簡易檢索 / 詳目顯示

研究生: 朱品蓉
PIN-RONG JHU
論文名稱: 利用靜電輔助同軸電力霧化製備用於藥物傳遞的核殼式微米顆粒
Preparation of core-shell microparticles for drug delivery by coaxial electrohydrodynamic atomization
指導教授: 何明樺
Ming-Hua Ho
口試委員: 謝學真
Hsyue-Jen Hsieh
張博鈞
Po-Chun Chang
蔡協致
Hsieh-Chih Tsai
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 112
中文關鍵詞: 同軸電噴霧法核殼式顆粒幾丁聚醣
外文關鍵詞: Coaxial electrohydrodynamic atomization, Core-shell microparticles, Chitosan
相關次數: 點閱:298下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 利用同軸電流體動力霧化法(Coaxial Electrohydrodynamic Atomization,CEHDA)製備微米粒子可以獲得相對窄的粒徑分布與包覆效率佳的核殼式結構顆粒,於新型藥物釋放系統的發展是更有潛力。
    在這項研究中,通過靜電噴霧法製備PLGA、幾丁聚醣微粒和PLGA /幾丁聚醣核殼式微粒,其中藥物被包封在該一步法中。首先,研究影響合成顆粒形態和結構的幾種工藝參數,如流速、電壓和聚合物濃度之參數最佳化。透過掃描式電子顯微鏡照片證明PLGA和幾丁聚醣微粒的平均粒徑分別為1.423μm和0.511μm,而核殼式顆粒大小坐落於1.098μm。為了確定核殼結構,進行了表面介達界達電位與傅立葉轉換紅外線波峰圖譜的分析。結果表明,EHDA成功製備了PLGA /幾丁聚醣核殼式顆粒,程序參數優化為20kV和內流速0.3ml / hr外流速0.45ml / hr。除此之外,共聚焦顯微鏡下的染色結果與穿透是顯微鏡也證明了雙層的存在。
    核殼式顆粒中,核心含有低濃度的Simvastatin,釋放曲線表明使用PLGA /幾丁聚醣核殼式顆粒可以達到長期緩慢釋放,核殼顆粒初始釋放Simvastatin的速率僅為PLGA顆粒釋放速率的0.1倍,表示沒有初始突釋現象的發生。
    最後,細胞的結果證實顆粒的生物相容性良好,本研究中開發的PLGA /幾丁聚醣核殼式顆粒將具有潛力成為骨質疏鬆藥物載體。


    Electrohydrodynamic atomization (EHDA) is potential improvement over other technologies for the preparation of particles. It is used to produce particles with a narrow size distribution from micro to nanometer sizes, and would be able to cause less damaging effects and better loading efficiency on encapsulated drugs.
    In this study, PLGA, chitosan microparticles and PLGA/chitosan core-shell microparticles were prepared by electrostatic atomization, where drugs were encapsulated in this one-step process. First, several process parameters such as flow rate, voltage, and polymer concentration, which would affect the morphologies and structures of synthesized particles, were investigated for optimization. SEM images proved that the uniform particles were obtained with the average diameter of 1.423 μm and 0.511 μm for PLGA and chitosan microparticles. Meanwhile, the diameter of core-shell particles is 1.098μm. To identify core-shell structures, the analysis of zeta potential and FTIR was carried out. The results showed that PLGA/chitosan core-shell particles were successfully fabricated by coaxial EHDA with optimized process parameters as 20kV, inner flow rate of 0.3 ml/hr and outer flow rate of 0.45 ml/hr. The staining results under confocal microscope proved the existence of double layers, too.
    In the core-shell particles, the core of them contains a low concentration of Simvastatin, The releasing profile in buffer solution indicated that a long-term releasing would be reached by using PLGA/chitosan core-shell particles.
    Finally, the osteoblasts (7F2) were cultured with these nanoparticles and the viability of cells was analyzed. The results supported that the biocompatibility of particles was good. This study demonstrated that the PLGA/chitosan core-shell particles developed in this research would have the potential to become osteoporosis drug carriers.

