簡易檢索 / 詳目顯示

研究生: 黃媛園
Yuan-Yuan Huang
論文名稱: 包覆乙醯半胱氨酸之海藻膠/殼聚醣核殼微米粒子的製備及其抗氧化效力評估
A preparation of N- acetylcysteine- encapsulating alginate/chitosan core-shell microparticles and their in vitro study of antioxidative capacity
指導教授: 白孟宜
Meng-Yi Bai
口試委員: 白孟宜
Meng-Yi Bai
鄭詠馨
Yung-Hsin Cheng
劉澤英
Tse-Ying Liu
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 醫學工程研究所
Graduate Institute of Biomedical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 108
中文關鍵詞: 海藻酸鈉殼聚醣乙醯半胱氨酸自由基氧化壓力
外文關鍵詞: Alginate, Chitosan, N-acetylcysteine, Free radical, Oxidative stress
相關次數: 點閱:250下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 乙醯半胱氨酸(N-acetylcysteine)原為化痰藥物及乙醯胺酚中毒的解毒劑,有研究發現也可對於穀胱甘肽的降低及以氧化壓力因素為病徵的疾病使用。本研究為製備海藻膠/殼聚醣殼核結構顆粒載入乙醯半胱氨酸,評估其抗氧化的潛在應用。載體材料中的海藻酸納及殼聚醣,因其具有良好的生物相容性、生物降解性及無毒性的材料特性,廣泛應用於生醫領域當中。製備的方法使用電噴霧法,將海藻膠與殼聚醣因靜電作用成為核殼結構聚電解質,同時也將藥物搭載其中。並透過光學顯微鏡及掃描式電子顯微鏡觀察顆粒之型態,可以發現海藻膠/殼聚醣核殼結構顆粒之粒徑大小大約為152 ± 17.9 μm。藥物包封率則為68.6 ± 14.1 %。
    在細胞存活率實驗中,當藥物濃度在低於5 mg/mL及空白顆粒對於小鼠巨噬細胞均有80%以上的存活率,並且在抗發炎測試中,小鼠巨噬細胞與藥物釋放液共培養,隨著聚電解質載藥顆粒之藥物釋放時間的增加,一氧化氮濃度便有明顯下降的趨勢,在釋放24小時後,藥物釋放量約為5293.9 ± 495.3 ppm,一氧化氮濃度與控制組比較下降約82.4 %的濃度。
    再透過細胞內自由基螢光影像可以判斷,經過乙醯半胱氨酸處理後的小鼠巨噬細胞,相較於對照組有明顯亮度的減弱,而經過載藥聚電解質顆粒釋放24小時處理後,相較於單純的乙醯半胱氨酸組別,其細胞內的自由基有更明顯的螢光減弱,代表整體自由基的螢光有下降的現象,實驗結果顯示,此聚電解質顆粒和乙醯半胱氨酸對於氧化壓力是具有潛力的結合。


    N-acetylcysteine was a phlegm medicine and antidote for Acetaminophen poisoning. Previous studies shown that NAC can also be used for diseases characterized by reduced glutathione and oxidative stress. The purpose of this study was to prepare alginate/chitosan core-shell particles loaded with N-acetylcysteine and evaluate its potential application in anti-oxidation. The material of sodium alginate and chitosan were choosen in this drug delivery system because of their good biocompatibility, biodegradability and non-toxic properties. In the study, we used method of electrospray technique to combine alginate and chitosan into core-shell polyelectrolyte by the electrostatic effect, then simulat simultaneously encapsulating drug inside. The morphology of particles were observe using optical microscope(OM) and scanning electron microscope(SEM), and the size was approximately 152 ± 17.9 μm, the encapsulation efficiency of the drug was 68.6 ± 14.1 %.
    In the MTT assay, the free drug solution was less than 5 mg/mL, the result showed the higher cell viability over 80%. Same effect was observed in alginate/chitodsan-NAC polyelectrolytes including drug delivery system. In the anti-inflammation test, mouse macrophages are co-cultured with the particle suspension. As the release time of the polyelectrolytes drug-loaded particles was 24 hours, the concentration of nitric oxide tends to decrease approximately 5293.9 ± 495.3 ppm, and the NO concentration decrease 82.4 %.
