簡易檢索 / 詳目顯示

研究生: 蔡力明
Ramon - Pranowo
論文名稱: Effect of Organic Matter and Pre-oxidation on Harvesting Algae Using Chitosan and PACl
Effect of Organic Matter and Pre-oxidation on Harvesting Algae Using Chitosan and PACl
指導教授: 劉志成
Jhy-Chern Liu
口試委員: Suryadi Ismadji
Suryadi Ismadji
Renanto Handogo
Renanto Handogo
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 117
中文關鍵詞: 臭氧胞外代謝物多元氯化鋁藻類幾丁聚醣混凝膠凝過氧化氫
外文關鍵詞: Algae, chitosan, coagulation, flocculation, H2O2, organic matter, ozonation, polyaluminium chloride (PACl).
相關次數: 點閱:237下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 此研究目的在於評估分離和預氧化這兩種前處理程序對於藻類懸浮液性質影響,及其利用混凝分離藻類的成效。我們使用多元氯化鋁(PACl)和幾丁聚醣(chitosan)作為混凝劑,並且利用掃瞄式電子顯微鏡(SEM)、傅立葉轉換紅外線光譜儀(FTIR)、界面電位儀、粒徑分析儀、凝膠過濾色層分析儀(GFC)、激發/發散陣列光譜儀(EEM)和濕式化學分析法:包括濁度、溶解性有機碳(DOC)、蛋白質/多醣類分析等進行藻類懸浮液定性。
    實驗結果顯示,藻類胞外代謝物(Extracellular organic matter, EOM)會減少藻類的移除效率,以及增加混凝劑的需求量。幾丁聚醣在原始藻類懸浮液樣本的濁度處理上比聚氯化鋁有更高的效率;然而,若是處理分離後的藻類懸浮液樣本,則以聚氯化鋁的效率較高。蛋白質/多醣類、溶解性有機碳和激發/發散陣列光譜儀的結果確定了有機物質在混凝程序中很難被移除。
    在此研究中,我們使用臭氧以及結合臭氧和過氧化氫來作為兩種預氧化程序,它們影響藻類懸浮液的性質主要透過礦化藻類胞外代謝物、藻類去活性、釋放胞內物質(Intracellular organic matter, IOM) 、以及將分子量分怖朝較小的區間位移等。結合臭氧和過氧化氫,因其較強的氧化力,效果比起單獨使用臭氧佳。預氧化處理後,混凝程序中的濁度和溶解性有機碳移除率皆有顯著的改善。從經過預氧化處理後的藻類膠凝物粒徑變大來判斷,在預氧化處理中釋放的有機物質可作為膠凝劑,並在膠凝程序中藉由雙重膠凝來增進效果。


    This study aims to study the effects of two pretreatments processes, i.e. isolation and pre-oxidation, on algal suspension and its separation using coagulation-flocculation. Polyaluminium chloride (PACl) and chitosan are used as coagulant in this study. Characteristics of algae suspension after pretreatment are examined using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), zeta potential measurement, particle sizer, gel filtration chromatography (GFC), emission-excitation matrix (EEM), and wet chemical analysis, including turbidity, dissolved organic carbon (DOC), protein and polysaccharide.
    Results show that the presence of extracellular organic matter (EOM) decreases algae removal efficiency and increases coagulant demand. In terms of coagulant type, turbidity results show that chitosan has higher efficiency than PACl when used for original algae sample. However, PACl demonstrates better efficiency for isolated algae suspensions. Protein, polysaccharide, DOC, and EEM results confirm that organic matter is hardly removed during coagulation process.
    Pre-oxidation processes applied in this study include ozonation and combination of ozonation and H2O2. Both affect properties of algal suspension through mineralization of EOM, inactivation of algae cells, release of intracellular organic matter (IOM), and shift of molecular weight distribution to lower molecular weight range. Combination of ozonation and H2O2 provides better performance than ozone alone in enhancing separation efficiency due to stronger oxidation effect. Both turbidity and DOC removal efficiency after pre-oxidation are improved significantly. Judging from the increase in floc size after pre-oxidation, it is proposed that organic matter released after pre-oxidation can act as flocculant and results in enhanced flocculation via dual-flocculation during coagulation process.