    摘要 ………………………………………………………………………….II Abstract ………………………………………………………………………IV 致謝 ………………………………………………………………………...VI 目錄 ………………………………………………………………………..VII 圖目錄 ……………………………………………………………………….X 表目錄 …………………………………………………………………….XIV 第一章 緒論 1 第二章 文獻回顧 2 2-1 藥物釋放系統 2 2-2生物可降解性之高分子藥物載體 5 2-2.1 幾丁聚醣 6 2-2.2 聚乳酸-甘醇酸共聚合物 (PLGA) 7 2-3各種藥物釋放系統 9 2-4高分子微奈米顆粒的應用及其製備方式 13 2-5 同軸式電噴霧法 20 2-6 藥物治療 23 2-6.1 Statin 23 2-6.2 Doxycycline 24 第三章 實驗材料與方法 25 3-1實驗藥品 25 3-2實驗儀器 27 3-3實驗步驟 29 3-3.1 製備幾丁聚醣顆粒 29 3-3.2 製備聚乳酸-甘醇酸共聚物(PLGA)顆粒 29 3-3.3 製備核殼式微奈米顆粒 30 3-4 材料鑑定與性質鑑定 32 3-4.1掃描式電子顯微鏡 (SEM)分析 32 3-4.2 雷射介面電位分析儀暨粒徑分析儀分析 32 3-4.3 共軛焦螢光顯微鏡(Confocal Microscopy)分析 33 3-4.4 穿透式電子顯微鏡(TEM)分析 33 3-4.5 傅立葉轉換紅外線光譜(FTIR)分析 33 3-5 體外藥物釋放 34 3-5.1 Simvastatin的包埋 34 3-6 體外細胞實驗 35 3-6.1 細胞來源 35 3-6.2 細胞培養 36 3-6.3 細胞冷凍與保存 37 3-6.4 細胞解凍與培養 37 3-6.5 細胞播種 38 3-6.6 細胞計數 38 3-6.7 粒線體活性測試 40 3-6.8 鹼性磷酸酶測試 42 3-6.9 蛋白質濃度測定 44 第四章 結果與討論 47 4-1 PLGA顆粒最佳化條件的探討 47 4-1.1 濃度影響 47 4-2 核殼式微/奈米顆粒之條件的探討 53 4-2-1不同內外層流速差的影響 53 4-2-2PLGA顆粒、幾丁聚醣顆粒以及核殼式微米顆粒最佳化參數的探討 56 4-3 核殼式微/奈米顆粒之鑑定 59 4-3.1以zeta電位檢測顆粒表面帶電荷之分析 59 4-3.2利用傅立葉轉換紅外線波峰圖譜做鍵結分析 63 4-3.3以共軛焦螢光顯微鏡針對核殼式顆粒結構分析 65 4-4 體外藥物釋放 68 4-5 生物相容性 73 4-5.1 Simvastatin對骨母細胞的活性表現 73 4-5.2 PLGA與幾丁聚醣顆粒對骨母細胞的活性表現 75 4-5.3 PLGA顆粒與核殼式顆粒含藥物下對骨母細胞的活性表現 77 4-5.4核殼式顆粒含藥物下對骨母細胞的鹼性磷酸酶表現 80 第五章 結論 84 第六章 參考文獻 85

    1. Di Toro, R., V. Betti, S. Spampinato, Biocompatibility and integrin-mediated adhesion of human osteoblasts to poly(DL-lactide-co-glycolide) copolymers. Eur J Pharm sci., 2004. 21: p. 161-169.
    2. Snoke, S., Carrier-based drug delivery. ACS symp, 2004 : p.4-20.
    3. Peniche, C., W. Argüelles-Monal, P. Hazel, A. Niuris, Chitosan: An Attractive biocompatible polymer for microencapsulation. Macromol Biosci, 2003. 3: p. 511-520.
    4. Okada, H., One- and three-month release injectable microspheres of the LH-RH superagonist leuprorelin acetate. Adv Drug Deliv Rev, 1997. 28: p. 43-70.
    5. Shive, M.S., J.M. Anderson, Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv Drug Deliv Rev, 1997. 28: p. 5-24.
    6. Chaubal, M.V., A.S. Gupta, S.T. Lopina, D.F. Bruley, Polyphosphates and other phosphorus-containing polymers for drug delivery applications. Crit Rev Ther Drug Carrier Syst, 2003. 20: p. 295-315.
    7. Stuart, M.A.C., W.T.S.Huck, J. Genzer, M. Muller, C. Ober, M. Stamm, G.B. Sukhorukov, I. Szleifer, V.V. Tsukruk, M. Urban, F. Winnik, S. Zauscher, I. Luzinov, S. Minko, Emerging applications of stimuli-responsive polymer materials. Nat Mater, 2010. 9: p. 101-113.
    8. Fortuni, B., T.Inose, M. Ricci, Y. Fujita, I. Van Zundert, A. Masuhara, E. Fron, H. Mizuno, L. Latterini, S. Rocha, H. Uji, Polymeric Engineering of Nanoparticles for Highly Efficient Multifunctional Drug Delivery Systems. Sci Rep, 2019. 9: p. 247-312.
    9. Kumari, A., S.K. Yadav, S.C. Yadav, Biodegradable polymeric nanoparticles based drug delivery systems. colloid surface B, 2010. 75: p. 1-18.