    According to the fluorescent image of free radicals in the cells, it can be judged that most of the free radicals in the cells of the mouse macrophages treated with N-acetylcysteine have a significant decrease in brightness compared to the PC . When using the N- acetylcysteine-encapsulating polyelectrolytes release solution, the free radicals compared to freeform NAC groups have a significant decrease in fluorescence, indicating that the overall free radicals have been reduced. The results showed this kind of polyelectrolyte particles and N-acetylcysteine are potential combinations for anti-oxidative stress treatment.

    摘要 I Abstract II 目錄 IV 表目錄 VIII 圖目錄 IX 中英文縮寫對照表 XI 第一章、 緒論 1 1.1 研究動機與目的 1 1.2 實驗流程 2 第二章、 文獻回顧 3 2.1 心血管疾病 3 2.2 心血管疾病中自由基的來源 3 2.2.1 自由基對心血管疾病之傷害 4 2.3自由基 4 2.3.1自由基的分類 4 2.3.1.1活性氧族(Reactive Oxygen Species, ROS) 4 2.3.1.2活性氮族 6 2.4 氧化壓力 7 2.5 老藥新用 8 2.5.1 乙醯半胱氨酸(N- acetylcysteine) 8 2.5.2 乙醯半胱氨酸(NAC)與發炎細胞之關係 10 2.6 藥物傳輸系統 11 2.6.1 聚電解質 11 2.7 電噴霧(Electrospray) 13 第三章、 材料與方法 14 3.1 藥品及材料 14 3.2 實驗儀器 16 3.3 電噴灑微米粒子懸浮液製備 18 3.3.1 ALG顆粒儲備溶液製備 18 3.3.2 ALG/CHT顆粒儲備溶液製備 18 3.3.3 電噴灑ALG/CHT-NAC顆粒之製備 19 3.4 材料分析 20 3.4.1顆粒大小直徑統計分析 20 3.4.2 掃描式電子顯微鏡及能量色散X-射線光譜(EDS)分析 20 3.4.3 傅立葉轉換紅外光譜分析 21 3.4.4 高解析X射線光電子能譜儀 21 3.5 藥物定量分析 22 3.5.1 模擬體液配置(SBF) 22 3.5.2 乙醯半胱氨酸檢量線(Calibration line of NAC:UV/vis) 22 3.5.2 乙醯半胱氨酸檢量線(Calibration line of NAC: HPLC) 23 3.5.3 ALG/CHT-NAC顆粒藥物包埋率 23 3.5.4 ALG/CHT-NAC顆粒藥物釋放 23 3.6 細胞實驗 24 3.6.1 培養基配置 24 3.6.2 細胞解凍活化 24 3.6.3 更換培養基 25 3.6.4 細胞繼代 25 3.6.5 細胞計數 26 3.6.6 細胞冷凍保存 27 3.7 細胞存活率分析(MTT Assay) 28 3.7.1 Freeform NAC對小鼠巨噬細胞之細胞毒性試驗 29 3.7.2 ALG及ALG/CHT顆粒對小鼠巨噬細胞之毒性試驗 29 3.8脂多醣誘發發炎模式試驗 30 3.8.1 Freeform NAC藥物對發炎巨噬細胞之試驗 30 3.8.2 ALG/CHT-NAC顆粒對發炎巨噬細胞之試驗 31 3.9 細胞內自由基影像 31 3.10 統計分析 32 第四章、 結果與討論 33 4.1 粒子型態與粒徑大小 33 4.1.1以氯化鈣與殼聚醣溶液作為電噴收集液 33 4.1.2探討電壓大小對不同濃度ALG顆粒的影響 34 4.1.3 以SEM探討ALG顆粒大小 35 4.2 以電噴霧的方式製備不同殼聚醣濃度收集液之顆粒 36 4.3 改變收集ALG/CHT-NAC顆粒的方式 37 4.4 傅立葉轉換紅外光譜分析顆粒表面化學組成 38 4.5 高解析X射線光電子能譜儀(XPS) 39 4.6 N-acetylcysteine藥物包埋率測量 40 4.7 N-acetylcysteine藥物釋放速率分析 40 4.8 細胞毒性試驗(MTT) 41 4.9 脂多醣分析(LPS) 42 4.10 細胞內自由基螢光影像 43 第五章、 結論 44

    [1] Thayer, J. F.;Shleby, S. Y.;Brosschot, J. F. The relationship of autonomic imbalance, heart rate variability and cardiovascular disease risk factors. Int. J. Cardiol. 2010, 141, pp 122-131
    [2] Liccardo, D.;Cannavo, A.;Spagnuolo, G.;Ferrara, N.;Cittadini, A.;Rengo, C.;Rengo, G. Periodontal Disease: A Risk Factor for Diabetes and Cardiovascular Disease. Int. J. Mol. Sci. 2019, 20, pp 1-14
    [3] Hamilton, C. A.;Miller, W. H.;Al-Benna, S.;Brosnan, M. J.;Drummond, R. D. Martin W McBride, Anna F Dominiczak . Strategies to reduce oxidative stress in cardiovascular disease. Clin. Sci.. 2004, 106, pp 219-34.