    CONTENTS ABSTRACT.................................................................... i ABSTRACT (in Chinese)...................................................... ii ACKNOWLEDGEMENT.......................................................... .iii NOMENCLATURES............................................................. .iv CONTENTS.................................................................... vi LIST OF TABLES............................................................. .ix LIST OF FIGURES.............................................................. xi CHAPTER 1. INTRODUCTION..................................................... 1-1 1.1. Background............................................................. 1-1 1.2. Objective.............................................................. 1-2 CHAPTER 2. LITERATURE REVIEW ............................................... 2-1 2.1. Algae (Chlorella vulgaris) and extracellulaar organic matter (EOM)......2-1 2.2. Coagulation-flocculation............................................... 2-2 2.2.1. Coagulation.......................................................... 2-2 2.2.2. Flocculation......................................................... 2-2 2.3. Coagulant.............................................................. 2-3 2.3.1. PACl................................................................ 2-3 2.3.2. Chitosan ............................................................ 2-4 2.4. Coagulation of algae.................................................. 2-5 2.5. Coagulation of NOM..................................................... 2-6 2.6. Advanced oxidation process............................................. 2-8 2.7. Excitation emission matrix............................................ 2-10 2.8. Gel filtration chromatography (GFC).................................. 2-12 CHAPTER 3. MATERIALS AND METHODS........................................... 3-1 3.1. Cultivation of algae................................................... 3-1 3.2. Chemicals.............................................................. 3-2 3.3. Equipments............................................................. 3-3 3.4 Experimental design and methods........................................ 3-4 3.4.1. Pretreatment step................................................... 3-4 3.4.2. Coagulation/flocculation step....................................... 3-7 3.4.3. Characteristic/analysis step......................................... 3-8 3.4.3.1. SEM................................................................ 3-8 3.4.3.2. FTIR............................................................... 3-8 3.4.3.3. Turbidity.......................................................... 3-9 3.4.3.4. Zeta potential .................................................... 3-9 3.4.3.5. DOC .............................................................. 3-10 3.4.3.6. Particle size distribution ...................................... 3-10 3.4.3.7. Protein and polyssacharide analysis ............................. 3-11 3.4.3.8. EEM .............................................................. 3-12 3.4.3.9. GFC.............................................................. 3-13 CHAPTER 4. RESULTS AND DISCUSSION.......................................... 4-1 4.1. Characteristic of algae................................................ 4-1 4.1.1. SEM.................................................................. 4-1 4.1.2. FTIR................................................................. 4-2 4.1.3. EEM.................................................................. 4-2 4.2. Coagulation of algae using PACl and chitosan.......................... 4-4 4.2.1. Effect of coagulant dose............................................. 4-4 4.2.2. Particle size distribution........................................... 4-6 4.2.3. DOC................................................................. 4-10 4.2.4. EEM................................................................. 4-12 4.3. Effect pre-oxidation on algae sample.................................. 4-16 4.3.1. SEM................................................................. 4-16 4.3.2. FTIR................................................................ 4-21 4.3.3. Turbidity........................................................... 4-23 4.3.4. DOC ................................................................ 4-24 4.3.5. GFC................................................................. 4-26 4.3.6. Zeta potential...................................................... 4-29 4.3.7. Particle size distribution.......................................... 4-30 4.3.8. EEM................................................................. 4-34 4.4. Effect of pre-oxidation on coagulation of algae....................... 4-37 4.4.1. Turbidity........................................................... 4-37 4.4.2. Zeta potential...................................................... 4-39 4.4.3. DOC ................................................................ 4-40 4.4.4. Particle size distribution......................................... 4-42 4.4.5. EEM ................................................................ 4-47 4.5. Discussion............................................................ 4-52 CHAPTER 5. CONCLUSSIONS AND RECOMMENDATIONS ................................ 5-1 5.1. Conclussions........................................................... 5-1 5.2. Recommendations ....................................................... 5-2 REFERENCES.................................................................. R-1 APPENDIX ................................................................... A-1

    REFERENCES

    Acero, J. L., and van-Gunten, U. (2001), Characterization of oxidation processes: ozonation and the AOP O3/H2O2, Water Works Assoc., 5(10), 90-100.