    10. Sinha, V.R., A.K. Singla, S. Wadhawan, R. Kaushik, R. Kumria, K. Bansal, S. Dhawan Chitosan microspheres as a potential carrier for drugs. Int J Pharm, 2004. 274: p. 1-33.
    11. Nagpal, K., S.K. Singh, D.N. Mishra, Chitosan nanoparticles: a promising system in novel drug delivery. Chem Pharm Bull, 2010. 58: p. 1423-1430.
    12. Calvo, P., C. Remuñán López, J.L. Vila Jato, M.J. Alonso, Novel hydrophilic chitosan-polyethylene oxide nanoparticles as protein carriers. J Appl Polym Sci, 1997. 63: p. 125-132.
    13. Pan, Y., Y.J. Zhao, H.Y. Zheng, J.M. Xu, H. Wei, G. Hao, J.S. Cui, Bioadhesive polysaccharide in protein delivery system: chitosan nanoparticles improve the intestinal absorption of insulin in vivo. Int J Pharm, 2002. 249: p. 139-47.
    14. Janes, K.A., M.P. Fresneau, A. Marazuela, A. Fabra, A. Marı́a José, Chitosan nanoparticles as delivery systems for doxorubicin. J Control Release, 2001. 73: p. 255-267.
    15. Bodmeier, R., H.G. Chen, O. Paeratakul,, A novel approach to the oral delivery of micro- or nanoparticles. Pharm Res, 1989. 6: p. 413-417.
    16. Amarnath Maitra, P.K.G., T.K. De, S.K. Sahoo, Process for the preparation of highly monodispersed polymeric hydrophilic nanoparticles. 1999: USA patent.
    17. Erbacher, P., Z. Shaomin, B. Thierry, S. Anne-Marie, R. Jean Serge, Chitosan-Based Vector/DNA Complexes for Gene Delivery: Biophysical Characteristics and Transfection Ability. Pharm Res, 1998. 15: p. 1332-1339.
    18. Versypt, A.N.F., D.W. Pack, R.D. Braatz, Mathematical modeling of drug delivery from autocatalytically degradable PLGA microspheres - A review. J Control Release, 2013. 165: p. 29-37.
    19. Sahana, D.K., G. Mittal, V. Bhardwaj, M.N. Kumar, PLGA nanoparticles for oral delivery of hydrophobic drugs: influence of organic solvent on nanoparticle formation and release behavior in vitro and in vivo using estradiol as a model drug. J Pharm Sci, 2008. 97: p. 1530-1542.
    20. Reis, C.P., R.J. Neufeld, A.J. Ribeiro, F. Veiga, Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles. Nanomedicine, 2006. 2: p. 18-21.
    21. Barichello, J.M., M. Morishita, K. Takayama, T. Nagai, Encapsulation of hydrophilic and lipophilic drugs in PLGA nanoparticles by the nanoprecipitation method. Drug Dev Ind Pharm, 1999. 25: p. 471-476.
    22. Ding, X., A.W. Alani, and J.R. Robinson, Extended-release and targeted drug delivery systems. Remington: The Science and Practice of Pharmacy. 2006.43:p. 241-276.
    23. Chien, Y.W., Novel Drug Delivery System : fundamental, developmental concepts and biomedical assessments, 1982.
    24. Uhrich, K.E., S.M. Cannizzaro, S.L. Robert , S.M. Kevin, Polymeric Systems for Controlled Drug Release. Chem Rev, 1999. 99: p. 3181-3198.
    25. Chien, Y.W., L. Senshang, Drug delivery: controlled release. Encyclo of pharm tech, 2002. 1: p. 811-833.
    26. Aguzzi, C., P. Cerezo, C. Viseras, C. Caramella, Use of clays as drug delivery systems: Possibilities and limitations. App Clay Sci, 2007. 36: p. 22-36.
    27. Chien, Y.W., L. Senshang, Optimisation of Treatment by Applying Programmable Rate-Controlled Drug Delivery Technology. Clin Pharmacokinet, 2002. 41: p. 1267-1299.
    28. Alexis, F., Factors affecting the degradation and drug-release mechanism of poly(lactic acid) and poly[(lactic acid)-co-(glycolic acid)]. Polym Int, 2005. 54: p. 36-46.
    29. Pitt, G.G., Y.Cha, S.S. Shah, K.J. Zhu, Blends of PVA and PGLA: control of the permeability and degradability of hydrogels by blending. J Control Release, 1992. 19: p. 189-199.
    30. Guelcher S.A., J.O. Hua, An Introduction to Biomaterials, B. Raton. 2006.
    31. Göpferich, A., Mechanisms of polymer degradation and erosion. Biomaterials, 1996. 17: p. 103-114.
    32. Theeuwes, F., S. I.Yum, Principles of the design and operation of generic osmotic pumps for the delivery of semisolid or liquid drug formulations. Ann Biomed Eng, 1976. 4: p. 343-353.