    [4] Wating, S.;Yuan, Z.;Qiongxia, Z.;Liying, Z.;Qiqi, Z.;Qingquan, L.;Huimin, L.;Zong-yuan, X.;Zhengyuan, X.;Shaoqing, L. N-acetylcysteine attenuates myocardial dysfunction and postischemic injury by restoring caveolin-3/eNOS signaling in diabetic rats. Cardiovasc. Diabetol. 2016, 15, pp 146-161
    [5] Damy, T.;Kirsch, M.;Khouzami, L.;Caramelle, P.;Corvoisier, P. L.;Roudot-Thoraval, F.;Dubois-Rande, J-L.;Hittinger, L.;Pavoine, C.;Packer, F. Glutathione Deficiency in Cardiac Patients is Related to the Functional Status and Structural Cardiac Abnormalities. PLoS One. 2009, 4, pp 1-7
    [6] Bhogal, R. H.;Curbishley, S. M.;Weston, C. J.;Adams, D. H.;Afford, S. C. Reactive oxygen species mediate human hepatocyte injury during hypoxia/reoxygenation. Liver Transpl. 2010, 16, pp 1303–1313.
    [7] Zimmerman, M.C.;Lazartigues, E.;Sharma, R.V.;Davisson, R.L. Hypertension caused by angiotensin II infusion involves increased superoxide production in the central nervous system. Circ Res. 2004, 95, pp 210–215
    [8] Fiorentino, T. V.;Prioletta, A.;Pengou, Z.;Folli, F. Hyperglycemia-induced Oxidative Stress and its Role in Diabetes Mellitus Related Cardiovascular Diseases. Curr. Pharm. Des. 2013, 19, pp 5695-5703.
    [9] Diniz, Y. S.;Rocha, K. K. H. R.;Souza, G. A.;Galhardi, C. M.;Ebaid, G. M. X.;Rodrigues, H. G.;Novelli Filho, J. L. V. B.;Cicogna, A. C.;Novelli, E. L. B. Effects of N-acetylcysteine on sucrose-rich diet-induced hyperglycaemia, dyslipidemia and oxidative stress in rats. Eur. J. Pharmacol. 2006, 543, 151–157.
    [10] Campos, K. E.;Diniz, Y. S.;Cataneo, A. C.;Faine, L. A.;Alves, M. J. Q. F.;Novelli, E. L. B. Hypoglycaemic and antioxidant effects of onion, Allium cepa: Dietary onion addition, antioxidant activity and hypoglycaemic effects on diabetic rats. Int. J. Food Sci. Nutr. 2003, 54, pp 241–246
    [11] Dludla, P. V.;Nkambule, B. B.;Dias, S. C.;Johnson, R. Cardioprotective potential of N-acetyl cysteine against hyperglycaemia-induced oxidative damage: a protocol for a systematic review. Syst. Rev. 2017, 6, pp 96-100
    [12] Heistad, D. D.;Yoshin0obu, W.;Miller, J.;Yi, C.;Pena-Silva, R. Novel Aspects of Oxidative Stress in Cardiovascular Diseases. Circ J. 2009, 73, pp 201-207
    [13] Ganguly, P.;Alam, S. F. Role of homocysteine in the development of cardiovascular disease. Nutr J. 2015, 14, pp 1-10
    [14] Kjeldsen, E. S. Hypertension and cardiovascular risk: General aspects. Pharmacol. Res. 2018, 129, pp 95-99
    [15] Naseem, K. M. The role of nitric oxide in cardiovascular diseases. Mol. Aspects Med. 2005, 26, pp 33-65
    [16] Ajay, M.;Achiike, F. I.;Mustafa, A. M.;Mustafa, M. R. Direct Effects of Quercetin on Impaired Reactivity of Spontaneously Hypertensive Rat Aortae: Comparative Study With Ascorbic Acid. Clin. Exp. Pharmacol. Physiol. 2006, 33, pp 345-350
    [17] Hadi, H.;Carr, CS.;Suwaidi, J. A. Endothelial dysfunction: cardiovascular risk factors, therapy, and outcome. Vasc Health Risk Manag. 2005, 1, pp 183–198
    [18] Hirata, Y.;Nagata, D.;Suzuki, E.;Nishimatsu, H.;Suzuki, J.;Nagai, R. Diagnosis and treatment of endothelial dysfunction in cardiovascular disease. Int Heart J. 2010, 51, pp 1–6
    [19] Jason, D. A.; Giordano, T.; Kevil, C. G. Nitrite and nitric oxide metabolism in peripheral artery disease. Nitric Oxide. 2012, 26, 217-222
    [20] Sugamura, K.;Keaney Jr, J. F. Reactive oxygen species in cardiovascular disease. Free Radic. Biol. Med. 2011, 51, 978-982
    [21] Machha, A.;Schechter, A. N. Dietary nitrite and nitrate: a review of potential mechanisms of cardiovascular benefits. Eur J Nutr. 2011, 50, pp 293-303
    [22] Pisoschi, A. M.;Pop, A. The role of antioxidants in the chemistry of oxidative stress: A review. Eur. J. Med. Chem. 2015, 97, 55–74.