    AliSafarzadeh-AmiriI (2001), O3/H2O2 treatment of methyl-tert-butyl ether (MTBE) in contaminated waters, Water Research, 35(15), 3706-3714.

    Alsheyab, M. A., and Munoz, A. H. (2006), Reducing the formation of trihalomethanes (THMs) by ozone combined with hydrogen peroxide (H2O2/O3), Desalination, 194(1-3), 121-126.

    Alvarenga, E. S. d., Oliveira, C. P. d., and Bellato, C. R. (2010), An approach to understanding the deacetylation degree of chitosan, Carbohydrate Polymers, 80(4), 1155-1160.

    Annadurai, G., Sung, S. S., and Lee, D. J. (2003), Simultaneous removal of turbidity and humic acid from high turbidity stromwater, Advanced in Enviromental Research, 8(3-4), 713-725.

    Bastos, D. S., Barreto, B. N., Souza, H. K. S., Bastos, M., M.Rocha-Leao, M. H., Andrade, C. T., and Goncalves, M. P. (2010), Characterization of a chitosan sample extracted from Brazilian shrimps and its application to obtain insoluble complexes with a commercial whey protein isolate, Food Hydrocolloids, 24(8), 709-718.

    Bergamasco, R., Bouchard, C., Silva, F. V. d., Reis, M. H. M., and Fagundes-Klen, M. R. (2009), An application of chitosan as a coagulant/flocculant in a microfiltration process of natural water, Desalination, 245(1-3), 205-213.

    Bilgen, S., and Wills, B. A. (1991), Shear flocculation - A review, Mineral Engineering, 4(3-4), 483-487.

    Bolto, B., and Gregory, J. (2007), Organic polyelectrolytes in water treatment, Water Research, 41(11), 2301-2324.

    Bose, P., and Reckhow, D. A. (2007), The effect of ozonation on natural organic matter removal by alum coagulation, Water Research, 41(7), 1516-1524.

    Bratskaya, S., Schwarz, S., and Chervonetsky, D. (2004), Comparative study of humic acids flocculation with chitosan hydrochloride and chitosan glutamate, Water Research, 38(12), 2955-2961.

    Brennan, L., and Owende, P. (2010), Biofuels from microalgae - A review of technologies for production, processing, and extractions of biofuels and co-products, Renewable and Sustainable Energy Reviews, 14(2), 557-577.
    Chelme-Ayala, P., El-Din, M. G., Smith, D. W., and Adams, C. D. (2011), Oxidation kinetics of two pesticides in natural waters by ozonation and ozone combined with hydrogen peroxide, Water Research, 45(8), 2517-2526.

    Chen, H. W., Kuo, Y. L., Chiou, C. S., You, S. W., Ma, C. M., and Chang, C. T. (2010), Mineralization of reactive Black 5 in aqueous solution by ozone/H2O2 in the presence of a magnetic catalyst, Journal of Hazardous Materials, 174(1-3), 795-800.

    Chen, J. J., and Yeh, H. H. (2005), The mechanisms of potassium permanganate on algae removal, Water Research, 39(18), 4420-4428.

    Chen, J. J., Yeh, H. H., and Tseng, I. C. (2009), Effect of ozone and permanganate on algae coagulation removal – Pilot and bench scale tests, Chemosphere, 74(6), 840-846.

    Chen, L., Li, P., Liu, Z., and Jiao, Q. (2009), The released polysaccharide of the cyanobacterium Aphanothece halophytica inhibits flocculation of the alga with ferric chloride, Journal of Applied Phycology, 21(3), 327-331.

    Chen, W., Westerhoff, P., Leenheer, J. A., and Booksh, K. (2003), Fluorescence Excitation-Emission Matrix Regional Integration to Quantify Spectra for Dissolved Organic Matter, Environmental Science Technology, 37(24), 5701-5710.

    Cheng, Y. L., Juang, Y. C., Liao, G. Y., Ho, S. H., Yeh, K. L., Chen, C. Y., Chang, J. S., Liu, J. C., and Lee, D. J. (2010), Dispersed ozone flotation of Chlorella vulgaris, Bioresource Technology, 101(23), 9092-9096.