    33. Sant, S.B., Nanoparticles: From Theory to Applications. mater manuf process, 2012. 27: p. 1462-1463.
    34. Wang, X.S., J. Christopher, W.Z. Lin, Large-Scale Hexagonal-Patterned Growth of Aligned ZnO Nanorods for Nano-optoelectronics and Nanosensor Arrays. Nano Let, 2004. 4: p. 423-426.
    35. Jang, J., O. Joon Hak, Novel crystalline supramolecular assemblies of amorphous polypyrrole nanoparticles through surfactant templating. Chen Coummun, 2002. 19: p. 2200-2201.
    36. Fudouzi, H., Y. Xia, Photonic Papers and Inks: Color Writing with Colorless Materials. Adv Mater, 2003. 15: p. 892-896.
    37. Rao, J.P., K.E. Geckeler, Polymer nanoparticles: Preparation techniques and size-control parameters. Prog Polym Sci, 2011. 36: p. 887-913.
    38. Jyothi, N.V.N., Microencapsulation techniques, factors influencing encapsulation efficiency. J Microencapsul, 2010. 27(3): p. 187-197.
    39. Arshady, R., Microspheres and microcapsules, a survey of manufacturing techniques: Part III: Solvent evaporation. Polym Eng Sci, 1990. 30: p. 915-924.
    40. Arshady, R., Microspheres and microcapsules, a survey of manufacturing techniques Part II: Coacervation. Polym Eng Sci, 1990. 30: p. 905-914.
    41. Bodmeier, R., J.W. McGinity, The preparation and evaluation of drug-containing poly(dl-lactide) microspheres formed by the solvent evaporation method. Pharm Res, 1987. 4: p. 465-471.
    42. Ogawa, Y., M. Yamamoto, H. Okada, T. Yashiki, T. Shimamoto, A new technique to efficiently entrap leuprolide acetate into microcapsules of polylactic acid or copoly(lactic/glycolic) acid. Chem Pharm Bull 1988. 36: p. 1095-103.
    43. Jeffery, H., S.S. Davis, Derek T. O'Hagan, The Preparation and Characterization of Poly(lactide-co-glycolide) Microparticles. II. The Entrapment of a Model Protein Using a (Water-in-Oil)-in-Water Emulsion Solvent Evaporation Technique. Pharm Res, 1993. 10: p. 362-368.
    44. O'Donnell, P.B.M.I., J.W. McGinity, Properties of multiphase microspheres of poly(D,L-lactic-co-glycolic acid) prepared by a potentiometric dispersion technique. J Microencapsul, 1995. 12: p. 155-163.
    45. Soppimath, K.S., T.M. Aminabhavi, A.R. Kulkarni, W.E. Rudzinski, Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release, 2001. 70: p. 1-20.
    46. Yang, Y.Y., J.P. Wan, T.S. Chung, P.K. Pallathadka, S. Ng, J. Heller, POE-PEG-POE triblock copolymeric microspheres containing protein. I. Preparation and characterization. J Control Release, 2001. 75: p. 115-128.
    47. Gabor, F., B. Ertl, M. Wirth, R. Mallinger, Ketoprofen-poly(D,L-lactic-co-glycolic acid) microspheres: influence of manufacturing parameters and type of polymer on the release characteristics. J Microencapsul, 1999. 16: p. 1-12.
    48. Capan, Y., B.H. Woo, S. Gebrekidan, S. Ahmed, P.P. DeLuca, Influence of formulation parameters on the characteristics of poly(D, L-lactide-co-glycolide) microspheres containing poly(L-lysine) complexed plasmid DNA. J Control Release, 1999. 60: p. 279-86.
    49. Ghaderi, R., S. Cecilia, C. Johan, Effect of preparative parameters on the characteristics of poly d,l-lactide-co-glycolide)microspheres made by the double emulsion method. Int J Pharm, 1996. 141: p. 205-216.
    50. Herrmann, J., B. Roland, Somatostatin containing biodegradable microspheres prepared by a modified solvent evaporation method based on W/O/W-multiple emulsions. Int J Pharm, 1995. 126: p. 129-138.
    51. Mora-Huertas, C.E., H. Fessi, A. Elaissari, Polymer-based nanocapsules for drug delivery. Int J Pharm, 2010. 385: p. 113-142.
    52. Allémann, E., R. Gurny, E. Doelker, Preparation of aqueous polymeric nanodispersions by a reversible salting-out process: influence of process parameters on particle size. Int J Pharm, 1992. 87: p. 247-253.