    [23] Salman, K. A.; Ashraf, S. Reactive oxygen species: A link between chronic inflammation and cancer. Asia Pac. J. Mol. Biol. 2013; 21, 42-49.
    [24] 黎孝韻、曾國慶。自由基及抗氧化物功能的探討。藥學雜誌。2008, 24, pp 95-103
    [25] Ozcan, A.;Ogun, M. Biochemistry of Reactive Oxygen and Nitrogen Species. Basic Principles and Clinical Significance of Oxidative Stress.2015, chapter 3
    [26] Cadet J.;Davies, K. J. A. Oxidative DNA damage & repair: An introduction. Free Radic. Biol. Med. 2017, 107, pp 2-12
    [27] Cumpstey, A.;Feelisch, M. Free Radicals in Inflammation. Inflammation: From Molecular and Cellular Mechanisms to the Clinic. 2017, chapter 27
    [28] Bolisetty, S.;Jaimes, E.A. Mitochondria and reactive oxygen species: physiology and pathophysiology. Int. J. Mol. Sci. 2013, 14, 6306–6344.
    [29] Tossios, P;Bloch, W.;Huebner, A.;Raji, M. R.;Dodos, F.;Klass, O.;Suedkamp, M.;Kasper, S-M,;Hellmich, M.;Mehlforn, U. N-acetylcysteine prevents reactive oxygen species–mediated myocardial stress in patients undergoing cardiac surgery: Results of a randomized, double-blind, placebo-controlled clinical trial. J Thorac Cardiovasc Surg. 2003, 126, pp 1513-1320
    [30] Sekhar, R. J.;Patel, S. J.;Guthikonda, A. P.;Reid, M.;Balasubramanyam, A.;Taffet, G. E.;Jahoor, F. Deficient synthesis of glutathione underlies oxidative stress in aging and can be corrected by dietary cysteine and glycine supplementation. Am J Clin Nutr. 2011, 94, pp 847–853.