    Cheng, Y. L., Juang, Y. C., Liao, G. Y., Tsai, P. W., Ho, S. H., Yeh, K. L., Chen, C. Y., Chang, J. S., Liu, J. C., Chen, W. M., and Lee, D. J. (2011), Harvesting of Scenedesmus obliquus FSP-3 using dispersed ozone flotation, Bioresource Technology, 102(1), 82-87.

    Chow, C. W. K., van-Leeuwen, J. A., Fabris, R., and Drikas, M. (2009), Optimised coagulation using aluminium sulfate for the removal of dissolved organic carbon, Desalination, 245(1-3), 120-134.

    Demirbas, A. (2010), Use of algae as biofuel sources, Energy Conversion and Management, 51(12), 2738-2749.

    Duan, J., and Gregory, J. (2003), Coagulation by hydrolysing metal salts, Advances in Colloid and Interface Science, 100-102, 475-502.

    Fang, J., Yang, X., Ma, J., Shang, C., and Zhao, Q. (2010), Characterization of algal organic matter and formation of DBPs from chlor(am)ination, Water Research, 44(20), 5897-5906.

    Fearing, D. A., Banks, J., Guyetand, S., Eroles, C. M., Wilson, D., Hillis, P., Campbell, A. T., and Parsons, S. A. (2004), Combination of Ferric and MIEXR for the treatment of humic rich water, Water Research, 38(10), 2551-2558.
    Godos, i. d., Guzman, H. O., Soto, R., Garcia-Encina, P. A., Becares, E., Munoz, R., and Vargas, V. A. (2011), Coagulation/flocculation-based removal of algal-bacterial biomass from piggery wastewater treatment, Bioresource Technology, 102(2), 923-927.

    Gogate, P. R., and Pandit, A. B. (2004), A review of imperative technologies for wastewater treatment II: hybrid methods, Advances in Environmental Research, 8(3-4), 553-597.

    Henderson, R. K., Parsons, S. A., and Jefferson, B. (2008), The impact of algal properties and pre-oxidation on solid-liquid separation of algae, Water Research, 42(8-9), 1827-1845.

    Henderson, R. K., Parsons, S. A., and Jefferson, B. (2010), The impact of differing cell and algogenic organic matter (AOM) characteristics on the coagulation and flotation of algae, Water Research, 44(12), 3617-3624.

    Henderson, R. K., Baker, A., Parsons, S. A., and Jefferson, B. (2008), Characterisation of algogenic organic matter extracted from cyanobacteria, green algae and diatoms, Water Research, 42(13), 3435-3445.

    Heng, L., Jun, N., Wen-jie, H., and Guibai, L. (2002), Algae removal by ultrasonic irradiation–coagulation, Desalination, 239(1-3), 191-197.

    Hiradate, S., and U.Yamaguchi, N. (2003), Chemical species of Al reacting with soil humic acids, Journal of Inorganic Biochemistry, 97(1), 26-31.

    Hogg, R. (2000), Flocculation and dewatering, International Journal of Mineral Processing, 58(1-4), 223-236.

    Hung, M. T., and Liu, J. C. (2006), Microfiltration for separation of green algae from water, Colloids and Surfaces, 51(2), 157-164.

    Kam, S.-K., and Gregory, J. (2001), The interaction of humic substances with cationic polyelectrlytes, Water Research, 35(15), 3557-3566.

    Kurbus, T., Marechal, A. M. L., and Vonc˘ina, D. B. (2003), Comparison of H2O2/UV, H2O2/O3 and H2O2/Fe2+ processes for the decolorisation of vinylsulphone reactive dyes, Dyes and Pigments, 58(3), 245-252.

    Kurita, K. (2006), Chitin and chitosan :functional biopolymers from marine crustaceans, Marine Biotechnology, 8(3), 203-226.

    Laabs, C., Amy, G., Jekel, M., and Buisson, H. (2003), Fouling of low pressure (MF and UF) membranes by wastewater effluent organic matter (EfOM): characterization of EfOM foulants in relation to membrane properties, Water Supply, 3(5), 229-235.

    Lee, C., Yoon, J., and van-Gonten, U. (2007), Oxidative degradation of N-nitrosodimethylamine by conventional ozonation and the advanced oxidation process ozone/hydrogen peroxide, Water Research, 41(3), 581-590.