    53. De Jaeghere, F., E. Allémann, L. Jean Christophe, S. Wim, F. Jan, D. Eric, G. Robert, Formulation and Lyoprotection of Poly(Lactic Acid-Co-Ethylene Oxide) Nanoparticles: Influence on Physical Stability and In Vitro Cell Uptake. Pharm Res, 1999. 16: p. 859-866.
    54. Zweers, M.L.T., G.H.M. Engbers, D.W. Grijpma, J. Feijen, In vitro degradation of nanoparticles prepared from polymers based on dl-lactide, glycolide and poly(ethylene oxide). J Control Release, 2004. 100: p. 347-356.
    55. Galindo-Rodríguez, S.A., F. Puel, S. Briançon, E. Allémann, E. Doelker, H. Fessi, Comparative scale-up of three methods for producing ibuprofen-loaded nanoparticles. Eufepse, 2005. 25: p. 357-367.
    56. Bindschaedler C, R.G., E. Doelker, Process for preparing a powder of water-insoluble polymer which can be redispersed in a liquid phase, the resulting powder and utilization thereof. 1990: US Patent.
    57. Ganachaud, F., J. L.Katz, Nanoparticles and Nanocapsules Created Using the Ouzo Effect: Spontaneous Emulsification as an Alternative to Ultrasonic and High-Shear Devices. Chem Phys Chem, 2005. 6: p. 209-216.
    58. Chakraborty, S., I.C. Liao, A. Adler, K.W. Leong, Electrohydrodynamics: A facile technique to fabricate drug delivery systems. Adv Drug Deliv Rev, 2009. 61: p. 1043-54.
    59. Bock, N., T.R. Dargaville, M.A. Woodruff, Electrospraying of polymers with therapeutic molecules: State of the art. Prog Polym Sci, 2012. 37: p. 1510-1551.
    60. Jaworek, A., A.T. Sobczyk, Electrospraying route to nanotechnology: An overview. J Electrostat, 2008. 3: p. 197-219.
    61. Enayati, M., Z. Ahmad, E. Stride, M. Edirisinghe, Size mapping of electric field-assisted production of polycaprolactone particles. J R Soc Interface, 2010. 7 p. 393-402.
    62. Xie, J., C.H. Wang, , Encapsulation of proteins in biodegradable polymeric microparticles using electrospray in the Taylor cone-jet mode. Biotechnol Bioeng, 2007. 97: p. 1278-1290.
    63. Gañán-Calvo, A.M., J.Dávila, A. Barrero, Current and droplet size in the electrospraying of liquids. Scaling laws. J Aerosol Sci, 1997. 28: p. 249-275.
    64. Yao, J., L. Kuang Lim, X. Jingwei, H. Jinsong, W.C. Hwa, Characterization of electrospraying process for polymeric particle fabrication. J Aerosol Sci, 2008. 39: p. 987-1002.
    65. Songsurang, K., N. Praphairaksit, K. Siraleartmukul, N. Muangsin, Electrospray fabrication of doxorubicin-chitosan-tripolyphosphate nanoparticles for delivery of doxorubicin. Arch Pharm Res, 2011. 34: p. 583-592.
    66. Hartman, R.P.A., D.J. Brunner, D.M.A. Camelot, J.C.M. Marijnissen, B. Scarlett, Electrohydrodynamic Atomization in the CONE-JET Mode Physical Modeling of the Liquid Cone and Jet. J Aerosol Sci, 1999. 30: p. 823-849.
    67. Jingwei, X., L. Liang Kuang, P. Yiyong, H. Jinsong, W. Chi-Hwa, Electrohydrodynamic atomization for biodegradable polymeric particle production. J Colloid Interface Sci, 2006. 302: p. 103-112.
    68. Fukui, Y., T. Maruyama, Y. Iwamatsu, A. Fujii, T. Tanaka, Y. Ohmukai, H. Matsuyama, Preparation of monodispersed polyelectrolyte microcapsules with high encapsulation efficiency by an electrospray technique. Colloids Surf A, 2010. 370: p. 28-34.
    69. Bock, N., M.A. Woodruff, D.W. Hutmacher, T.R. Dargaville, Electrospraying, a reproducible method for production of polymeric microspheres for biomedical applications. Polym, 2011. 3: p. 131-149.
    70. Cloupeau, M., Recipes for use of EHD spraying in cone-jet mode and notes on corona discharge effects. J Aerosol Sci, 1994. 25: p. 1143-1157.
    71. Tang, K., A. Gomez, Monodisperse Electrosprays of Low Electric Conductivity Liquids in the Cone-Jet Mode. J Colloid Interface Sci, 1996. 184: p. 500-511.
    72. Jingwei, X., L. Liang Kuang, P. Yiyong, H. Jinsong, W. Chi-Hwa, Electrohydrodynamic atomization for biodegradable polymeric particle production. J Colloid Interface Sci, 2006. 302(1): p. 103-112.