    [31] Sharma, P.;Jha, A.;Dubey R. S.;Pessarakli, M. Reactive Oxygen Species, Oxidative Damage, and Antioxidative Defense Mechanism in Plants under Stressful Conditions. 2012, (Article ID 217037), pp 34 – 59
    [32] Tania, P. O. A. Free radical, oxidative stress and its roles on inflammatory response. Berkala Ilmu Kedokteran. 2018, 14, pp 179-191
    [33] Nosengo, N. Can you teach old drugs new tricks? Nature. 2016, 534, pp 314-316
    [34] Dimasi, J. A.;Grabowski, H. G;Hansen, J. A. Innovation in the pharmaceutical industry. J Health Econ, 2016, 47, pp 20-34
    [35] Garcia-Serradilla, M.;Risco, C.;Pacheco, B. Drug repurposing for new, efficient, broad spectrum antivirals. Virus Res. 2019, 264, pp 22-31
    [36] Pushpakom, S.;Iorio, F.;Patrick, A.;Eyers, K. Jane Escott, Shirley Hopper, Andrew Wells, Andrew Doig, Tim Guilliams, Joanna Latimer, Christine McNamee, Alan Norris, Philippe Sanseau, David Cavalla, Munir Pirmohamed. Drug repurposing: progress, challenges and recommendations. Nat. Rev. Drug Discov. 2019, 18, pp 41–45
    [37] Chrysant, S. G. Effectiveness and Safety of Phosphodiesterase 5 Inhibitors in Patients With Cardiovascular Disease and Hypertension. Curr Hypertens Rep. 2013, 15, pp 475-83
    [38] Ajay Nehra, M. D. Erectile Dysfunction and Cardiovascular Disease: Efficacy and Safety of Phosphodiesterase Type 5 Inhibitors in Men With Both Conditions. Mayo Clin Proc. 2009, 84, pp 139–148
    [39] Patrono, C. Aspirin: New Cardiovascular Uses for an Old Drug. Am J Med. 2001, 110, pp 62S-65S
    [40] Abbaszadeh, M.;Rabbani, A.;Mandegar, M.H.;Jazayeri, E. Effect of preoperative aspirin use on mortality in coronary artery bypass grafting patients. Ann. Thorac. Surg. 2000, 70, pp 1986-1990
    [41] Aldini, G.;Altomare, A;Baron, G.;Vistoli, G.;Carini, M.;Borsani, L.;Sergio. N-Acetylcysteine as an Antioxidant and Disulphide Breaking Agent: The Reasons Why. Free Radic.F Res. 2018, 52, pp 751-762.
    [42] Souza, G. A.;Ebaid, G. X.;Seiva, F. R. F.;Rocha, K. H. R.;Galhardi, C. M.;Mani, F.;Novelli, E. L. B. N-Acetylcysteine an Allium Plant Compound Improves High-Sucrose Diet-Induced Obesity and Related Effects. Evid. Based Complementary Altern. Med. 2011, 2011, pp 1-7
    [43] Salamon, A.;Kramar, B.;Marolt, T. P.;Poljsak, B.;Milisay, I . Medical and Dietary Uses of N-Acetylcysteine. Antioxidants (Basel). 2019, 8, pp 111-126
    [44] Radtke, K. K.;Coles, L. D.;Mishra, U.;Orchard, P. J.;Holmay, M.;Cloyd, J. C. Interaction of N-acetylcysteine and Cysteine in Human Plasma. J Pharm Sci. 2012, 101, pp 4653-4659
    [45] Hendrickson, R. G.What is the most appropriate dose of N-acetylcysteine after massive acetaminophen overdose?. Clin Toxicol (Phila). 2019, 57, pp 686-691
    [46] Aldini, G.;Altomare, A.;Baron, G.;Vistoll, G.;Carini, M.;Borsani, L.;Sergio, F. N-Acetylcysteine as an antioxidant and disulphide breaking agent: the reasons why. Free Radic. Res. 2018, 52, pp 751-762
    [47] Benrahmoune, M.;Therond, P.;Abedinzadeh, Z. The reaction of superoxide radical with N-acetylcysteine. Free Radic Biol Med. 2000, 29, pp 775–782.
    [48] Chen Y.;Dong H.;Thompson D.C.;Shertzer H.G.;Nebert D.W.;Vasiliou V. Glutathione defense mechanism in liver injury: Insights from animal models. Food Chem. Toxicol. 2013, 60, pp 38–44.
    [49] Millea, P. J. N-acetyl cysteine: multiple clinical applications. Am Fam Physician. 2009, 80, pp 265–269
    [50] Schafer F.Q.;Buettner G.R. Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic. Biol. Med. 2001, 30, pp 1191–1212.
    [51] Sadowska, A. M.;Manuel-Y-Keenoy, B.;De Backer, W. A. Antioxidant and Anti-Inflammatory Efficacy of NAC in the Treatment of COPD: Discordant in Vitro and in Vivo Dose-Effects: A Review. Pulm Pharmacol Ther. 2007, 20, pp 9-22
    [52] Schafer F.Q.;Buettner G.R. Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic. Biol. Med. 2001, 30, pp 1191–1212.
    [53] Vishwanath Venketaraman, Yaswant K. Dayaram, Amol G. Amin, Richard Ngo, Renee M. Green, Meliza T. Talaue, Jessica Mann, and Nancy D. Connell. Role of Glutathione in Macrophage Control of Mycobacteria. Infect. Immun. 2003,71, pp 1864-1871
    [54] Ommati, M, M.;Jamshidzadeh, A.;Niknahad, H.;Mohammadi, H.;Sabouri, S.;Heidari, R.;Abdoli, N. N-acetylcysteine treatment blunts liver failure-associated impairment of locomotor activity. Pharmanutrition. 2017, 5, pp 141-147
    [55] Nathan, C.;Ding, A. SnapShot: Reactive Oxygen Intermediates (ROI). Cell. 2010, 140, 951-951.e2.