    Lee, C. H., and Liu, J. C. (2001), Sludge dewaterability and floc structure in dual polymer conditioning, Advances in Environmental Research, 5(2), 129-136.

    Leyva, A., Quintana, A., Sanchez, M., Rodriguez, E. N., Cremata, J., and Sanchez, J. C. (2008), Rapid and sensitive anthrone–sulfuric acid assay in microplate format to quantify carbohydrate in biopharmaceutical products: Method development and validation, Biologicals, 36(2), 134-141.

    Liang, Y., Sarkany, N., and Cui, Y. (2009), Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixtrophic growth condition, Biotechnol Lett, 31(7), 1043-1049.

    Lin, A. Y. C., Lin, C. F., Chiou, J. M., and Hong, P. K. A. (2009), O3 and O3/H2O2 treatment of sulfonamide and macrolide antibiotics in wastewater, Journal of Hazardous Materials, 171(1-3), 452-458.

    Lin, C. F., Huang, Y. J., and Hao, O. J. (1998), Ultrafiltration processes for removing humic substances: Effect of molecular weight fractions and PAC treatment, Water Research, 33(5), 1252-1264.

    Lin, C. F., Lin, T. Y., and Hao, O. J. (1999), Effects of humic substance characteristics on UF performance, Water Research, 34(4), 1097-1106.

    Liu, H., Hu, C., Zhao, H., and Qu, J. (2009), Coagulation of humic acid by PACl with high content of Al13:The role of aluminium speciation Separation and Purification Technology 70(2), 225-230.

    Lowry., O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951), Protein measurement with folin phenol reagent, Journal of Biological Chemistry, 193, 265-275.

    Lu, X., Chen, Z., and Yang, X. (1999), Spectroscopic study of aluminium speciation in removing humic substances by Al coagulation, Water Research, 33(15), 3271-3280.

    Lucas, M. S., Peres, J. A., and Puma, G. L. (2010), Treatment of winery wastewater by ozone-based advanced oxidation processes (O3, O3/UV and O3/UV/H2O2) in a pilot-scale bubble column reactor and process economics, Separation and Purification Technology, 72(3), 235-241.

    Ma, J., and Liu, W. (2002), Effectiveness and mechanism of potassium ferrate (VI) preoxidation for algae removal by coagulation, Water Research, 36(4), 871-878.

    Matilainen, A., and Sillanpaa, M. (2010), Removal of natural organic matter from drinking water by advanced oxidation processes, Chemosphere, 80(4), 351-365.
    Mecozzi, M., Pietrantonio, E., Noto, V. D., and Pa’pai, Z. (2005), The humin structure of mucilage aggregates in the Adriatic and Tyrrhenian seas: hypothesis about the reasonable causes of mucilage formation, Marine Chemistry, 95(3-4), 255-269.

    Mitani, M. M., Keller, A. A., Bunton, C. A., Rinker, R. G., and Sandall, O. C. (2002), Kinetics and products of reactions of MTBE with ozone and ozone/hydrogen peroxide in water, Journal of Hazardous Materials, 89(2-3), 197-212.

    Mutanda, T., Ramesh, D., Karthikeyan, S., Kumari, S., Anandraj, A., and Bux, F. (2011), Bioprospecting for hyper-lipid producing microalgal strains for sustainable biofuel production, Bioresource Technology, 102(1), 57-70.

    Ng, K. K., Lin, C. F., Lateef, S. K., Panchangam, S. C., Hong, P. K. A., and Yang, P. Y. (2010), The effect of soluble microbial products on membrane fouling in a fixed carrier biological system, Separation and Purification Technology, 72(1), 98-104.

    Pivokonsky, M., Kloucek, O., and Pivokonska, L. (2006), Evaluation of production, composition, and aluminium and iron complexation of algogenic organic matter, Water Research, 40(16), 3045-3052.

    Popiel, S., Witkiewicz, Z., and Chrzanowski, M. (2008), Sulfur mustard destruction using ozone, UV, hydrogen peroxide and their combination, Journal of Hazardous Materials, 153(1-2), 37-43.