    73. Cloupeau, M., Recipes for use of EHD spraying in cone-jet mode and notes on corona discharge effects. J Aerosol Sci, 1994. 25(6): p. 1143-1157.
    74. Fukui, Y., M. Tatsuo, I. Yuko, F. Akihiro, T. Tsutomu, O. Yoshikage, M. Hideto, Preparation of monodispersed polyelectrolyte microcapsules with high encapsulation efficiency by an electrospray technique. Colloids Surf A, 2010. 370: p. 28-34.
    75. Bock, N., M.A. Woodruff, D.W. Hutmacher, T.R. Dargaville, Electrospraying, a Reproducible Method for Production of Polymeric Microspheres for Biomedical Applications. Polym, 2011. 3.
    76. Wu, Y., J.A. MacKay, J.R. McDaniel, A. Chilkoti, R.L. Clark, Fabrication of elastin-like polypeptide nanoparticles for drug delivery by electrospraying. Biomacromolecules, 2009. 10: p. 19-24.
    77. Deng, W., C.M. Waits, M. Brian, G. Alessandro, Compact multiplexing of monodisperse electrosprays. J Aerosol Sci, 2009. 40: p. 907-918.
    78. Bhatnagar, P., Multiplexed electrospray deposition for protein microarray with micromachined silicon device. App Phys Lett, 2007. 91: p. 14-20.
    79. Xie, J., C.H.Wang, Encapsulation of proteins in biodegradable polymeric microparticles using electrospray in the Taylor cone-jet mode. Biotechnol Bioeng, 2007. 97: p. 1278-90.
    80. Park, J.H., G. Saravanakumar, K. Kim, I.C. Kwon, Targeted delivery of low molecular drugs using chitosan and its derivatives. Adv Drug Deliv Rev, 2010. 62: p. 28-41.
    81. Wu, Y., Liao, I. Chien, R.L. Clark, Electrosprayed core-shell microspheres for protein delivery. Chen Coummun, 2010. 46: p. 4743-4745.
    82. Xie, J., J. Jiang, D. Pooya, M.P. Srinivasan, W. Chi-Hwa, Electrohydrodynamic atomization: A two-decade effort to produce and process micro-/nanoparticulate materials. Chen Eng Sci, 2015. 125: p. 32-57.
    83. Sridhar, R., S. Ramakrishna, Electrosprayed nanoparticles for drug delivery and pharmaceutical applications. Biomaterials, 2013. 3.
    84. Sengupta, S., D. Eavarone, I. Capila, G. Zhao, N. Watson, T. Kiziltepe, R. Sasisekharan, Temporal targeting of tumour cells and neovasculature with a nanoscale delivery system. Nature, 2005. 436: p. 568-72.
    85. Eltayeb, M., S. Eleanor, E. Mohan, H. Anthony, Electrosprayed nanoparticle delivery system for controlled release. Adv Mater Sci Eng, 2016. 66: p. 138-146.
    86. Zhang, L., J. Huang, T. Si, R.X. Xu, Coaxial electrospray of microparticles and nanoparticles for biomedical applications. Expert Rev Med Devices, 2012. 9: p. 595-612.
    87. Chen, C., W. Liu, P. Jiang, T. Hong, Coaxial Electrohydrodynamic Atomization for the Production of Drug-Loaded Micro/Nanoparticles. Micromachines 2019. 10: p. 120-125.
    88. Ma, C., P. Pengju, S. Guorong, B. Yongzhong, F. Masahiro, M. Mizuo, Core–Shell Structure, Biodegradation, and Drug Release Behavior of Poly(lactic acid)/Poly(ethylene glycol) Block Copolymer Micelles Tuned by Macromolecular Stereostructure. Langmuir, 2015. 31: p. 1527-1536.
    89. Rosca, I.D., F. Watari, M. Uo, Microparticle formation and its mechanism in single and double emulsion solvent evaporation. J Control Release, 2004. 99: p. 271-80.
    90. Nie, H., Y. Fu, C.H. Wang, Paclitaxel and suramin-loaded core/shell microspheres in the treatment of brain tumors. Biomaterials, 2010. 31: p. 8732-40.
    91. Mandal, B., H. Bhattacharjee, N. Mittal, H. Sah, P. Balabathula, L.A. Thoma, G.C. Wood, Core-shell-type lipid-polymer hybrid nanoparticles as a drug delivery platform. Nanomed Nanotechenol, 2013. 9(4): p. 474-491.
    92. Wei, J.C., P.Y. Guo-Wang, L.G. Cui, H.B. Zhang, Y.F. Dai, T.X. Liu, Novel Method to Graft Chitosan on the Surface of Hydroxyapatite Nanoparticles via "Click" Reaction. Chen Res Chinese U, 2014. 30: p. 1063-1065.