    [56] Gerwyn Morris, George Anderson, Olivia Dean, Michael Berk, Piotr Galecki, Marta Martin-Subero, Michael Maes . The Glutathione System: A New Drug Target in Neuroimmune Disorders. Mol. Neurobiol. 2014, 50
    [57] Yun-Wen, P.;Buller, C. L. ;CHARPIE, Y. R. Impact of N-Acetylcysteine on Neonatal Cardiomyocyte Ischemia-Reperfusion Injury. Pediatr. Res. 2011, 70, pp 61-66
    [58] de Andrade K.Q.;Moura F.A.;Dos Santos J.M.;De Araújo O.R.P.;de Farias Santos J.;Goulart M.;Oxidative Stress and Inflammation in Hepatic Diseases: Therapeutic Possibilities of N-Acetylcysteine. Int. J. Mol. Sci. 2015, 16, pp 30269–30308.
    [59] Franco R.;Cidlowski J.A. Glutathione efflux and cell death. Antioxid. Redox Signal. 2012, 17, pp 1694–1713.
    [60] S C.;Weon, L. J.;H K. Effect of Thiol Antioxidants on Lipopolysaccharide-Induced cyclooxygenase-2 Expression in Pulmonary Epithelial Cells. J Physiol Pharmacol. 2018, 69, pp 1-11
    [61] Vıctor Manuel Vıctor, Milagros Rocha, Mónica De la Fuente. Regulation of macrophage function by the antioxidant N-acetylcysteine in mouse-oxidative stress by endotoxin. Int. Immunopharmacol. 2003, 3, pp 97-106
    [62] YanPing, P.;Huan, L.;Yi, Y.;Yanwei, Y.;Yang, J.;Franklin, T. R..;Jihua, C. Biological Activities and Potential Oral Application of N-acetylcysteine: Progress and Prospects. Oxid Med Cell Longev. 2018, 22, 2835787
    [63] Jingwei, X.;Chi-Hwa, W. Encapsulation of Proteins in BiodegradablePolymeric Microparticles Using Electrosprayin the Taylor Cone-Jet Mode. Biotechnol Bioeng. 2007, 97, pp 1278-1290
    [64] Saether, H. V.;Holme, H. K.;Maurstad, G.;Smiderod, O.;Stokke, B. Polyelectrolyte complex formation using alginate and chitosan. Carbohydr. Polym. 2008, 74, pp 813-821
    [65] Islam, S.;Bhuiyan, M. A. R.;Islam, M. N. Chitin and Chitosan: Structure, Properties and Applications in Biomedical Engineering. J Polym Environ. 2017, 25, pp 854-866
    [66] Borges, O.;Cordeiro-da-Silva, A.;Romeijn, S. G.;Amidi, M.;de Sousa, A.; Borchard, G.;Junginger, H. E. Uptake Studies in Rat Peyer's Patches, Cytotoxicity and Release Studies of Alginate Coated Chitosan Nanoparticles for Mucosal Vaccination. J Control Release. 2006, 114, pp 348-358
    [67] Ribeiro, C.;Borges, J.;Costa, A. M. S.;Gaspar, V. M.;de Zea Bermudez, V.; Mano, J. F. Preparation of Well-Dispersed Chitosan/Alginate Hollow Multilayered Microcapsules for Enhanced Cellular Internalization. Molecules. 2018, 23, pp 625-640.
