma, Accuracy investigation of 3D printed PLA with various process parameters and different colors. Materials Today: Proceedings, 2021. 42: p. 3089-3096.
    [109] Mu, Y., J. Chen, X. An, J. Liang, J. Li, Y. Zhou, and X. Sun, Defect control in digital light processing of high-solid-loading ceramic core. Ceramics International, 2022. 48(19): p. 28739-28744.
    [110] Li, Y., Q. Mao, J. Yin, Y. Wang, J. Fu, and Y. Huang, Theoretical prediction and experimental validation of the digital light processing (DLP) working curve for photocurable materials. Additive Manufacturing, 2021. 37: p. 101716.
    [111] Li, Y., Q. Mao, X. Li, J. Yin, Y. Wang, J. Fu, and Y. Huang, High-fidelity and high-efficiency additive manufacturing using tunable pre-curing digital light processing. Additive Manufacturing, 2019. 30: p. 100889.
    [112] Halloran, J.W., M. Griffith, and T.-M. Chu, Stereolithography resin for rapid prototyping of ceramics and metals. 2000, Google Patents.
    [113] Jang, K.-J., J.-H. Kang, J.G. Fisher, and S.-W. Park, Effect of the volume fraction of zirconia suspensions on the microstructure and physical properties of products produced by additive manufacturing. Dental Materials, 2019. 35(5): p. e97-e106.
    [114] Wang, K., M. Qiu, C. Jiao, J. Gu, D. Xie, C. Wang, X. Tang, Z. Wei, and L. Shen, Study on defect-free debinding green body of ceramic formed by DLP technology. Ceramics International, 2020. 46(2): p. 2438-2446.
    [115] Yun, Y., X. Deqiao, J. Chen, D. Zhaoling, S. Lida, T. Zongjun, C. Yunfei, and H. Feng, Mechanism of ceramic slurry light scattering affecting contour accuracy and method of projection plane correction. Ceramics International, 2023. 49(10): p. 15024-15033.
    [116] Qin, G., W. Xue, C. Fan, R. Chen, L. Wang, Y. Su, H. Ding, and J. Guo, Effect of Co content on phase formation and mechanical properties of (AlCoCrFeNi) 100-xCox high-entropy alloys. Materials Science and Engineering: A, 2018. 710: p. 200-205.
    [117] Tung, C.-C., J.-W. Yeh, T.-t. Shun, S.-K. Chen, Y.-S. Huang, and H.-C. Chen, On the elemental effect of AlCoCrCuFeNi high-entropy alloy system. Materials letters, 2007. 61(1): p. 1-5.

    QR CODE