    93. He, C.B., Y.P. Hu, L.C. Yin, C. Tang, C.H. Yin, Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials, 2010. 31: p. 3657-3666.
    94. Nam, H.Y., S.M. Chung, H. Lee, S.Y. Kwon, S.H. Jeon, H. Kim, Y. Park, J.H. Kim, J. Her, S. Oh, Y.K. Kwon, I.C. Kim, K. Jeong, Cellular uptake mechanism and intracellular fate of hydrophobically modified glycol chitosan nanoparticles. J Control Release, 2009. 135: p. 259-267.
    95. Harush-Frenkel, O., N. Debotton, S. Benita, Y. Altschuler, Targeting of nanoparticles to the clathrin-mediated endocytic pathway. Biochem. Biophys. Res. Commun., 2007. 353: p. 26-32.
    96. Artursson, P., T. Lindmark, SS. Davis, L. Illum, Effect of chitosan on the permeability of monolayers of intestinal epithelial cells (Caco-2). Pharm Res, 1994. 11: p. 1358-1361.
    97. Smith, J., E. Wood, M. Dornish, Effect of chitosan on epithelial cell tight junctions. Pharm Res, 2004. 21: p. 43-49.
    98. Enayati, M., Z. Ahmad, E. Stride, M.Edirisinghe, One-step electrohydrodynamic production of drug-loaded micro- and nanoparticles. J R Soc Interface, 2010. 7: p. 667-75.
    99. Yi-Hsuan, L., M. Fan, B. Meng Yi, Z. Suling, C.D. Ren, Release profile characteristics of biodegradable-polymer-coated drug particles fabricated by dual-capillary electrospray. J Control Release, 2010. 145: p. 58-65.
    100. Park, C.H., L. Jonghwi, One-Step Immobilization of Protein-Encapsulated Core/Shell Particles onto Nanofibers. Macromol. Mater Eng, 2010. 295: p. 544-550.
    101. Xie, J., W.J. Ng, L.Y. Lee, C.H. Wang, Encapsulation of protein drugs in biodegradable microparticles by co-axial electrospray. J Colloid Interface Sci, 2008. 317: p. 469-476.
    102. Kaminsky, Y.G., E.A. Kosenko, Molecular mechanisms of toxicity of simvastatin, widely used cholesterol-lowering drug. A review. Cent Eur J Med, 2010. 5: p. 269-279.
    103. Mundy, G., R. Harris, S. Chan, J. Chen, D. Rossini, G. Boyce, B. Zhao, M. Gutierrez, Stimulation of bone formation in vitro and in rodents by statins. Sci, 1999. 286: p. 1946-1949.
    104. Whang, K., E. Khan, A. McDonald, J. Lawton, M. Satsangi, A novel osteotropic biomaterial OG-PLG: in vitro efficacy. J Biomed Mater Res A, 2005. 74: p. 247-53.
    105. Whang, K., J. McDonald, A. Khan, N. Satsangi, A novel osteotropic biomaterial OG-PLG: Synthesis and in vitro release. J Biomed Mater Res A, 2005. 74: p. 237-46.
    106. Nelson, M.L., S.B. Levy, The history of the tetracyclines. Ann NY Acad Sci, 2011. 1241: p. 17-32.
    107. Moullan, N., L. Wang, X. Ryu, D. Williams, E.G. Mottis, A. Jovaisaite, V. Frochaux, M.V. Quiros, P.M. Deplancke, B. Houtkooper, R.H. Auwerx, Tetracyclines Disturb Mitochondrial Function across Eukaryotic Models: A Call for Caution in Biomedical Research. Cell Reports, 2015. 10: p. 1681-1691.
    108. Chatzispyrou, I.A., N.M. Held, L. Mouchiroud, J. Auwerx, R.H. Houtkooper, Tetracycline Antibiotics Impair Mitochondrial Function and Its Experimental Use Confounds Research. Cancer Res, 2015. 75: p. 4446-4449.
    109. Cherney, L.T., Structure of Taylor cone-jets: limit of low flow rates. J Fluid Mech, 1999. 378: p. 167-196.
    110. Almería, B., D. Weiwei, F. Tarek M., G. Alessandro, Controlling the morphology of electrospray-generated PLGA microparticles for drug delivery. J Colloid Interface Sci, 2010. 343: p. 125-133.
    111. Xu, Q.X., H.Qin, Z.Y. Yin, J.S. Hua, D.W. Pack, C.H.Wang, Coaxial electrohydrodynamic atomization process for production of polymeric composite microspheres. Chem Eng Sci, 2013. 104: p. 330-346.
    112. Nie, H.M., Y.L. Fu, C.H. Wang, Paclitaxel and suramin-loaded core/shell microspheres in the treatment of brain tumors. Biomaterials, 2010. 31: p. 8732-8740.