    [68] Alexander, D. Augst, Hyun Joon Kong, David J. Mooney. Alginate Hydrogels as Biomaterials. Macromol Biosci. 2006, 6, pp 623-633
    [69] Martău, G. A.;Mihai, M.;Vodnar, D. C. The Use of Chitosan, Alginate, and Pectin in the Biomedical and Food Sector—Biocompatibility, Bioadhesiveness, and Biodegradability. Polymers. 2019,11,
    [70] Finotelli, P. V;Silva, D. D;Sola-Penna, M;Rossi, A. M;Farina, M;Andrade, L. R;Takeuchi, A. Y;Rocha-Leao, M. H. Microcapsules of alginate/chitosan containing magnetic nanoparticles for controlled release of insulin. Colloids Surf. B. 2010, 81, pp 206-211
    [71] Tønnesen, H. H.;Karlsen, J. Alginate in Drug Delivery Systems. Drug Drug Dev Ind Pharm. 2002, 28, pp 621-630
    [72] Kuen-Yong, L.;David, J. Mooney. Alginate: Properties and biomedical applications. Prog. Polym. Sci. 2012, 37, pp 106-126
    [73] Draget, K. I.;Skjåk-Bræk, G.;Smidsrød, O. Alginate based new materials. Int. J. Biol. Macromol. 1997, 21, pp 47-55
    [74] Xiaoxia, L.;Hongguo X.;Junzhang Lin, Weiyang Xie, Xiaojun Ma. Characterization and biodegradation of chitosan-alginate polyelectrolyte complexs. Polym. Degrad. Stab. 2009, 94, pp 1-6
    [75] Pasparakis, G.;Bouropoulos, N. Swelling studies and in vitro release of verapamil from calciumalginate and calcium alginate–chitosan beads. Int. J. Pharm. 2006, 323, pp 34-42
    [76] Dutta, P. K.;Dutta, J.;Tripathi, V. S. Chitin and Chitosan: Chemistry, properties and applications.   J Sci Ind Res (India). 2004, 63, pp 20-31
    [77] Shu, X. Z.;Zhu, K. J. The influence of multivalent phosphate structure on the properties ofionically cross-linked chitosan films for controlled drug release. Eur J Pharm Biopharm. 2002, 54, pp 235-243
    [78] Lawrie, G.;Keen, I.;Drew, B.;Chandler-Temple, A;Rintoul, L.;Fredericks, P.;Grøndahl. L. Interactions between alginate and chitosan biopolymers characterized using FTIR and XPS. Biomacromolecules, 2007, 8, pp. 2533-2541,
    [79] Sharma, M.;Jain, K.; Kumar, S.; Choudhury, P. K. Formulation and Evaluation of Sodium Alginate Beads by Emulsion Gelation Method. Asian J. Pharm. 2017, 11, pp S101-S106

    [80] Jingwei, X.;Chi-Hwa, W. Electrospray in the dripping mode for cell microencapsulation. J. Colloid Interface Sci. 2007, 312, pp 247-255
    [81] Chan L.W.;Lee, H. Y;Sheng, P.W. Production of alginate microspheres by internal gelation using an emulsification method. Int. J. Pharm. 2002, 242, pp 259-262
    [82] Fukui, Y.;Maruyama, T.;Iwamatsu, Y.;Fujii, A.;Tanaka, T.;Ohmukai, Y.;Matsuyama, H. Preparation of monodispersed polyelectrolyte microcapsules with high encapsulation efficiency by an electrospray technique. Colloids Surf. A Physicochem. Eng. Asp. 2010, 370, pp 28-34.
    [83] Becker, A. L.;Henzler, K.;Welsch, N.;Ballauff, M.;Borisov, O. Proteins and polyelectrolytes: A charged relationship. Curr Opin Colloid Interface Sci. 2012, 17, pp 90-96.