    Popiel, S., Nalepa, T., Stankiewicz, R., and ZygfrydWitkiewicz (2009), Rate of dibutylsulfide decomposition by ozonation and the O3/H2O2 advanced oxidation process, Journal of Hazardous Materials, 164(2-3), 1364-1371.

    Porath, J., and Flodin, P. (1959), Gel filtration: A methods for desalting and group separation, Nature, 183, 1657-1659.

    Qiang, Z., Liu, C., Dong, B., and Zhang, Y. (2010), Degradation mechanism of alachlor during direct ozonation and O3/H2O2 advanced oxidation process, Chemosphere, 78(5), 517-526.

    Qin, J. J., Oo, M. H., Kekre, K. A., Knops, F., and Miller, P. (2006), Impact of coagulation pH on enhanced removal of natural organic matter in treatment of reservoir water, Separation and Purification Technology, 49(3), 295-298.

    Renault, F., Sancey, B., Badot, P., and Crini, G. (2009), Chitosan for coagulation/flocculation processes - An eco-friendly approach, European Polymer Journal, 45(5), 1337-1348.

    Rinaudo, M. (2006), Chitin and chitosan: Properties and applications, Progress in Polymer Science, 31(7), 603-632.

    Rosal, R., Rodriguez, A., Perdigon-Melon, J. A., Petre, A., and Garcia-Calvo, E. (2009), Oxidation of dissolved organic matter in the effluent of a sewage treatment plant using ozone combined with hydrogen peroxide (O3/H2O2), Chemical Engineering Journal, 149(1-3), 311-318.

    Scragg, A. H., Morrison, J., and Shales, S. W. (2003), The use of fuel containing Chlorella vulgaris in a diesel engine, Microbial Technology, 33(7), 884-889.

    Sharp, E. L., Parsons, S. A., and Jefferson, B. (2006), The impact of seasonal variations in DOC arising from a moorland peat catchment on coagulation with iron and aluminium salts, Environmental Pollution, 140(3), 436-443.

    Shi, B., Wei, Q., Wang, D., Zhu, Z., and Tang, H. (2006), Coagulation of humic acid:the performance of preformed and non-preformed Al species, Colloids and Surfaces A:Physiochemical and Engineering Aspects, 296(1-3), 141-148.

    Singh, A., Nigam, P. S., and Murphy, J. D. (2011), Mechanism and challenges in commercialisation of algal biofuels, Bioresource Technology, 102(1), 26-34.

    Siyanytsya, V., Kochkodan, V., and goncharuk, V. (2007), Natural organic matter removal from water by complexation-ultrafiltration, Desalination, 223(1-3), 91-96.

    Suh, J., and Mohseni, M. (2004), A study on the relationship between biodegradability enhancement and oxidation of 1,4-dioxane usingozone and hydrogen peroxide, Water Research, 38(10), 2596-2604.

    Takaara, T., Sano, D., Konno, H., and Omura, T. (2007), Cellular proteins of Microcystis aeruginosa inhibiting coagulation with polyaluminium chloride, Water Research, 41(8), 1653-1658.

    Uduman, N., Qi, Y., Danquah, M. K., Forde, G. M., and Hoadley, A. (2010), Dewatering of microalgal cultures: A major bottleneck to algae-based fuels, Journal of Renewable and Sustainable Energy, 2(1).

    Unduman, N., Qi, Y., Danquah, M. K., and Hoadley, A. F. A. (2010), Marine microalgae flocculation and focused beam reflectance measurement, Chemical Engineering Journal, 162(3), 935-940.

    Uyak, V., and Toroz, I. (2007), Disinfection by-product precursors reduction by various coagulation techniques in Istanbul water supplies, Journal of Hazardous Materials, 141(1), 320-328.

    van-Gunten, U. (2003), Ozonation of drinking water: Part I. Oxidation kinetics and product formation, Water Research, 37(7), 1443-1467.

    Volk, C., Bell, K., Ibrahim, E., Verges, D., Amy, G., and LeChevallier, M. (2000), Impact of enhanced and optimized coagulation on removal of organic matter and its biodegradable fraction in drinking water, Water Research, 34(12), 3247-3257.

    Wang, D., Sun, W., Xu, Y., Tang, H., and Gregory, J. (2004), Speciation stability of inorganic polymer flocculant - PACl, Colloids and Surafaces A:Physiochemical and Engineering Aspects, 243(1-3), 1-10.

    Wang, K., Guo, J., Yang, M., Junji, H., and Deng, R. (2009), Decomposition of two haloacetic acids in water using UV radiation, ozone and advanced oxidation processes, Journal of Hazardous Materials, 162(2-3), 1243-1248.

    Wang, Y., Gao, B.-Y., Xu, X.-M., and Xu, W.-Y. (2010), The effect of total hardness and ionic strength on the coagulation performance and kinetics of aluminium salts to remove humic acid, Chemical Engineering Journal, 160(1), 150-156.

    Wang, Y., Du, B., Lu, J., Shi, B., and Tang, H. (2007), Surface analysis of cryofixation-vacuum-freeze-dried polyaluminium chloride-humic acid (PACl-HA) flocs, Journal of Colloid and Interface Science, 316(2), 475-466.

    Wei, J. C., Gao, B. Y., Yue, Q. Y., Wang, Y., and Lu, L. (2009), Performance and mechanism of polyferric-quaternary ammonium salt composite flocculants in treating high organic matter and high alkalinity surface water, Journal of Hazardous Materials, 165(1-3), 789-795.

    Westerhoff, P., Aiken, G., Amy, G., and Debroux, J. (1999), Relantionships between the structure of natural organic matter and its reactivity towards molecular ozone and hydroxyl radicals, Water Research, 33(10), 2265-2276.

    Widgrig, D. L., ., K. A. G., and McAuliffe, K. S. (1996), Removal of algal-derived organic material by preozonation and coagulation : Monitoring changes in organic quality by pyrolysis-GC-MS, Water Research, 30(11), 2621-2632.

    Wu, J. J., Muruganandham, M., and Chen, S. H. (2007), Degradation of DMSO by ozone-based advanced oxidation processes, Journal of Hazardous Materials, 149(1), 218-225.

    Wu, J. J., Yang, J. S., Muruganandham, M., and Wu, C. C. (2008), The oxidation study of 2-propanol using ozone-based advanced oxidation processes, Separation and Purification Technology, 62(1), 39-46.

    Wu, Y., Zhao, C., Wang, Q., and Ding, K. (2006), Integrated effects of selected ions on 2,4,6-trinitrotoluene-removal by O3/H2O2, Journal of Hazardous Materials, 132(2-3), 232-236.

    Xiao, H., Liu, Z., and Wiseman, N. (1999), Synergetic effect of cationic polymer microparticles and anionic polymer on fine clay flocculation, Journal of Colloid and Interface Science, 216(2), 409-417.

    Yamashita, Y., and Tanoue, E. (2003), Chemical characterization of protein-like fluorophores in DOM in relation to aromatic amino acids, Marine Chemistry, 82(3-4), 255-271.

    Yan, M., Wang, D., Ni, J., Qu, J., W.K.Chow, C., and Liu, H. (2008), Mechanism of natural organic matter removal by polyaluminium chloride:Effect of coagulant particle size and hydrolysis kinetics, Water Research, 42(13), 3361-3370.

    Yang, Y. F., Feng, C. P., Inamori, Y., and Maekawa, T. (2004), Analysis of energy conversion characteristics in liquefaction of algae, Resources, Conservation and Recycling, 43(1), 21-33.

    Ying-Hui, Y., Jun, M., and Yan-Jun, H. (2006), Degradation of 2,4-dichlorophenoxyacetic acid in water by ozone-hydrogen peroxide process, Journal of Environmental Sciences, 18(6), 1043-1049.

    Yu, X., and Somasundaran, P. (1996), Role of polymer conformation in interparticle-bridging dominated flocculation, Journal of Colloid and Interface Science, 177(2), 283-287.

    Zhang, Zhang, P., and Fan, M. (2009), Ultrasound-enhanced coagulation for Microcystis aeruginosa removal, Ultrasonics Sonochemistry, 16(3), 334-338.

    Zhang, P., wu, Z., Zhang, G., Zeng, G., Zhang, H., Li, J., Song, X., and Dong, J. (2008), Coagulation characteristics of polyaluminium chlorides PAC-AL30 on humic acid removal from water, Separation and Purification Technology, 63(3), 642-647.

    QR CODE