    113. Nie, H.M., Z. G.Dong, D.Y. Arifin, Y. Hu, C.H. Wang, Core/shell microspheres via coaxial electrohydrodynamic atomization for sequential and parallel release of drugs. J BIOMED MATER RES A, 2010. 95A: p. 709-716.
    114. Thein,D.V.H., S.W. Hsiao, M.H. Ho, Synthesis of electrosprayed chitosan nanoparticles for drug sustained release. Nano Life, 2012. 02: p. 1250003.
    115. Ganan Calvo, A.M., J. Davila, A. Barrero, Current and droplet size in the electrospraying of liquids. Scaling laws. J Aerosol Sci, 1997. 28: p. 249-275.
    116. He, C.B., Y. P. Hu, L.C. Yin, C. Tang, C.H. Yin, Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials, 2010. 31: p. 3657-3666.
    117. Parveen, S., S.K. Sahoo, Long circulating chitosan/PEG blended PLGA nanoparticle for tumor drug delivery. Eur J Pharmacol, 2011. 670: p. 372-383.
    118. Stolnik, S., M.C. Garnett, M.C. Davies, L. Illum, M. Bousta, M. Vert, S.S. Davis, The colloidal properties of surfactant-free biodegradable nanospheres from poly(β-malic acid-co-benzyl malate)s and poly(lactic acid-co-glycolide). Colloids Surf A, 1995. 97: p. 235-245.
    119. Sadeghi A.M., F.A. Avadi, M.R. Saadat, P. Rafiee-Tehrani, M. Junginger, Preparation, characterization and antibacterial activities of chitosan, N-trimethyl chitosan (TMC) and N-diethylmethyl chitosan (DEMC) nanoparticles loaded with insulin using both the ionotropic gelation and polyelectrolyte complexation methods. Int J Pharm, 2008. 355: p. 299-306.
    120. Semete, B., L.K., Lonji, V. Jacobus, D. Katata, L. Ramalapa, B. Verschoor, J. A. Swai, In vivo uptake and acute immune response to orally administered chitosan and PEG coated PLGA nanoparticles. Toxicol Appl Pharmacol, 2010. 249: p. 158-165.
    121. Gupta, D., J. Venugopal, S. Mitra, V.G. Dev, S.Ramakrishn Nanostructured biocomposite substrates by electrospinning and electrospraying for the mineralization of osteoblasts. Biomaterials, 2009. 30: p. 2085-2094.
    122. Kim, S.J., D.H. Yang, H.J. Chun, G.T. Chae, J.W. Jang, Y.B.Shim, Evaluations of chitosan/poly(D,L-lactic-co-glycolic acid) composite fibrous scaffold for tissue engineering applications. Macromol Res, 2013. 21: p. 931-939.
    123. Shenoy, D.B., A.A. Antipov, G.B. Sukhorukov, H. Mohwald, Layer-by-layer engineering of biocompatible, decomposable core-shell structures. Biomacromolecules, 2003. 4: p. 265-272.
    124. Yang, Y., X. Li, M. Qi, S. Zhou, J. Weng, Release pattern and structural integrity of lysozyme encapsulated in core-sheath structured poly(DL-lactide) ultrafine fibers prepared by emulsion electrospinning. Eur J Pharm Biopharm, 2008. 69: p. 106-16.
    125. Chang, P.C., L.Y. Chong, A.S. Dovban, L.P. Lim, J.C. Lim, M.Y. Kuo, C. H.Wang, Sequential platelet-derived growth factor - simvastatin release promotes dentoalveolar regeneration. Tissue Eng Part A, 2014. 20: p. 356-64.
    126. Hughes, L.D., R.J. Rawle, S.G. Boxer, Choose your label wisely: water-soluble fluorophores often interact with lipid bilayers. Plos Comput Biol, 2014. 9: p. 87.
    127. Jeong, B., Y. H. Bae, S. W. Kim, Drug release from biodegradable injectable thermosensitive hydrogel of PEG-PLGA-PEG triblock copolymers. J Control Release, 2000. 63: p. 155-163.
    128. Li, Y.P., Y.Y. Pei, X.Y. Zhang, Z.H. Gu, Z.H. Zhou, W.F. Yuan, J.J. Zhou, J.H. Zhu, X.J. Gao, PEGylated PLGA nanoparticles as protein carriers: synthesis, preparation and biodistribution in rats. J Control Release, 2001. 71: p. 203-211.

    無法下載圖示 全文公開日期 2024/08/28 (校內網路)
    全文公開日期 2024/08/28 (校外網路)
    全文公開日期 2024/08/28 (國家圖書館:臺灣博碩士論文系統)
    QR CODE