    [84] Cooper, C. L.;Dubin, P. L.;Kayitmazer, A. B.; Turksen, S. Polyelectrolyte–protein complexes. Curr Opin Colloid Interface Sci. 2005, 10, pp 52-78
    [85] Caetano, L. A.;Almeida, A. J.;Gonçalves, L.M.D. Effect of Experimental Parameters on Alginate/Chitosan Microparticles for BCG Encapsulation. Mar Drugs. 2016, 14, pp 1-30
    [86] Conzatti, G.;Ayadi, F.;Cavalie, S.;Carrere, N.;Tourrette, A. Thermosensitive PNIPAM grafted alginate/chitosan PEC. Appl. Surf. Sci. 2019, 467-468, pp 940-948
    [87] Xiaopeng, C.;Naibing, J.;Xiezhen, Y. Spraying modes in coaxial jet electrospray with outer driving liquid. Phys. Fluids. 2005, 17, pp 1-8
    [88] Colupeau, M.;Prunet-Foch, B. Electrohydrodynamic spraying functioning modes: A critical review. J. Aerosol Sci. 1994, 25, pp 1021-1036
    [89] Rosell-Llompart, J.;Fernandez de la Mora, J. Generation of monodisperse droplets 0.3 to 4μm in diameter from electrified cone-jets of highly conducting and viscous liquids. J. Aerosol Sci. 1994, 25, pp 1093-1119
    [90] Ping, L.;Ya-Ni, D.;Jun-Ping, Z.;Ai-Qin, W.;Qin, W. chitosan-Alginate Nanoparticles as a Novel Drug Delivery System for Nifedipine. Int. Int J Biomed Sci. 2008, 4, pp 221-228
    [91] Honary, S.; Maleki, M.;Karami, M. The effect of chitosan molecular weight on the properties of alginate/ chitosan microparticles containing prednisolone. Trop. J. Pharm. Res. 2009, 8, pp 53-61
    [92] JiaXin, C.;Shaojuan, L.;Hingshun, Y. Chitosan combined with calcium chloride impacts fresh-cut honeydew melon by stabilising nanostructures of sodium-carbonate-soluble pectin. Food Control. 2015, 53, pp 195-205
    [93] Saether, H. V.;Holme, H. K.;Maurstad, G.;Smiderod, O.;Stokke, B. Polyelectrolyte complex formation using alginate and chitosan. Carbohydr. Polym. 2008, 74, pp 813-821
    [94] Sgaoling, Z.;Kohsaku, K. One-step preparation of chitosan solid nanoparticles by electrospray deposition. Int. J. Pharm. 2010, 397, pp 211-217
    [95] Nikoo, A. M.;Kadkhodaee, R.;Ghorani, B.;Razzaq, H. A. Controlling the norphology and material characteristics of electrospray generated calcium alginate microhydrogels. J Microencapsul. 2016, 33, pp 605-612
    [96] Bazunova, M.;Sharafutdinova, L.;Bazunova, A.;Lazdin, R.;Elinson, M.;Kulish, E. Biocompatible gel-like forms of drugs on the basis of solution of polysaccharide chitosan with alchols. Chem. Chem. Technol. 2018, 12, pp 43-46
    [97] Tam, S.K.;Dusseault, J.;Polizu, S.;Menard, M.;Halle, J-P.;Yahia, L. Physicochemical model of alginate–poly-l-lysine microcapsules defined at the micrometric/nanometric scale using ATR-FTIR, XPS, and ToF-SIMS. Biomaterials, 2005, 26, pp 6950-6961
    [98] Kulig, D; Zimoch-Korzycka, A.;Jarmoluk, A.; Marycz, K. Study on Alginate–Chitosan Complex Formed with Different Polymers Ratio. Polymers. 2016, 8, 167-183
    [99] Ramli, R. H.;Fhong, S. C.;Mohd Rus, A. Z. Synthesis of chitosan/Alginate/Silver Nanoparticle Hydrogel Scaffold. 2nd International Conference on Green Design and Manufacture 2016, Phuket, Thailand, May 1-2, 2016;Sharif, S. B. et al.; MATEC Web of Conferences;France, 2012;01031, pp 1-8
    [100] Zongrui, T.;Yu, L.;Yang, L.;Jiamian, C.;Kecen, X.;Zhiyu, X.;Wenbo, D.;Xingwu, C. Preparation, Characterization and Properties of Alginate/Poly(γ-glutamic acid) Composite Microparticles. Mar Drugs. 2017, 15, pp 91-104
    [101] Martin, H. J.;Schulz, K. H.;Bumgardner, J. D.;Walters, K. B. XPS study of the use of 3-Aminopropyltriethoxysilane to Band Chitosan to a Titanium Surface. Langmuir. 2007, 23, pp 6645-6651
    [102] Geun, Y. Y.;Soomin, P.;Seongjun, B.;Jongseok, P.;Inho, N.;Jongheop, Y. Transition metal-free graphene framework based on disulfide bridges as a Li host material. Energy Stor. Mater. 2018, 14, pp 138-145
    [103] Peng, C.;Yang, B.;Miaoqiang, L.;Jung-Ho. Y.;Liazhou, E. In Situ Growth of 2D Perovskite Capping Layer for Stable and Efficient Perovskite Solar Cells. Adv. Funct. Mater. 2018, 28, pp 1-10
    [104] Yen-Zen, W.;Tsung-Han, K.;. Preparation of Pt-Catalyst by Poly(p-phenylenediamine) Nanocomposites Assisted by Microwave Radiation for Proton Exchange Membrane Fuel Cell. Polymers (Basel). 2018, 10, pp 1388-1405

    無法下載圖示 全文公開日期 2025/08/24 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE